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It is now well established that current and density may be used as coordinates in describing
a nonrelativistic many-body system. The current and density operators form a closed algebra
as they obey a set of equal-time commutation relations. A particular choice of the algebra
containing only the longitudinal component of the current describes a fluid in a simple way.
For Bose systems, we show that there exists a special choice of this longitudinal current
which is an irreducible representation of the algebra, but expressed in two different ways
leading to the formulations of Bogoliubov and Zubarev (BZ) and that of Sunakawa and his co-
workers (S). This demonstration proves the formal equivalence of the two formulations. The
BZ formalism leads to a non-Hermitian Hamiltonian for which use of a certain mathematical
technique recently proposed by us yields completely divergence-free results for Bose sys-
tems. A temperature-dependent matrix Green’s-function theory is developed and the self-
energy matrix calculated. From this, we also deduce the structure factor in a straightfor-
ward way. These results are applied here to compute numerically the excitation spectrum
of the superfluid liquid helium using the experimental structure factor as the only input into
the computation. Comparison of this with other calculations and with experiment is dis-
cussed in detail in this paper. The problem of a charged Bose gas is considered as a testing
ground for all theories of Bose fluids since certain exact results are known for this system.
We have applied our method using the BZ Hamiltonian to this problem and we are in com-
plete agreement with the exact results. It thus appears that the current-algebra approach
can be quite successfully applied in elucidating properties of interacting Bose systems.

I. INTRODUCTION

Until recently, field-theoretic approaches to
many-boson systems have mostly been confined
to theories based on the weak-coupling limit.!
‘This theory incorporates the exact result known
for a noninteracting Bose gas, namely, the mac-
roscopic occupation of the zero-momentum state.
Stated in another way, it has built in it the off-
diagonal long-range order in the one-particle
density matrix. It can be argued on general
grounds that in any theory of interacting bosons
there must be some particles in the zero-momen-
tum state, which should be calculable. This limit
is thus defined by the condition that nearly all the
particles (N,) are in the zero-momentum state
at T =0 °K and so the operators a, and a} corres-
ponding to the destruction and creation of this
excitation are replaced by ¢ numbers, VN,. -A
Bogoliubov' transformation is then applied to
compensate for “dangerous” diagrams? that ap-
pear as a consequence, but these problems with
the resulting Hamiltonian are well known.*'*

For instance, each term in a perturbation expan-
sion for the energy of excitation is divergent if the
fluctuations in the zero momentum state are ne-
glected. N, can, in principle, be determined self-
consistently in this theory. Several interesting
model boson systems have been examined in this
way, some of which may be mentioned here.

10

Brueckner* was able to obtain an exact convergent
result in the high-density limit for the ground-state
energy of a charged Bose gas by summing one- and
two-ring diagrams. Lee, Huang, and Yang® were
able to develop a low-density expansion for a hard-
sphere boson gas, but problems arise when the
method is applied to physical systems of interest
such as superfluid liquid helium. For liquid heli-
um, the number of particles in the zero-momentum
condensate is probably less than 10%. Gersch ef
al.® using the experimental neutron-energy widths
and the impulse approximation predict an upper
bound of 3% while other estimates” are about 6%.

It thus appears that the Bogoliubov approximation
may not apply for this case. For a more complete
review of this method see Ref. 8.

Bogoliubov and Zubarev® (BZ) gave an alternate
field-theoretic approach in 1955 which was large-
ly overlooked. They introduced a collective-vari-
able approach in which the Fourier transform of
the density p, is used as a variable and expressed
the Hamiltonian in terms of p, and 8/3p,. (The
transformation from the particle coordinate rep-
resentation to these variables is noncanonical.)

It is then quantized in terms of Bose operators
resulting in an explicitly non-Hermitian Hamil-
tonian. A mathematical framework needed to
deal with this Hamiltunian has recently been put
forward by Rajagopal and Grest'® (henceforth re-
ferred to as I). Expressions for the ground- and
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first excited-state energies, the liquid-structure
factor, and two-roton scattering amplitudes were
calculated in perturbation theory and found to be
totally divergence-free right from the start.
Sunakawa et al.'’ (S) have introduced a velocity
operator canonically conjugate to p,, and have ob-
tained an infinite-series Hermitian Hamiltonian.
To describe the superfluid state of He II at abso-
lute zero, they restricted this velocity to be ir-
rotational, i.e., VX V(X)=0. With this restric-
tion, Berdahl'? has noted that this approach is
completely equivalent to the phase variable ap-
proach of Nishiyama.'® The velocity operator is
proportional to the gradient of the phase operator.
Chan and Valatin'* have shown that the BZ Hamil-
tonian and that of Nishiyama are related by a non-
unitary canonical transformation. The perturba-
tion theories in this scheme also have divergen-
cies which can all be cancelled out by a careful
analysis of the appropriate higher interaction
terms as was shown by Grest and Rajagopal.’s

