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The energy loss of a beam of cesium or lithium ions traversing a near-thermal equilibrium. cesium
plasma has been measured as a function of plasma density at ion-beam energies of 35-150 eV. The
plasma electron-ion temperature ranged from 2100 to 2500 °K, and the charged-particle density ranged
from (0.1 to 8.0) X 10'"' cm~>. The measured energy loss is found to agree well with theoretical

predictions.

I. INTRODUCTION

The simplest and most basic problem in the ki-
netic theory of plasma physics is the interaction
of a single charged particle with a plasma in
thermodynamic equilibrium. This “test-particle
problem” has received a great deal of theoretical
interest.! Among the fundamental observables
are energy loss or gain and angular deflection of
the test particle. In addition, charged-particle
beams are potentially very useful analytic and
diagnostic tools for plasma-physics research,
since they represent a direct means for probing
the plasma microfields. Despite the vast theoret-
ical literature, there has been little experimental
work performed. The difficulties include the nec-
essarily large magnetic fields confining some
plasmas, the usually small magnitude of the en-
ergy loss compared to the test-particle energy,
sheaths, uncertainties in plasma parameters, in-
elastic scattering both with plasma constituents
and background neutral gas, and additional prob-
lems inherent with pulsed plasmas if the plasma
is of this type.

We are reporting measurements of the average
energy loss of low-density, low-energy (35-150
eV) beams of cesium or lithium ions in passage
through a low-density near-thermal equilibrium
cesium plasma.? The thermal cesium plasma is
mechanically confined, has no applied electric or
magnetic fields, possesses small thermal and
density gradients, and the plasma constituents
are almost in full thermodynamic equilibrium
with the plasma container. The plasma density
and temperature can be varied independently for
greater flexibility in experimental measurements.

The quantity of interest, dE/dt, is the rate of
energy loss of a test particle owing to its interac-
tions with the plasma particles, and is directly
related to the “relaxation time” of a test particle
injected into a plasma. The energy-loss rate is
of practical interest as the advent of thermonu-~
clear reactors approaches; although the present
experimental parameters are in a different range
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from those necessary for a controlled thermonu-
clear reactor, a check of the theory in any range
will shed light on its general predictions.

II. REVIEW OF PREVIOUS EXPERIMENTAL
WORK

Four previous experiments®~® are to be com-
pared with the present work. In three experiments,
protons (or deuterons) were used for test-particle
beams. In the fourth, electrons were used. Re-
ported energy losses ranged from 0.3 to 8 times
the value predicted by theory. In all cases the
test-particle speed was on the order of, or greater
than, the thermal speed of the electrons in the
plasma, and very much greater than the ion ther-
mal speeds. In 1965, Smith and Johnson® passed
1-3-keV electrons through a helium plasma pro-
duced in an electromagnetic shock tube, more
commonly called a T tube. The plasma density
varied from 5X10'® to 1X10'® cm™3, with the elec-
tron kinetic temperature on the order of 4x10*°K.
Experimental results indicated an energy loss
~ 8 times higher than predicted by their theoreti-
cal model.

Ormrod* (1967) investigated the energy loss of
30-T70-keV protons and 20-70-keV deuterons in
an argon hollow-cathode discharge. The plasma
was confined by an axial magnetic field of ~ 10° g;
the beam path was parallel to the field lines. As
measured with a Langmuir probe, the electron
density varied from 2 to 11xX10'® cm™3, and the
electron temperature averaged = 6 X10*°K. Orm-
rod’s results were lower than predicted by theory
by a factor of 3, although corrections to his anal-
ysis, which include the effects of the applied mag-
netic field, tend to reduce the discrepancy some-
what.

Another energy-loss experiment with protons
(5-10 keV) was performed by Halverson® (1968)
using a magnetically confined lithium arc plasma.
The protons made a number of passes through
part of the arc while their guiding centers pre-
cessed because of a VB drift. The energy spectra
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of fast neutral hydrogen atoms resulting from
charge exchange were analyzed, and showed an
energy loss of (40-60)% of the predicted value.
Plasma parameters were electron density, 4x10!2
cm™; electron temperature, ~ 10*°K. A reanal-
ysis by Caby-Eyaud” (1970) reduced the discrep-
ancy with theory in this experiment.

An experiment done by Burke® (1972) was per-
formed concurrently with the present one. A
beam of 2.8-keV protons or 3.3-keV deuterons
was neutralized in a charge-exchange cell, and
injected across the field lines into a magnetically
confined plasma which was the afterglow of a hy-
drogen discharge. Some of -the fast neutral test
particles were ionized through charge exchange
and began to rotate in the magnetic field, losing
energy to the plasma particles. A small number
of these were reneutralized at a point in their or-
bit which permitted them to enter a shielded detec-
tor chamber, where they were reionized and ener-
gy analyzed. A number of plasma diagnostics were
employed to measure a plasma temperature of
~ 10%°K, and a density of approximately 6 X103
cm™3, Burke’s measured energy losses were
from 3 to 4 times higher than theoretical predic-
tions, depending on whether or not corrections
were applied for magnetic field effects.

In contrast with all of the above experiments,
the present work utilizes a steady-state equilib-
rium plasma that is virtually free of electric and
magnetic fields. These conditions minimize the
difficulties in comparing the experimental results
with theory. W e report measurements for sever-
al values of beam energies, plasma densities,
and plasma temperatures.

III. THEORY

This section briefly reviews the different theo-
retical approaches to the calculation of the energy
loss of a test ion in a plasma. Generally, an ion
can interchange energy with a plasma via three
processes, namely, inelastic collisions with the
plasma (or neutral background) particles, elastic
collisions, and through plasma collective effects.
Only the last two mechanisms are significant for
a low-energy beam of ion test particles in a highly
ionized plasma. The test particles in a collimated
monoenergetic beam undergo numerous uncorre-
lated successive small-angle collisions with the
plasma particles, so that the beam particles
emerge with a distribution in direction and ener-
gy. In addition, the test particles may exchange
energy with the plasma by exciting a plasma oscil-
lation. For general reviews of the theoretical
treatment of the energy-loss problem, see Refs.

8 and 9.