The results in Rayleigh-Schrdodinger (RS) perturba-
tion theory for both the BZ and S Hamiltonians
have been shown to be completely equivalent,'®
when the calculation is correctly done. Results
for the ground- and first excited-state energies
are also equivalent'® to those obtained by a varia-
tional-perturbation procedure based on the method
of correlated basis functions (CBF),'” which are
non-field-theoretic in nature. One can compute
the number of particles in the zero momentum
state in this theory even though no assumption con-
cerning it is made. As Zubarev’s original deriva-
tion of this was unclear, we will give a derivation
of it here. Berdahl* has also given a derivation
of this using the phase and density variables.

In view of the equivalence of the results based
on perturbation theory using the BZ and S Hamil-
tonians, it is of interest to examine these Hamil-
tonians more carefully to establish if there is any
basic underlying reason for this. We will prove
in this paper that the derivation of the BZ and S
Hamiltonians stem from an alternative approach to
nonrelativistic quantum mechanics—that of cur-
rent algebra. Dashen and Sharp'® have shown that
one can give a complete description of a system of
bosons or fermions by introducing density p(X)
and current E(i) as basic variables. These vari-
ables obey well-established equal-time commuta-
tion relations and the Hamiltonian is expressed
in terms of these variables.’® 2 Following
Landau,? a velocity operator can be introduced,
and the only remaining problem is the proper
realization of the commutation relations. We will
show that by appropriate choice of the velocity
operator consistent with the commutation rules,
one can obtain the BZ or Sunakawa Hamiltonian

as special cases of the general formulation. The
corresponding current J(%), being an irreducible
representation of the algebra, will be shown to be
completely equivalent for the two choices of the
velocity operator, thus indicating that the equiva-
lence of results in perturbation theory found in

I was not accidental.

The BZ Hamiltonian does not conserve quasi-
particle number and consequently a matrix
Green’s-function formalism must be employed.®
Straley® has earlier developed a zero-temperature
Green’s function theory but did not explicitly take
the non-Hermiticity of the Hamiltonian into con-
sideration. In this paper, we will develop the tem-
perature-dependent matrix Green’s-function theo-
ry for the BZ Hamiltonian. The self-energy matrix
is calculated through second order in (1/VN).
From this Green’s function the excitation spectrum
and ground-state liquid-structure factor can be
calculated. As Straley®* has previously shown,
the spectrum does not display a gap, in contrast
to several calculations®® which displayed the exis-
tence of a gap in the spectrum.

Over the years, the most interesting and yet
unsolved problem in many-boson systems, has
been the excitation spectrum of superfluid liquid
helium. Since Landau® proposed the phonon-roton
spectrum, only a few theoretical calculations have
been attempted. The first attempt was by Bijl?®
who derived a quantum theory of the excitations
that exhibited both the phonon and roton aspects.
Feynman?® and later Feynman and Cohen?® (FC)
used physically plausible wave functions and de-
rived the energy of excitation by a variational cal-
culation. FC were forced to make many approxi-
mations for the three- and four-particle correla-
tion functions and thus the results were no longer
a variational bound. Using the experimental liq-
uid -structure factor of Goldstein and Reekie,?®
extrapolated to zero and normalized, FC obtained
a roton minimum of 11.5 °K. Later recalculation
of the integrals by Burke ef al.*® showed that the
FC results were probably not as good as was first
thought. Using the structure factor obtained from
neutron scattering by Henshaw,®! extrapolated to
zero for £<0.8 A™! by a variety of methods, they
showed that the FC formula gave bad results for
low-% values and only fair results in the roton
region. The poor results can probably be related
to the many approximations FC were forced to
make in order to obtain numerical results.

A somewhat different approach was developed
by Kuper,*? who evaluated the phonon-phonon inter-
action using the RS perturbation formalism. The
major difficulty was the practical limitations of
a hand calculation; as such the energy was eval-
uated only at one point. Jackson and Feenberg®®
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(JF) have developed a second-order Brillouin-
Wigner (BW) perturbation theory using the method
of CBF. The three-particle correlation function
was approximated by the convolution approximation
and the Goldstein-Reekie structure factor was used
to obtain numerical results. The roton minimum
was about 12 °K with good agreement in the low-%
region. Lee® has reevaluated the JF result using
the theoretical structure factor of Massey®® but
obtained a roton minimum at 1.7 A~! instead of at
the experimental value 1.9 A~!, probably owing
to errors in the structure factor used. Campbell
and Feenberg®® have also calculated the structure
factor but to the best of our knowledge, it has not
been used to calculate the energy spectrum for all
values of k. Several authors have attempted to
improve upon the JF result,?”:*® but the numerical
computations have been limited mainly to the low-
k region. Except for a few calculations which are
based on model He-He interatomic potentials,**
to the best of our knowledge, there have been until
" now no other calculations of the excitation spec-
trum in liquid helium.

With all of these previous calculations of the
energy spectrum there have been several difficul-
ties. The structure factor S(k) used by FC and JF
was not known for low-k values and some arbitrary
method had to be used to extrapolate the results
to zero.* Recently, x-ray scattering data® * at
very low temperatures (less than 1 °K) have be-
come available. The problem of extrapolating
S(k) arbitrarily to zero as 2-0 has thus been
eliminated. In the light of this new data, we
thought it important to recalculate the excitation
spectrum. Cowley and Woods*? believe that S(&)
from x-ray data is more reliable than from neu-
tron scattering. We will show that the BZ ener-
gy formula can be expressed as a function of the
structure factor and all dependence of the unknown
Fourier transform of the interatomic potential can
thus be eliminated. Using the Achter-Meyer®
(AM) data as the only input, we were able to derive
the excitation spectrum. We obtain good agree-
ment with experiment in the low-% region and a
roton minimum of 12.3 °K for £~1.9 A~!. For
comparison, we have reevaluated the energy using
the JF formula, and found a roton minimum of
12.9 %K for £~1.9 A~!. The results obtained here
are in close numerical agreement with those based
on a modified BW perturbation theory and the S
Hamiltonian.!®* There are several remaining prob-
lems, which we will discuss later, one of these
being the proper normalization of S(k).

A second problem which has been of great theo-
retical interest is a many-boson system inter-
acting through a Coulomb interaction. While the
charged Bose gas does not describe any physical

system, it has been useful over the years as a
test case for approximations. The long-range in-
teraction and the Bose statistics give rise to two
types of infinities in the perturbation theory based
on the Bogoliubov* scheme. Brueckner? obtained
a convergent result for the ground-state energy in
a perturbation expansion in the high-density limit
after summing the one- and two-ring diagrams.
Lee® has shown the CBF results in the uniform
limit to be completely equivalent. Ma and Woo*
investigated the excited-state properties using
standard field-theoretic techniques and evaluated
the excitation spectrum. Bhattacharyya and Woo*
used the CBF theory and obtained equivalent re-
sults for the excitation spectrum and also cal-
culated the liquid-structure factor. Since the
potential is well known, we will discuss this model
in the light of the BZ formalism. The energy spec-
trum has previously been shown to be explicitly
equivalent to the CBF results but differences arise
for the liquid-structure factor S(k). We have eval-
uated S(k) for a charged Bose gas in the high-
density limit and found it differs from the previous
results.*® The reasons for this difference will be
discussed later. Lee and Ree*® have also consid-
ered improving the liquid-structure factor for a
charged Bose gas by solving the hypernetted chain
equation. Foldy*” has previously calculated the
number of particles in the zero-momentum con-
densate and his result will also be discussed here.
In Sec. II, we will discuss current and density
as variables and show that the BZ and S Hamil-
tonians are a direct consequence of two realiza-
tions of the velocity operator. In Sec. I, we dis-
cuss the temperature-dependent matrix Green’s
function and derive the self-energy matrix through
second order in (1/VN). In Sec. IV, we discuss
the elementary excitation spectrum of liquid heli-
um. We will present our results along with a re-
evaluation of the JF result using the recent ex-
perimental structure factor of Achter and Meyer.
We will also discuss probable errors in our work
and previous works. In Sec. V, we will examine
the charged Bose gas in the light of the BZ Hamil-
tonian. Section VI will contain a discussion of our
work as well as problems to be considered in the
future. :

II. CURRENTS AS COORDINATES

Consider a system of N identical spinless bosons
interacting through a two-body potential V(|X -X’|)
enclosed in a volume Q. The Hamiltonian in sec-
ond quantized form is
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where the field operators y(x) and y (x) obey the
usual equal-time commutation relations. Dashen
and Sharp'® have shown that one can give a com-
plete description of the system in terms of the
variables, number density p(X), and current
). These operators are

xV(|x

p(X) =y" ®)y(x), @

5{63) ——{zp*(x)[vw<x] [Vy' ) Jp&)} -

The commutation relations satisfied by these are
[p&), px")]- =0,

[o®), I &x")]. = =i }ni % [69& -%)p®)], 3)
[Ji(i), J](i')] = —l"' P [6(3)(" X')J (i)]

B e e
i 5;[6(3)(x -%')J,(X)].