Butler and Buckingham!© treat the energy-loss
problem from a direct-collision point of view.
They consider a test particle of mass M and
charge Ze traveling with velocity Vin the labora-
tory system, and making a series of collisions
with field particles of mass m and charge ze trav-
eling with velocity V. Using central-force binary-
collision theory and the differential Coulomb scat-
tering cross section, they derive an expression
for the average energy change of the test and field
particles. Assuming a Maxwellian distribution of
field particle velocities, an integration over ve-
locity is performed yielding the total rate of ener-
gy change.

Since the Coulomb scattering cross section leads
to a divergence at small scattering angles, it is
necessary in the averaging of the energy loss over
the center-of-mass scattering angle 6 to limit the
range of angle to 6, <6 <m, where 6, is a specif-
ic minimum scattering angle, corresponding to a
maximum impact parameter on the order of the
Debye length.!!

Butler and Buckingham’s expression for the en-
ergy-loss rate (dE/dt), to the sth kind of field
particle is

dE_ 8V ny( Zze?2F(V/v,)InA
dt mSvS

) ®

where 7, is the number density of scatterers, the
thermal speed v, of the plasma constituents is v,
= (2kT/m )2, and

F(x)= xl- f * e dx - A+m/M)e™s ,  (2)
s /]

where %, = V/v,, the ratio of the beam speed to the
thermal speed of the plasma particles. Equation
(3) only takes the form shown for a Maxwellian
velocity distribution of the plasma constituents.
The total energy loss rate is given by a sum over
all plasma constituents, dE/dt=2;,(dE/dt),.
Another widely used approach to the calculation
of the energy-loss rate involves the use of the
Fokker-Planck equation, first used in this context
by Chandrasekhar'? to describe the motion of a
single star in a star cluster. Rather than consid-
ering successive individual collisions, the deriva-
tion of the Fokker-Planck equation (as given by
Chandrasekhar) treats the effect of many simulta-
neous small-angle collisions additively so as to
produce a total vector change in the test-particle’s
velocity distribution function f,(X, v, £). The test
particle, subject to simultaneous small-angle
“grazing” collisions with the plasma electrons
and ions which lie within its Debye sphere but
which are also mostly far beyond the minimum
impact parameter, progresses in velocity space



in a random walk manner. This random motion

is superimposed on its directed motion. The der-
ivation assumes a Markovian process—that the
future evolution of the distribution function de-
pends on current conditions and not on the past
history of the system. The Fokker-Planck equa-
tion can also be derived'®'!* by treating the test-
particle-plasma interaction as a series of succes-
sive small-deflection binary collisions, and ex-
panding the collision term of the Boltzmann equa-

tion, using the Rutherford scattering cross section.

Using either derivation one is led to a Fokker-
Planck equation of the form

(s Do (253 Ty 7).
@)

The vector D is called the “coefficient of dynamic
friction,” defined such that D; =(Av, is the average
increment per unit time of the ith component of
the test-particle’s velocity. Similarly the tensor
D,,, often written as (AVAV), is called the “diffu-
sion in velocity tensor” and is a measure of the
rate of diffusion of f,(X, V, ¢) in velocity space.
Higher-order terms such as (AVAVAV),. the “non-
dominant” terms of Chandrasekhar, may be ne-
glected.

Evaluation of the diffusion coefficients D; and
Dy; can be simplified by considering the symme-
tries of the system. For a test-particle beam
with an initial 6-function velocity distribution, in-
cident on a isotropic plasma in the absence of ex-
ternal forces, there are only three nonzero inde-
pendent diffusion coefficients,'%"*s (Av,), (Av?),
and (A% ). The dynamical friction coefficient
(Avy ) is the rate at which the test-particle veloc-
ity is changing in the initial direction of the beam
particles. The two elements of the diffusion-in-
velocity tensor represent the average rate of
change of (Av2) in directions parallel and perpen-
dicular to the beam velocity.

The rate of change of the test-particle energy
can be expressed in terms of the diffusion coeffi-
cients.'®''®* The mass and velocity of the test par-
ticle are denoted by M and ¥, respectively, and
( )ave denotes an average over all interactions with
the plasma constituents. The rate of change of the
particle energy is

dE [ M - - s

T ‘<2—1.~.7 [F+4a9): T+AV) = ]>m. (4)
Rearranging,

dE . [ AV AV'AV

a =M (ZV at * T at )W (5)

In terms of the nonzero diffusion coefficients, Eq.
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(5) becomes

9E _smlzoavyw(anhy+(ad)] (6)

This expression for dE/dt has been evaluated by
Spitzer!® and, in a slightly different manner, by
Shkarofsky et al.® Their results are identical to
Eq. (1) derived by Butler and Buckingham.!® May"’
has shown that the two treatments are equivalent
provided that the test-particle energy is greater
than the energy of the plasma ions and electrons.
An alternative to the use of the collision theory
in calculating the effects of a plasma-test-particle
interaction is to use the “wave” theory, which
treats the plasma as a polarizable medium. The
electric field of the charged test particle polarizes
the plasma, and the electric field due to the polar-
ization reacts on the test particle to produce a
frictional force. In addition the test charge reacts
to the electric field produced by correlated density
fluctuations (plasma oscillations) in the plasma.
The resulting formulation does not require an
arbitrary cutoff at the Debye length, which ap-
pears naturally.® However, to prevent diver-
gences, it is necessary to introduce an arbitrary
cutoff at a minimum impact parameter®:181® p_. .
which is usually taken to be the impact parameter
for 90° deflections in the center-of-mass system.
The collision and wave theories are complimen-
tary; the former is assumed to correctly include
the dynamics of binary encounters, and the latter
to handle collective phenomena properly. A form-
ulation was initially developed by Thompson and
Hubbard,8+2° to continuously join the two theories
so that no arbitrary phenomenological cutoffs are
necessary. A number of authors have followed
with “convergent” plasma kinetic equations,? in-
cluding a series of papers,? 22 by Kihara, Aono,
Itikawa, and co-workers. Generally, such con-
vergent theories have not produced a tractable
expression for the energy-loss rate of a test ion
over a broad range of velocities, except for a
paper by Itikawa and Aono.?® For a test ion of
mass M, velocity V, and charge ¢, traversing
an infinite homogeneous plasma at temperature
T and density n,, the energy-loss rate of the par-
ticle is given by

dE 2o M2 4p KT
7d—t— =41rq Zl. msUs [FS( V/US) In (YI e.sqsl mg )
pon

+6(v/v) ], @

where

F, (xJ:%[j;l e™<2 du - <1+1”MA)3-=§] )
(8)
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An expression equivalent to Eq. (7) has also been
given by Perkins.?* Again the subscripts label
the various plasma constituents with m,, v;, and
e,, the same as defined earlier. The other quan-
tities in Eq. (7) are the reduced mass

HUg=mg M/(ms +M) ’
the Debye Length
Ag=(RT/4mng 2 )2 |

Boltzmann’s constant 2, and Euler’s constant
Iny=0.57717...