The Hamiltonian can then be expressed!:'®

H=%fd3x(Vp(x)-7J(x)>p—(xr) Vp(i)+?J(i)>
s [ [ axare s@vE -5 Do) -8V 0),
(4)

where N=| d®xp(X) and V(0) is the interaction po-
tential at X=%'.

The problem now reduces to a realization of the
commutation relations by suitably choosing an ir-
reducible representation for j(i). Kobe and Coom-

2! have shown that inconsistencies arise if one

J

_ . e ( 8° 8 > 1N
H= k’%:o [ 2m \” 8p,9p_, TPe gp, %,/ 29 VE)pwp- ]

chooses to employ a Fock-space formulation and
suggested some larger space may have to be used.
This may contain states that are functionals of

the density. Grodnick and Sharp'® showed that the
commutation relations (3) are satisfied by choosing
operators that act in the function space ¥{p(X)},

pE)e{p®)} = pEN¥{p()},
@R = (b} T~ 3 0@ )

+Flo(®)}) ¥l )

where F{p(x)} is any functional of p(x). The func-
tional F{p(X)} distinguishes a Bose from a Fermi
system. Grodnlck and Sharp also showed that
one could choose F=0 for a boson system. The
Hamiltonian then reduces to

#=12 [ @ (5o - o3 ép(x)) (eﬁﬁ({))

ffd“xd‘*x’p(x WX -%|)p&E) -iNV(0).
(6)

Note that H no longer depends on the ill-defined
operator, p(X)~*. Introducing the Fourier com-
ponents,

pX)=N/Q+p' (),

VN T
p’(_i)=3 Z Pxe ik*x ,
1::0
5 1 d irter
— — e ,
op(x) VN fz;;o 8p, )

1 - T
brno= gy | @50 @it

1 & - -
Y] Ee‘k Y, Pr=o=VN,
=1

the Hamiltonian can be rewritten as

N(N 1)

h—z aZ
5> k-. T , —_ (E )p

V(%) is the Fourier transform of the interatomic
potential,

vie)= [ a%x v@e i

o Vik= O)——ZV(k)

r

Introduce
=ik (21
- apk zp-k> (9)

and write H in terms of it:
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1> = nk: N ]
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t—og— V(k=0-52 3 V) - X,
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Hy, is explicitly non-Hermitian since §{= -ﬁ_k
This is the same Hamiltonian derived by BZ from
different considerations. Grodnick and Sharp'®
define an inner product on the space of functionals
of p, which makes Hp; Hermitian. Such an inner
product was first defined by Chan and Valatin.*
In the spirit of BZ, we would, however, prefer
to leave the Hamiltonian non-Hermitian and use
the mathematical formalism developed earlier'®
to take care of this new situation. In this way,
the problem of defining a metric is automatically
taken care of. We can define Bose operators to
quantize p, and R,. This is slightly different from
BZ, who quantized p, and 8/8p,, but the final
results are the same. Let

px=VA, (b, +01,),
.k .
Rk—m(b-k_bk)’

where b, and b] obey the usual Bose commutation

(11)

relations and b] is the formal adjoint of b,. Choose
X, to diagonalize the first term in (10),
4m N -z
(1 +ﬁ2k2 (k)> ’ (12)
Hygz =H,+H,,
Ho=EZ+ Ey(k)bb,, (13)
k#=0
Hy= E 5!?1+k’2+§3,3[7(:)(ku Ry, k)b by, by,
kyipky
+Y(ky, ey, k3)] DY BT+ Yy, oy Ro)DL By b,
+75 (s gy ka)btkabtkzb 1,
where
ﬁ2k2
Eslk) =5y (14)
NN -1) 2
B __ 7 =
E§==5g— V(k=0) - ZEB(k ( >

k=0

and the y’s are defined as in 1.
The lowest-order approximation of the ground-
state wave function defined by b,¢,=0 is satisfied

e

(10)

by

—eXp[ Z(l )pkpk (15)

which is exactly the result derived by BZ. We have
thus shown that the BZ Hamiltonian can be derived
by choosing a representation for the current opera-
tor JX). The non-Hermitian Hamiltonian is in
fact no problem to handle and the results for the
energy and other physical quantities are totally
free from any divergences.'®

Using the current algebra approach, Sunakawa
et al.'* have obtained an explicitly Hermitian
Hamiltonian, but which contains an infinite series
of interaction terms. It is of interest to reconsider
its derivation in the light of the new formalism and
relate the results to those obtained above for the
BZ Hamiltonian, in view of many of the equiva-
lences found elsewhere.!® Following Landau,?
it is possible tc define a velocity ¥(X),

I®) =LpEVE) +TX)pX)]. (16)

The commutation relations that p(X) and ¥(X) must
now satisfy are given by''*®

[v,0, @] = - 2 £ 500 %),
P[0, (), v, )] =2 69 - %) [T XT @),

(¢,j, k) cyclic. 1)

These follow as a consequence of the commutation
relations (3). Adopt p(X) and V(%) as a set of col-
lective variables. The Hamiltonian (4) can be
ertten in terms of the Fourier components of

p, and ¥,'*%® if one expands p(X)™'=[N/Q +p’(X)]™*

in powers of Qp’(x)/N. Thus, one must assume
that the fluctuations in p’(X) do not ever become
as large as -N/Q:

a,,J’Z—”i [ asi@e i3,

kX,
z Ve H

k==0

(18)

v®) =
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1 . . /F¥® N 1
H=E§+3, [mvk Vi +(8m 20 V(k)>p.p-u] +W“Z§

kS
k=0

‘i ) 0 T

kKo Kyy g

Note that H is an infinite series, Hermitian
Hamiltonian. As we are interested in the super-
fluid state at T =0 °K, we will restrict our discus-
sion to irrotational velocity fields,

VX¥(x)=0.
With this restriction on V(X), Berdahl'? has shown
that the phase variable approach of Nishiyama'®
is equivalent to the Sunakawa approach. Com-
paring Eq. (19) with the infinite series written by
Berdahl, it may be noted that ¥(X) is proportional
to the gradient of the phase'®. In this subspace,

the commutation relations for p, and V, are given
by

[ [“;nﬁn’]— =0, (20)
[‘;h,pk']— =hKS, , -

This makes 3,, canonically conjugate to p,. We can
now introduce creation and annihilation operators
for the excitations:

Pr =‘/)Tk(Bk +BY),
V,=(nk/2V3)(B_, ~BY,

(21)

where B, and B%} obey the usual Bose commutation
relations and B} is the Hermitian conjugate of B,.
" The Hamiltonian can be expressed in terms of

B, and B but will not be written here. See Refs.
11 and 48 for further details of this derivation.

We would now like to consider expressions (10)
and (19) in more detail. As the Hamiltonians were
both derived from (4),.we ask the question if there
is a relation between R, and V,, which would make
Hy; identically equal to H,. Since both R, and ¥,
obey the same commutation relations with p, and
among themselves, we look for a linear relation
between R, of BZ theory and ¥, of Sunakawa theory
but the dependence on p, could be more complex.
One can show after a little algebra that indeed

7oK 2 3 (v ()
P=1

_
X2 Ofuiyeeersiyr 5 Kpea(OuPry * Prpe) -
K1°**Kp+1

(22)

The series can be summed to obtain

6]}.14»'1:2#" +]}.’+4,€E1 'Ep-mpklpkz' ‘P

1. - n? -
OF +it,+k 40 (55 V- *Prg " Vop, To - &, 'kz)Pklpkzpk
1T Ketkg 2m 1 8m 3

3

(19)

Rp+q

V,=R, +37kp_, - ‘;% fdax [p“(i)ep(i)]e‘”:' X
(23)

In coordinate space

@=L 0 YN

v(X) =i Vm FmiP ®)Vpx). (24)
Using this in (16) we obtain

x _i -~ O 1= -o)

J&) =i (P(;I)V m -3Vp(x) (25)

which is the same result as (5). Thus the velocity
operator v(X) used by Sunakawa gives the same
expression for J(X) employed in the BZ formula-
tion. The two Hamiltonians are just the result of
two different manipulations of the operator J(X),
but consistent with the basic commutation rela-
tions. Tsu-Shen Chang? has also obtained an in-
finite-series Hamiltonian by a similar procedure.
He chose to expand p(x)~* first and used the form
for J(%) given by Eq. (5). This is clearly just
another manipulation of the same Hamiltonian and
provides no new information. Since the Sunakawa
Hamiltonian was derived on the explicit assump-
tion of an irrotational fluid, we clearly see that
Hpg; also describes a superfluid.

The relationship between the b,,b}, and B,, B¥
operators sought in the Appendix of Ref. 10 is now
apparent after symmetrizing the terms in the
multiple sum in Eq. (22) and using the § function
to simplify it further. Thus,

(B, +B*,)=(b, +b1,) =p,/VX,,

- w1 (L P 1
(B, =B =(b_, ~b]) +X, ,X:,l(-l)’ (TN) p+1

x ’Z* 61':+k’1+"'+!7,”.3 (phlpkz' : 'Pk,“) .
kp®*kpe

Yee?® has discussed the extension of the current
algebra approach to describe the rotational flow.
By introducing an additional current, the new ex-
citations can easily be accommodated. To J(X) of
(10), one could add

K®) =1[0@VpE) +Tu®oX)], (27)

where ¢(X) and p(X) satisfy commutation relations
given in Ref. 20. Yee has expressed the Hamil -
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tonian in terms of this new current, but a practical
quantization scheme for these new variables is

not presently available. This is one area in which
much new work is needed.