G(V/v,) represents the dependence of the Coulomb
logarithm on the velocity of the test particle.
Graphs of the function G(V/v;) for a two-compo-
nent singly ionized plasma were presented by /
Itikawa and Aono.?® Equation (7) does not include
quantum-mechanical effects.

In spite of the diversity of theoretical approaches,
all the expressions for the energy loss agree to
within about 20% in the range of parameters in-
volved in this study. On the other hand as already
mentioned the few experiments that have been
done with ion beams give energy losses that range
from substantially higher to several times lower
than that predicted by the theory.

The quantity which is measured experimentally
for a given beam energy, plasma temperature,
and plasma density is the total energy loss of the
beam, AE, Torelate AE to expressions for the ener-
gy-lossrate dE/dt[Eq. (7)or (1)], the theoretical
expression mustbe multiplied by A, the transittime
of the beam ionthrough the plasma. The transittime

is set equal to L/V, where L is the length of the
plasma and V is the speed of the beam ion. This
is a good approximation when the magnitude of
the energy loss is small compared to the beam
energy (i.e., AE/E<1). Both theory and experi-
ment give values of AE/E which are substantially
smaller than unity, supporting this approximation..
The dependence of the energy-loss rate on test-
particle speed and plasma constituents is graph-
ically illustrated in Fig. 1. This shows the calcu-
lated energy loss per cm of a Cs™ beam as a func-
tion of x,, the ratio of beam speed to the plasma
electron thermal speed. Equation (1) has been
used, and a cesium thermal equilibrium plasma
at 2500 °K with a density of 2X 10! c¢cm™ has been
assumed. Two peaks are seen, one due to elec-
trons, the other due to singly charged cesium
ions. The peak near x, =0.003 results primarily
from loss to plasma ions with its center near the
point where the beam speed would equal the ther-
mal ion speed, an energy of about 0.2 eV. Note
that an energy gain would result if the beam ions
could be injected at subthermal energies. The
peak at x, =1 results primarily from the energy
loss to electrons, and is the dominant loss mech-
anism in our experiment. In particular, for our
cesium plasma, the theory predicts the energy
loss to ions for a test-particle beam of cesium
ions will be approximately 0.3 to 0.05 the energy
loss to electrons for beam energies of 35-150 eV.
For a test-particle beam of lithium ions in the
same energy range the energy loss is almost
completely due to electrons. Noted on the graph
are the regions investigated in the present mea-
surements as well as the x, values used in other .
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FIG. 1. Energy loss per
centimeter of a cesium ion
beam traversing a 2500 °K
cesium plasma with a den-
sity of 2x 10! em™. The
abcissa is the ion beam
speed divided by the elec-
tron thermal speed, or x,.
The range of this param-
eter investigated by this
experiment and other ion
beam experiments is
shown.
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experiments. The general shape of this curve is
fairly insensitive to plasma temperature. Thus
previous experiments carried out at considerably
different temperatures from the present ones can
be qualitatively compared on this graph.

Our experiment actually measures the part of
the energy loss associated with (Av,), while Egs.
(1) and (7) give the total energy loss. We use Eq.
(7) for comparison with our data because it has no
arbitrary parameters associated with it, but it
should overestimate the energy loss as measured
by us because it includes the energy loss due to
the diffusion coefficients [see Eq. (6)]. Using the
expressions given by Spitzer!® for (Av,) and the
diffusion coefficients, we estimate the error to
be 10% for our 35-eV Cs* beam, and considerably
smaller for all other data.

IV. THE PLASMA

As the type of plasma used in this investigation
is not one of the more familiar varieties, we in-
clude a brief review. If a fixed number of atoms
with density 7, and ionization energy & is placed
within a isothermal enclosure whose walls are
maintained ata temperature T, a plasma is formed
whose electron density #,, ion density #,, and
neutral density 7, are related by the Saha equa-
tion,?s

Rty _2__g'(21rmekT> sz e YT
n, g h?

where m, is the mass of the electron, and %2 and 2
are Boltzmann’s and Planck’s constants, respec-
tively. The ratio of the statistical weights of the

, ®

ionized and neutral atoms is g'/g (=3 for alkali
metals). Under steady-state conditions (and for
single ionization) n, =7, =“plasma density.” The
fractional ionization I;=n,/n,, where n,=n, +n,,
increases with T for constant 7, and decreases

at constant T for increasing 7,. On the other hand,
n, increases monotonically for constant T and in-
creasing 7,. The cross-hatched region of Fig. 2
depicts the area under investigation in the present
measurements while Table I lists some of the
typical parameters for our plasma at the operat-
ing conditions.

Thus, an equilibrium laboratory plasma can be
produced using an alkali element with a low ion-
ization potential in a suitable refractory enclosure.
This idea was first suggested by Dreicer?® and
several versions of such a plasma device have
been constructed. All the designs,?”~%° however,
suffer from one or more of the following short-
comings: (i) The temperature of the enclosure is
not uniformly maintained over long periods of
time; (ii) The useful lifetime of the device is
severely limited at high temperature (~2500 °K);
(iii) There is no way of allowing an external parti-
cle beam to interact with the plasma. The plasma
source used in the current experiment, utilizing
cesium vapor in a tantalum enclosure, does not
suffer from the above problems.