In summary, in this section we have made an
explicit connection between Hp, and Hg by way of
current algebra. While the current operator is
the same for both Hamiltonians, the manipula-
tions were different. Introducing J(%), Eq. (10),
directly into the Hamiltonian (4) eliminates the
p~}(x) term and thus the Hamiltonian has a finite
number of terms. If on the other hand one expands
p~!(X) in a power series and chooses to quantize
the velocity operator instead, one is left with an
infinite-series Hamiltonian Hy. Explicit calcula-
tions of the energy and other physical quantities
in perturbation expansions give completely equiva-
lent results, but Hy, is considerably easier to
handle,°:!s

III. GREEN’S-FUNCTION THEORY BASED ON Hy;

In order to develop a finite-temperature theory,
the statistical operator P,,, associated with Hy,,
was defined in I,

Pyp=D [¥,)e @, |, B=1/kT. (28)

The eigenfunctions of Hp, and Hf; are assumed to
be “simple,” i.e., obey the equations

HBZ I'I’n)=Enl‘Iln> ’
(é" 'HBZ = @n IE:'

The range of (Hy; - E) is assumed to be closed, and
therefore the right eigenvalue of Hy,, E,, is equal
to the left eigenvalue of Hg,, E¥. The correspond-
ing right and left eigenfunctions |¥,), |¥,),..., and
(®,],(&,],... of Hy; together form a biorthogonal,
complete set. It has been shown in I that E,=E,
where E, is the right eigenvalue of HJ,. For more
details, see I.

The thermodynamic averages of physical quan-
tities may now be defined:

() = Tr Popx/Tr Py (30)

where

TrA=) &, |Al¥,).

(29)

J

The biorthogonal set of states must be used con-
sistently, as in the definition of the trace.

Since the BZ Hamiltonian does not conserve
quasiparticle number, a matrix Green’s function
must be employed.® The “Heisenberg representa-
tion” of b, and b} are given in I. For operators
acting only in the space of {|¥), (|}, we have

iﬁ£0=[0,H},Z]_. (31)
Henceforth, we will work only with operators
acting on the space of {|¥), ®|} in a consistent
way. The final results in the development involving
the states {|#), (¥ |} are entirely equivalent as dis-
cussed in I. The one-boson matrix Green’s func-
tion may be defined as

: _Tr[Pop(@,(1)21(0)). ]
inG(k, t)= "Tr,’: o) , (32)
where &, is a column matrix,
8,(1)= ( ”h(t)). (33)
bl ()

Dyson’s equation becomes a single matrix equa-
tion. In momentum space,

Glk, 0) =G°(k, ) +G°(k, W)Z (k, W)G(k, w) . (34)

Green’s function for the “unperturbed” system
G°(k, w) is diagonal and

G\ (R, w+in) =[Aiw — E4(k) +in] !,
G (R, w +in) =G, (k, —w —in).

The self-energy matrix T can be derived by a
linked -cluster diagrammatic expansion as was
done by Straley for T =0 °K even though he ob-
served that the non-Hermiticity of Hy, implies
that the usual “time reversal” and “crossing”
symmetry do not hold. We have given here a
theory valid for nonzero temperatures. We em-
ploy an equation-of-motion method to evaluate

the self-energy matrix. The equation of motion
for G(k, t) gives rise to terms involving new
Green’s functions containing three operators in
view of the structure of Hy,. We then derive equa-
tions of motion for these and simplify them by use
of the familiar factorization method. This pro-
cedure leads to order (1/N),

(35)

O(k,k,, =k — b)Yk, k,, =k — k)1 +2n 5(k,)]

Zn(k,w+in)=-18 3 ¥
Kz

w +Eg(k,) +Eg(k +k,) +in

va 3 1N by = By By k= )L+ 2 (k)]
w — E 5(k,) — E (k +ky) +in

K2
-4 Z 723)(k2’ k, =k - kz)}’n(f)(kz, k, k- kz)[nb(kz) —np(k +kz)]
= hw +E g(k +k,) — E g(k,) +in ’
2

(36a)
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Dok, 0 +in) = =6 2 YOk, kay = = kYO (E, By, — = B)[1 +21,(k,)]
kz