With the size plasma container, temperatures,
and densities used in this experiment, the pri-
mary mechanism for ionizing and thermalizing
the cesium atoms is collisions with the walls.
From the ratio of the wall area to the area of the
holes in the plasma chamber, it is calculated that
the plasma particles on the average must make

1.0~

0.4}b

FRACTIONAL IONIZATION

FIG. 2. Fractional ioniza-
tion of cesium as a function
of temperature as predicted
by the Saha equation. Each
curve is for a given plasma
density.
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TABLE I. Typical plasma parameters,

Temperature (°K) 2500 2500 2100 2100

Electron/ion 1010 10%2 3x 101! 1010
density
(particles/cm?®)

Fractional 0.998 0.826 0.29 0.923
ionization

Density of 2x10"  2.1x10! 7.5x10" 8.3x10°
neutral back-
ground (atoms/
cm?)

Debye length 3.4x107% 3.4x107 5.8x10™* 1073
(cm)

Number of 3400 340 484 838

particles in a
Debye sphere

several hundred collisions with the walls before
escaping from the plasma region. Even if a par-
ticular relaxation mechanism required 5 or 10
collisions with the walls, thermal equilibrium
should be closely established and the Saha equa-
tion should give a good description of the plasma.
It is interesting to note that the Saha equation does
not depend on the properties of the wall, but for a
container with exit holes it is necessary to use a
suitably high-work-function material for the wall
so that the probability of ionization on a single
wall collision is quite high. Cesium with an ion-
ization potential of 3.893 eV and tantalum with a
work function of 4.12 eV fulfill this criterion very

adequately.
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FIG. 3. Schematic of the apparatus showing the ar-
rangement of the components. It is not to scale.
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V. APPARATUS

An over-all schematic of the experiment (not to
scale) is shown in Fig. 3. The ion beam originates
at the cathode; it is extracted, decelerated, and
collimated by electrostatic lenses and deflected
onto the main axis by the first set of deflection
plates. After passing through a hole in the water-
cooled ion-gun-shield flange, the beam may be
slightly trimmed in direction by a second set of
deflection plates. The beam is further collimated
as it enters the plasma cylinder by the plasma-
cylinder entrance aperture. The ion beam passes
through the plasma cylinder and the third set of
deflection plates and into the detector. A cesium
oven supplies alkali vapor to make up for the
losses from the diagnostic holes in the plasma
chamber. The neutral density in the plasma is
measured with a surface ionization detector, and
the temperature is measured with an optical py-
rometer. The following paragraphs describe these
components in more detail.

Figure 4, with the exception of the cesium oven,
is a cross section of the plasma confinement and
heating system. The cesium oven has been rotated
by 45° so it could be included in the diagram. The
plasma is contained in a 1-mil wall tantalum tube
1.905 cm in diameter and 12.57 cm long. A series
of disks spotwelded into the tube confine the plas-
ma and provide heat shielding. Holes in the center
of the disks serve as apertures for the ion beam.
The two disks actually containing the plasma are
7.5 cm apart when hot. The beam entrance and
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FIG. 4. Detailed drawing, to scale, showing the
plasma chamber, heating elements, and support struc-
ture.
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exit holes to the plasma region are 0.170 and
0.318 c¢m in diameter, respectively. Cesium is
fed from a nickel oven into the plasma cylinder
by a tube of rolled up tantalum foil. ' The oven has
a noninductive heater, cooling coils that allow it
to be quenched quickly, and several chromel-
alumel thermocouples for temperature monitor-
ing. A temperature controller stabilizes the oven
temperature to within a fraction of a degree. The
highest oven temperature used was 140 °C.

Two coaxial, tungsten-foil cylinders of 1-mil
wall thickness are used as a resistive heating ele-
ment to control the temperature of the plasma.
The two cylinders are spotwelded together at their
lower ends. The upper ends are attached to two
electrically isolated water-cooled flanges. The
heating current can thus be passed down one cyl-
inder and back up the other almost entirely elim-
inating magnetic fields due to the relatively large
heating current. The present design for the plas-
ma-cylinder heating element is the result of much
experimentation. Previous versions using tanta-
lum foil have operated satisfactorily at tempera-
tures below 2100 °K* but failed quickly at higher
temperatures. Thus the great increase in operat-
ing life afforded by using tungsten cylinders far
outweighs the difficulties involved in fabricating
the tungsten cylinders. The present freely hung
design minimizes stresses on the cylinders due
to thermal expansion and contraction. A smaller
temperature differential between the heating and
plasma cylinder was observed with this design
than with a design in which the heating element
was comprised of a single cylinder. The negative
terminal of the heating-element power supply is
grounded so as to suppress electron emission.
The entire length of the heating element is thus
positive with respect to the surrounding grounded
components. Not shown, but surrounding the heat-
ing element, are two cylindrical tantalum heat
shields attached to the water-cooled flange.

The water-cooled flanges from which the plasma,
heating, and shielding cylinders are suspended,
are supported by two sets of concentric tubes
which carry coolant (water) and dc current for
the heating element. Each set of tubes carries
half the heating current in a coaxial manner to
reduce stray magnetic fields. All the currents
are matched to within 0.2 A by parallel rheostats.
A current of 250 A at 16.8 V is necessary to heat
the plasma cylinder to around 2500 °K.

The temperature of the plasma cylinder is deter-

mined by measuring the temperature of the black-
body radiation from a small hole (0.160 cm in
diameter) in the side of the cylinder with an opti-
cal pyrometer. The pyrometer hole is located ap-
proximately midway between the two caps defining

the plasma region. The temperature profile along
the length of the plasma cylinder has been exam-
ined on an apparatus similar to the present one,
but with inferior heat shielding. It is estimated
(taking into account the improved heat shielding

of the present system) that the temperature varia-
tion of the plasma region is less than 20 °K at a
temperature of 2500 °K.

The density of neutral cesium atoms in the plas-
ma cylinder is measured by monitoring the efflux
of neutral cesium from the pyrometer hole which
impinges upon a modified Langmuir-Taylor3!'32
surface ionization detector. A schematic of the
hot-wire detector and electronics is shown in Fig.
5. The detector surface is a 2.5-cm length of
0.025-cm-~diam tungsten wire, mounted vertically
along a diameter at the center of 3.8-cm long stain-
less-steel collector. A positive bias is applied to
the wire and a negative bias to the collector. A
battery-powered electrometer, floated at the col-
lector potential is used to monitor the ion current.

In contrast to the usual design of many hot-wire
detectors, the rear of the collector is left open,
in order to allow optical pyrometer measurements
of the plasma-cylinder temperature through this
aperture. The hot-wire detector is operated in a
mode such that the collected ion current is indepen-
dent of bias voltage, ensuring close to 100% collec-
tion efficiency. A set of electrostatic deflection
plates are positioned directly in front of the collec-
tor to sweep out charged particles emanating from
the plasma region. A beam flag is positioned in
front of the deflection plates. The neutral current
due to atoms effusing from the pyrometer hole is
obtained by subtracting the background detector
current (less than a few times 10712 A) with the
beam flag closed from the signal when the beam
flag is open (10711-107° A).

The hot wire is usually operated at a tempera-
ture (measured by the optical pyrometer with no
emissivity corrections) of 1000-1300 °K, a regime

OPTICAL HEATED DEFLECTION BEAM

PYROMETER ~ SHROUD,  PLATES =~ FLAG
/ _________________ PLASMA
REGION

SSELECTROMETER
I

FIG. 5. Schematic drawing, not to scale, showing the
hot wire and beam flag.
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where the ionization efficiency® for cesium is
close to 100% and where the detected ion current
does not change as the temperature of the wire is
varied.

The ion gun located below the bottom water-
cooled flange consists of an ion source, extraction
and focusing electrodes, and a set of deflection
plates to offset the beam. The source of alkali-
metal beam ions (Cs* or Li*) is a commercial
alkali-ion dispenser cathode.3* A S0a®'3® lens is
used as the extraction stage and cylindrical lenses
are used for acceleration and deceleration. The
gun was constructed of a series of stainless-steel
cylinders insulated from each other by small sap-
phire balls. :

In early testing of the apparatus, neutral atoms
effusing from the plasma cylinder traveled down
the ion gun axis, ionized on the hot cathode, and
joined the beam. Since it was deemed undesirable
to have the beam intensity thus partially controlled
by the plasma density, the gun axis was displaced
with respect to the final beam axis. Two pairs of
deflection plates were installed at the gun exit to
deflect the beam back onto the main beam axis.

A small Faraday cup was also installed in this
region so that the beam intensity could be moni-
tored before passage into the plasma region.

A schematic version of the ion beam detector is
shown at the top of Fig. 3. The detector is con-
structed following a design of Stephanakis and Ben-
nett.3” Three concentric cylinders, each capped
with a pair of interconnected mesh grids (0.001-in.
tungsten, 92% transparent) to minimize electric
field interpenetration among adjacent regions of
the detector and electrically isolated from each
other, comprise the detector. The outermost cyl-
inder is grounded to serve as an electrostatic
shield and to keep stray particles from entering
the detector region.

The second or intermediate cylinder is needed only
for the pair of grids at its end. These can be used
to apply a retarding potential for energy analysis
of the incoming beam (the “filter mode”),® or to
suppress charged particles of sign opposite to the
ones being detected (the “classical” mode). In the
latter mode, most often used by us, the retarding
potential is applied directly to the Faraday cup.

In general, the choice of operating mode depends

upon the width of the energy distribution obtained

under identical beam conditions. The suppression
cylinder is attached to the shield cylinder with an
Aremcolox ring. :

The central cylinder is used as the ion collector.
It is usually recommended that the cup be made at
least ten times as deep as the diameter of the open-
ing in order to achieve 95% collection efficiency.®®
In addition, the back of the cup should be an acute

angle. The actual diameter-to-length ratio of our
cup is 8.25. The cup is also half-filled with mesh
to increase collection efficiency. A special effort
is made to maximize the impedance between the
cup and any other conductors (including ground). .
It is mounted on a0.343-cm-thick BeO disk which
is held with a retaining ring; the lead to the second
cylinder passes through a hole in this disk without
touching it. The resistance between the cup and
the second cylinder suppressor, or to ground, is
measured to be greater than 10'* @ at 175 °C.

To ensure a constant work function over the en-
tire detector ‘surface, and to minimize contact po-
tential differences, all metal parts were coated
with Dag dispersion. To further shield the detec-
tor from stray charged particles, a grounded
shield was installed around the detector. With
this additional shield in place, the ion beam off,
and the detector set to suppress both plasma elec-
trons and ions, less than 107!% A of residual cur-
rent was observed at the detector.

For the plasma to be at least nominally free
from external electric and magnetic fields, it is
necessary to provide adequate shielding, and to
minimize the introduction of disturbing fields with-
in this shielded region. The plasina is electro-
statically shielded by grounding the plasma con-
tainer. The main vacuum chamber is also partial-
ly magnetically shielded by several layers of Netic
and Conetic foil wound around the outside of the
chamber. Presence of the pump stack (adapter,
valve, trap, and pump—all nonmagnetic stainless_
steel) and the main cover flange, as well as the
side ports, prevented complete magnetic shielding
of the chamber. All internal heaters are noninduc-
tively wound, and direct current is used whenever
possible to minimize 60-Hz pickup.

The entire assembly described above is contained
in a stainless-steel vacuum system. This system
is pumped with a 6-in. oil diffusion pump equipped
with a zeolite baffle. For additional pumping, a
small liquid-nitrogen trap is mounted on one flange
and for thermal isolation a large water-cooled baf-
fle almost completely surrounds the plasma assem-
bly. With the plasma chamber at 2500 °K, pres-
sures of the order of 4X1077 torr are obtained.

VI. EXPERIMENTAL PROCEDURE

The ion beam at energy E is passed through the
plasma at some temperature T and electron den-
sity n,. The beam enters the detector which is
normally operated in the “classical mode,” with
the (positive) retarding potential applied to the
Faraday cup, and the suppressor grid held at a
negative potential to exclude all ambient electrons.
An electrometer floated at the retarding potential
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V, is used to measure the current to the Faraday
cup. In order to sweep the retarding potential a
few volts about the value set by the retarding-po-
tential power supply, this supply is floated on a
linear-symmetric triangle voltage wave of height
+ AV about zero. The retarding voltage on the
Faraday cup is thus swept + AV about V. The
output signal from the electrometer and the tri-
angular wave voltage are both fed into voltage-to-
frequency converters and then to two of the multi-
scaling inputs of a multichannel analyzer, oper-
ated in a multiple input, zero dead time, simulta-
neous multiscaling mode. In this manner both the
detector current and the retarding voltage (rela-
tive to Vo) can be recorded simultaneously as a
function of time.