1 1
X (}iw FEp(k;) +E(k +hy) +in | ~Hiw +E5(ky) +E (% +k2)—in>

Z Yc (kg, ~k -k )73)(“k -kzy k, kz)
-hw +E5(k+k ) Ea(kz)—l"'l

[n5(k;) =ng(k +R,)], (36b)

Z ok, w +in) = ~6 Z Yk, k,,, ~k = ky)Y R, By, =k = Ry)[1 +2n5(R;)]

1 1
X (h’w YE (k) +E (k +Fy) +in —hiw +E (k) +E g(k +k2)—in>

V8 kg, By —k = k)Y ~k — Ry, R, ky)[n5(ky) —np(k +E. )]
-4 Z fiw +Eg(k +k,) - Es(kz) +in) (36¢)
L
Dok, w +in) =2, (R, — w—in). (36d) det|[Gos(k, w)] T} = Zog(k, w)|=0, (37)
Here ng(k) ={exp[BE z(k)] -1} ~*. It should be ob- that is
served that this finite-temperature theory is not
valid for all tempe.rabureg. As th.e Ham1lF01.uan ~flw = 4[24, ©) = 4 (B, 0)]}
describes only an irrotational fluid, the finite-
temperature extension given here is only valid +{Eg(R) +3[Z 1 (B, w) + =5, (B, w)]}?
when the superfluid density is much greater than
the normal fluid density, i.e., 7<0.5°K. The - Z ok, w)Z,, (R, w)=0. (38)
rotational states of the fluid are important for
higher temperatures and this Hamiltonian does For T=0°K, Straley has shown that in the 'long-
not incorporate these processes. . wavelength limit, Z.4(k, w)~ % and therefore the
The excitation spectrum is given by the poles of spectrum will not display a gap. To order (1/N),
G which occur for w for which the excitation spectrum at 7=0°K is
E(k) = Eg(k) + €,(k) + O(1/N?), (39)
6 (k) =2P 2 Yok ko= k = Rolyg ™k ko= k= k) _ 4o >> vE? (o kyy= k= RV (b, Ray= k= by) (40)

ER)-E B(kz) —Egk+FE,) E(R)+ Eg(k,) + E ok + I2y)

This is the same expression derived earlier in I using only G,,(%, t). The ground-state liquid-structure
factor S(k) at T=0 °K can also be derived in terms of this matrix Green’s function, because

S(k) =(pa(0%)p] (0)) = A ((By+ BT (BT + 5 ) =1, lim lim Z Gugll, t). (41)
It is well known that

lim G(k, ) =—1—1r f_: dwIm(G (%, w)) [1+n(w)], (42)
and thus

S(k) = =2, lim (% [ dotm(Gaate, oDt + )] + 2 [~ dwim(Ga(e, )24, (8, 0) G ale, w))[1+n(w)]) (43)

T—0 - -0

Where one must sum over repeated indices, and n(w)=1/(e Bw _1). In principle (42) can be evaluated using
(34) directly. But we are here interested in computing S(%) to order 1/N only. This involves only the
diagonal elements of G in (43) and we obtain after some algebra,
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YOk, by, = k= k) k, by, = k= k)

S(k) =2 + 36, ; [, +Ea(k Y+ Eg(e + ) LER) + Egle,) +Ek v )]

E(&) + E4(R)

60 3 YNk, by, = k= k) V5 (e Ry = B = ) + ¥4 (k, gy = b = )y, gy = e = )
K

1 1
><(E,_p,(k) TE (k) + Eglk +73) T E(R) + Eplley) + Egll +k2)> , (44)

S(k) = x+S,(R) .

It should be noted that Eqs. (40) and (44) reduce to
the Rayleigh-Schrodinger result when E(k) = E z(k)
on the right-hand side. These equations will be
used later to evaluate the excitation spectrum for
liquid He II.

A third quantity of interest which was not derived
in I is the momentum distribution function in the
ground state. This would verify the presence of
off-diagonal long-range order in the one-particle
density matrix. Owing to the presence of inter-
action, all particles are not expected to be in the

J

matrix defined in terms of the wave function is

*1,) = fo\l’(f‘n-fzx- . '!fN)\I"(;{: ;2; L

LT d e dPry

zero-momentum condensate at 7=0°K in contrast
with the noninteracting system. The momentum
distribution function was first derived by
Bogoliubov® using his field-theoretic method,
which had explicitly built in the zero-momentum
condensate. Zubarev* derived the same result
using the BZ formalism with N, replaced by N,
but his derivation was obscure. We have there-
fore given here a derivation of this result. The
lowest-order wave function using the BZ analysis
is given by Eq. (15). The one-particle density

(45)

n(T, -7 .
S, T, ..