It is necessary to get a “zero” density measure-
ment for calibration purposes. The plasma cylin-
der is brought to operating temperature (2100-
2500 °K). The cesium oven is kept cold (~10 °C).
The system is baked at this temperature until a
negligible density is indicated by the surface ion-
ization detector. This typically takes on the order
of an hour after reaching operating temperature.
This is taken as the zero density measurement
corresponding to zero energy loss.

A data run consists of a number of plasma den-
sity cycles. During each cycle, beam current-
retarding voltage curves at each beam energy are
taken with the cesium oven cold. The oven is then
heated, in a number of preset steps, until the
maximum plasma density is reached. At each
step a set of current-voltage curves for different
beam energies is taken. The oven temperature is
then stepped downward, again taking current-volt-
age curves at each step. )

Data were taken in this manner because the beam
energy is more easily varied than plasma density.
Variation of the plasma density requires at least
15 min for the cesium oven to reach equilibrium.
When the plasma is quenched, by passing cold
water through the oven cooling tubes to freeze the
cesium, an additional 30 min must be allowed for
the residual cesium to be pumped out of the cylin-
der. When the plasma-cylinder temperature is
changed, even more time is required for complete
thermal equilibrium to obtain.

VII. EXPERIMENTAL UNCERTAINTIES

In addition to the interaction of the plasma with
the beam ions, there are two other competing
mechanisms that could measurably affect the en-
ergy of the test ions. These processes are both
dependent on the density of neutral atoms within
the plasma, and act to produce opposite effects.
The first is energy loss in the lab system due to

elastic scattering in the center-of-mass system
with the neutral atoms in the plasma. The other

is a reduction of the effective path length of the
beam through the plasma via a double charge-
transfer process, resulting in a decreased energy
loss. It is shown in Appendix A that the contribu-
tion to the energy loss of the Cs* beam ions due

to elastic scattering with the neutral Cs background
in the plasma container may be neglected at our
operating conditions.

For a plasma with a nonzero neutral background,
there is a finite probability that a beam ion will
enter the plasma, charge transfer with a neutral
atom, and travel some distance through the plas-
ma before undergoing a second charge transfer
with a plasma ion, and emerge from the interac-
tion region as an ion. This double charge-transfer
process reduces the effective path length for ion-
plasma energy-loss interaction, since the fast
neutral particle loses essentially no energy to the
plasma.

The average distance L, that the beam particle
travels as an ion through the plasma is

L,=(LW+SQ)/(W+Q) ,

where L is the total plasma length, S is the aver-
age distance traversed as an ion by a beam parti-
cle that undergoes a double charge-exchange pro-
cess, Wis the probability that an ion travels
through the entire plasma as an ion, and @ is the
probability that an ion undergoes as a double
charge-exchange process. The full expression
for L, is derived in Appendix B. The ratio L,/L
is the correction factor that must be applied to
the calculated energy loss to compare it to our
measurements. For the maximum neutral densi-
ties encountered in this experiment and a Cs* ion
beam, L,/L>0.985. For a Li* beam, L,/L is ef-
fectively unity because the nonresonant charge-
transfer cross sections?®~* are considerably
smaller than the resonant charge-transfer cross
sections at these energies. Therefore, the reduc-
tion of the effective path length through a double
charge-exchange process is not significant in the
present measurements.

Measurement of a change in the transmitted ion-
beam energy requires precision in determining
an energy difference between an unattenuated and
an attenuated ion beam, rather than an accurate
measurement of the actual ion-beam energy. Con-
sequently, the effects of any thermal potentials or
contact potentials present along the beam path
may be ignored, provided that they do not change
over the measurement period. Certain precautions
were taken in an attempt to minimize the variation
of such potentials on a short-term (24-36 h) basis.
The ion-beam source and detector were continu-
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ously maintained at high enough temperatures
(=175 °C) to prevent deposition of contaminants on
their surfaces. Detector surfaces were also car-
bon coated to minimize variations in contact poten-
tials. No beam measurements were made without
the plasma source having been at operating tem-
perature long enough for the apparatus to thermal-
ly stabilize; additional stabilization time was al-
lowed when the cylinder temperature was changed.

It should be noted that the primary source of
uncertainty of this type is probably a surface con-
tamination when cesium is introduced into the
plasma chamber. If so, the only surfaces which
could affect the measurement of the beam energy
are the cathode, which is shielded from the line
of sight of the plasma chamber, and the Faraday-
cup beam collector, which is moderately far away
and is heated. Thus, uncertainties due to time-
varying surface effects are considered to be min-
imal.

Generally, when a plasma contacts an external
.surface, a plasma sheath whose dimensions are
on the order of the Debye length, is formed be-
tween the two. The sign and magnitude of the po-
tential drop across the sheath is a function of the
plasma and surface parameters as well as the
geometry of the system. For our plasma, the
sheath may be positive or negative depending on
the plasma temperature and density®® and the po-
tential is on the order of a few tenths of a volt.
The effects of the sheath on our energy-loss mea-
surements are minimal. Since the plasma poten-
tial may be slightly different from that of its
grounded container, the beam energy in the plas-
ma may vary slightly from the energy measured
at the detector. But, the value of the beam ener-
gy as measured at the detector is independent of
its passage through the plasma sheaths since en-
ergy lost or gained on entering the plasma through
the sheath would be gained or lost on exiting
through the sheath.

The plasma sheath may also have a lens effect
on the beam at the entrance and exit apertures of
the plasma region, and attenuation of the beam
can be caused by defocusing at the apertures as
well as by bonafide plasma effects. However, de-
focusing will lead only to a loss of intensity and
not to an error in energy loss in the forward direc-
tion.

If the detector system has a time constant, the
energy sweep speed of the detector will cause
distortion in the effective shape of the measured
energy distribution.* Only difference measure-
ments are done in the present experiment, so that
both the unattenuated and attenuated beams are
subject to the same distortion. Any uncertainties
due to sweep speed are therefore at most of sec-

ond order and can be neglected.

Errors in measuring the energy shift due to re-
peatability and resolution of the voltmeters used
to measure the cathode and retarding potentials
is on the order of a few mV. The multichannel
analyzer introduces an uncertainty in energy res-
olution of +1 channel, or an average of +0.026 V
for the cesium beam data, and £0.019 V for the
lithium beam data. Estimated total uncertainties
in the measurement of the energy loss vary from
0.027 to 0.05 eV with some typical values shown
in Figs. 7-11.

The plasma density is calculated from the mea-
sured values of the neutral density and the temper-
ature by using the Saha equation, Eq. (9). From
this equation, the relative uncertainty in the plas-
ma density is

An, _lAna+<3 @)AT

=3t (3ver) T
An '
=0.5572,0.0086AT (10)

a

where An, and AT represent the uncertainties in
the neutral density and the temperature measure-
ments, and the last expression on the right as-
sumes T=2100°K. We estimate, from uncertain-
ties in dimensions, temperature, and current
measurement, that Azn,=+0.05. The error in mea-
suring T, due to window losses and instrumental
factors, is estimated to be +20°K at 2100 °K.
Putting these values in Eq. (10) the total relative
uncertainty in the plasma density at 2100 °K is
An, /n, =+0.20,

VIII. DATA ANALYSIS AND DATA

The beam currents stored in 400 channels of
the multichannel analyzer, along with the mea-
sured differences of retarding voltage per chan-
nel, enable a retarding-potential curve to be con-
structed. The derivative of this curve, which is
the energy distribution of the beam, is obtained in
two ways. In the first, the smoothing function of
the analyzer is used three times, and then the dif-
ferentiation function is used once. In the second,
a high-degree polynomial is fitted to the digital
data using an orthogonal least-squares technique.
The set of points calculated from the polynomial
is then differentiated using a three-point formula
in which the derivative at channel 7 < (contents of
channel 7 +1) — (contents of channel 7 -1). It is
important to note that the fitted polynomial itself
cannot be differentiated because it generally will
oscillate between fitted points, so that although
the fit to the data may be excellent, there is no
correlation between the derivative of the poly-
nomial and that of the I-V curve.
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UNATTENUATED
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BEAM INTENSITY AND BEAM ENERGY DISTRIBUTION
(ARBITRARY UNITS)
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FIG. 6. Retarding-potential curve and its derivative,
the energy distribution, for a 50-eV cesium ion beam
traversing a 2100 °K cesium plasma. The plasma den-
sities for the unattenuated and attenuated beams were
1.66x 1010 and 3.09x10'! em™, respectively. The arrows
show the points determined to be maxima.

The derivative of the smoothed I-V curve is insen-
sitive to the degree of the polynomial within a range
of 15-45. This can be determined empirically by
observing the difference in peak position and full
width at half-maximum (FWHM) for polynomials of
different degree fitted to many test data sets. All
the data presented using this method are smoothed
using a polynomial of degree 20.
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Figure 6 shows the raw data from which a single
energy-loss point is determined. It is for a 50-eV
Cs* beam passing through a 2100 °K plasma. Both
the beam intensity and its derivative, the beam
energy distribution, are shown as a function of the
retarding-potential voltage. The plasma density
for the unattenuated and attenuated beams are
1.66x10'° and 3.09%X10' cm~3, respectively. The
curves are tracings made from x-y graphs pro-
duced by the multichannel analyzer, whose differ-
entiation function was used to produce the energy
distribution curves. The two arrows, which are
located at 50.021 and 49.666 eV, are the peaks of
the curves as determined by computer analysis.
As is to be expected, the width of the energy dis-
tribution is narrower for the unattenuated than
for the attenuated beam, and the full widths at
half-maxima are 1.155 and 1.849 eV, respectively.

The data are presented graphically in Figs.
7-11, each showing the variation in observed
energy loss (ordinate) with increasing plasma
density (abscissa). Each graph shows all the data
points taken at a particular beam energy and plas-
ma temperature, with a different symbol being
used (square, triangle, etc.) for each run. The
solid lines are the predictions of theory, and are
very close to being straight lines. The dashed
straight lines are least-square fits to the data,
with the lines not being required to go through
the origin.

The line fitted to the Cs'data at 2100 °K (Figs.
7-9) is generally in very good agreement with the
theoretical energy loss predicted by Eq. (7) while
the scatter of the data points provides a measure
of the statistical uncertainty. The 50-eV data
shown in Fig. 7 represent the largest number of
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FIG. 8. Energy loss of
150-eV cesium ion beam
traversing a 2100 °K
plasma as a function of
plasma density.
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data points, and their fit to the theoretical curve
is excellent. At 150 eV, presented in Fig. 8, the
data points follow two readily discernable trends,
corresponding to runs A and C. In this case the
average falls somewhat below the theory, though
run A corresponds closely to the theoretical pre-
diction. The signal-to-noise ratio was poorest at
35 eV, and this is evidenced by the large scatter
shown on Fig. 9. Beam attenuation varied inverse-
ly with energy, so thatthe 35-eV data was most
susceptible to short-term fluctuations in the plas-
ma density.

The results of the single run taken at 2500 °K
with a 150-eV Cs* beam are shown in Fig. 10. The
fitted line is very nearly parallel to the theoretical
curve, but is displaced, suggesting the presence

of a systematic error in the density or energy loss
measurements which was not significant at 2100 °K.
For example, due to the high temperature being
used here, there could have been appreciable non-
alkali plasma density (e.g., tantalum) which would
not have registered on the hot wire, and would
have produced an energy loss even at zero alkali
plasma density.

Figure 11 shows the energy loss of a 150-eV Li"
beam in a 2400 °K plasma. The agreement with
theory is seen to be excellent. Not shown are
some energy loss values of a 150-eV Li* beam in
a 2134 °K plasma. The agreement with theory is
good up to a plasma density of about 2X10' ¢m™3,
but for densities higher than this, start to fall be-
low the theoretical value. This discrepancy is not
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understood at this time. Disintegration of the
plasma chamber due to attack by the Li prevented
further immediate checks.

IX. CONCLUSIONS

Apart from the higher-density measurements at
2134 °K with the Li* beam, the agreement be-
tween our results and the predictions of theory
is uniformly good, considering the experimental
uncertainties. We conclude that a high degree of
confidence can be placed in the theory for the
range of the x, parameter (ratio of beam speed

3.0
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FIG. 11. Energy loss of a 150-eV lithium ion beam
traversing a 2300 °K plasma as a function of plasma
density.

to plasma electron thermal speed) under consider-
ation. As this is the only experiment done at these
particular ¥, values, the question arises as to
whether the disagreement obtained by other in-
vestigators at ¥, around 1 is due to experimen-
tal difficulties or a breakdown of the theory in
this range. Nonadiabatic dynamic effects will, of
course, become more pronounced at higher x,.
We are now extending our measurements to this
energy range in order to investigate this question.
Another unknown is the effect of the magnetic
field, used in most of the other experiments, on
the energy-loss rate. Theoretical estimates*s in-
dicate that the magnetic fields used should not
have a substantial effect. On the other hand, there
has been no experimental verification of this.
Ideally, one would like to have a plasma on which
a magnetic field could be applied externally with-
out perturbing the plasma significantly, and mea-
sure the energy loss with and without the field.
We are currently investigating the feasibility of
doing such measurements on our apparatus.

APPENDIX A: ENERGY LOSS CAUSED BY
ELASTIC ION-ATOM COLLISIONS

A plasma ion would lose energy to the background
neutral atoms in the same way it interacts with the
plasma particles, namely, through a large num-
ber of small-angle collisions. Therefore, we will"
examine the Cs-ion-Cs-atom cross section for
scattering through an angle greater than a small
angle 6; much less than the angular resolving
power of the ion detector.

Assuming spherically symmetric ions and atoms,
at separations larger than the atomic and ionic
dimensions, the interaction between an atom and
an ion is that of a point charge on an induced di-
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pole.*® The force is attractive, and is given by
F, ,=2aé/r® (A1)

for a singly charged ion, where e is the electron
charge, 7 the interparticle separation, and @ is
the dc electric polarizability of the atom
(=5.96%x10"%% cm? for Cs).*” The corresponding
mutual potential energy of the ion and atom is

Vi_o=—ae?/2r%, (A2)

For small scattering angles, the relation be-
tween the impact parameter b and the scattering
angle 6, for the potential in Eq. (13), is given by
Kennard’s small-angle approximation*®

b=1.95%10"%a’/V6)*4 cm , (A3)

where 6 is measured in radians, a’ is the electric
polarizability in cubic angstroms, andV is the en-
ergy of the beam ions in electron volts. The cor-
responding cross section for scattering into an
angle 6 or greater is

0(6)=mb?=1,19X107'5(a’/VE)/2 . (a4)

The cross section d(8) for §=10"2 rad (= 20
times smaller than the angular resolution of our
detector) is approximately 5X107!* cm? for 35-eV
beam ions. The mean free path for such a colli-
sion at the maximum neutral density encountered
in this experiment, approximately 10?2 cm™, is
20 cm—almost 3 times longer than the plasma
dimension.

In contrast, for small-angle Coulomb collisions
we have®

b=2b,/6 , (A5)

where b, is the 90° impact parameter. Using
5,107 cm, and 6=107° rad, the cross section
for scattering through angles greater than 6 is

™% =12b,/62=1.2X107° cm? , (A6)

over four orders of magnitude larger.

APPENDIX B: DERIVATION OF THE CHARGE-
TRANSFER CORRECTION FACTOR

The scattering path length of an ion traversing
a plasma can be decreased if there is a nonzero
neutral-atom background density in the plasma
region. This is because the ion beam that emerges
from the plasma has two components. One compo-
nent consists of beam ions that have not charge
transferred and have traveled the entire plasma
length L as ions. The other component is com-
posed of beam ions that have charge transferred
an even number of times with the neutrals and
ions of the plasma, and have traveled a distance
less than the total plasma length as ions. The

distance they travel as neutrals is not effective
in producing energy loss. Neglecting emerging
beam ions resulting from four or more charge
transfers, we can calculate the average path
length I, in the plasma for beam ions, when they
are ions, as follows. We assume that only double
charge-transfer occurs.

We define the following variables: @, the reso-
nant Cs-Cs' charge-transfer cross section; 7,
the neutral density; »; the ion density; K,=7,Q;
and K;=7;Q. For an ion beam of unit intensity
incident on a slab of plasma of unit cross-section-
al area and length L, the number of incident beam
particles becoming neutrals in an element of
length dx at x (cf. Fig. 12) is

dN1=K,,e"‘n‘dx . (Bl)

The number of those dN, particles which becomes
ions again in an element dy at y is then

dN,=dN,e ¥’ K, dy =K;K,e *e~% dx dy .
(B2)

Those dN, particles have traveled a distance

L - (y — x) through the plasma as ions. The total
number of incident beam particles which undergo
a double charge-transfer process is

Nr=foLf;dN2 , (B3)

while the number of particles which have traversed
the entire plasma as ions is

Ny=e ™l | (B4)

The average distance traveled as ions by those
beam ions which have undergone a double charge-
transfer can be written as

1 L L
-1 f f (L +x—-y)dN, . (B5)
NT o y=x
Finally, the average distance traversed by any
beam particle as an ion is
L, =(LNy+SNp)/(Ny+Ny) . (B6)
Equation (B6) can be written as

_Le~Fnly X [E (L +x-y)dN,

L (B7)
! e Knly £L ﬁdez
- L |
UNIT INTENSITY p— ¥ ———— |
BEAMOF IONS | __(41| dy
X

FIG. 12. Diagram used for deriving the formula giv-
ing the correction to the ion-beam path length due to a
double charge-transfer process.
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Evaluation of Eq. (B7) is straightforward, although time consuming. The final result is

Lo[BEL=D o (L

1 )e-K‘L_‘_(K"(l -K,L) L 1 i) e'(Ki+Kn)L]

- +L+
t Ki(Ki +Kn) Ki Kn Ki(Kn +Ki) Kn Ki
K -1
x n —KnL _ ,-KiL ( i -(K;+K,)L ] .
[K,~+K,, re T me Ki+K,,>e e (B8)

In the limit of zero neutral density or ion density, L, must go to L. Equation (B8) is easily shown to

have the proper limiting values, i.e.,

limL, =L , lmL,=L .
K=o £ =0
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