The gccupation number for the state with-momen-
tum k is obtained from

n(k) = f nr)e= 5T g5y (46)

Using ¢, from (15), we can obtain n(k) to lowest
order in a (1/N) expansion. p, is defined in (7)
as a function of (¥, ¥,,...,¥,) and the normaliza-
tion integral is easily evaluated,

noting n(¥ =0) =N/Q, we obtain

n(?)=g+§N7f---fdarz---darNEexp(%ka Z e

1 S A
X [exp(ﬁ %:ofk cos[3(k-7)] ,Z; et ‘/)

LI 2d3rdr,e s odry

f j |‘Pol d’vyc++d rN—QNexp<_-Z fk) (47)
R0

where f,=(1-1/x,). To evaluate the remaining
integral in (45), write p, in the form

eik 1'1

‘/_ ‘/_Zeik rj

and make the transformation ¥, (i # 1) =T, + 3(F, +T))
in this integral. Defining ¥ = (¥, - ¥{) and after

( ka Z”: etk ‘J)] (48)

k=0 i=

To lowest order in 1/N, one notes that all terms in the expansion of the exponential in the first factor

and only the term

1
2—&— Z fk fk (coszk o7 COS%

K ky=o J1edp=2

-1) Z ei(k1 r, +k2 1
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in the second factor contribute. After some alge-
bra one obtains

n@) =N, L
Q 20

D AAfS )

k=0

1)+0(1/N)

X(cos? 3k T —

1
_Zﬁz (1——> A1 - cosk-F)
k=0

+0(1/N). (49)

The occupation number #(k) [Eq. (31)] in the mo-
mentum space is thus

n(k) = [N 1/42(1-——)3,]5;,;

»#0

) 1y

The probability distx;ibution function for the single-
particle momentum k is thus

W (k) = J6'1‘3’(k)+4(2n)3 : (1 -%ﬁ) A +O(1/N?),

(51)
where
7\; 1———2 (1- >Ak+0(1/N2) (52)

k=0

This result agrees with the result of Zubarev.*®

IV. SUPERFLUID LIQUID HELIUM II

The excitation spectrum, the liquid-structure
factor, and occupation number which were calcu-
lated in Sec. III can be evaluated for liquid helium
if the interatomic potential is known. While there
are many empirical formulas for V(r), all contain
a hard core, which means that their Fourier trans-
forms do not exist. One could use a soft-core
potential but then there would be at least two free
parameters, the height of the soft core and its
range. The resulting expressions for E(k) and
S(%) would clearly depend on these parameters
critically and any comparison to experimental
results would not be unequivocal. Instead, we
would prefer to use one experimental quantity,
say S(k), as the only input into the expressions
for E(k) and N,/N. This can be done by eliminating
A, from (40) in favor of S(k) given by Eq. (44):

E(k) =Ep(k) +[Eg(R)/2,]S,(R) + €,(k) +O(1/N?),
(53)

where

E(R)=r%k2/2mS(k) . (54)
In the remaining integrals S,(k) and ¢,(k) let 2,
-S(k). The error incurred then would clearly be
of O(1/N?). Thus to the order we are considering,
we can calculate E(%) in terms of the experimental
structure factor S(%¥). A similar procedure has
also been suggested by Nishiyama.!®* One feature
of our calculation is the appearance of E(k) in the
expressions for the excitation spectrum (40) and
the structure factor (44). To evaluate the re-
mammg mtegrals, change the integration variable
k2 -»k - —k The resulting integrand will contain
no singularities for all E(k) less than E.(k) and
2E(ky), ky=1.9 A- ! which is satisfied for the pho-
non-roton spectrum of interest. We'® have already
shown that E(k) = E (k) + O(K®) for -0, as it
should.

S(k) has been measured experimentally by both
x-ray and neutron scattering techniques. It should
be noted that S() is quite difficult to measure ac-
curately and problems arise in normalizing it.

FC have shown that S(¢) should satisfy the nor-
malization condition

—21!2p0=fwk"’[8(k)— 1]dk. (55)

For liquid helium at normal vapor pressure, using
the known density p,, the left-hand side is equal
to —0.43 A-%. FC and JF used an S(k) for which the
right-hand side gave +0.44 A=3, There are at
least three probable reasons for obtaining this
result: (i) the data used in the evaluation was
taken at 2.06°K, (ii) some arbitrary extrapolation
had to be made for k< 0.9 A-! as S(¢) must go to
zero as k—~0 for T=0°K, and lastly (iii) S(¢) was
measured only up to 6 A, By using the more
recent data of Achter and Meyer,* we can elimi-
nate the first two. This data was taken at T
=0.79°K. The difference between it and the

T=0° K result should only be in the region %

<0.4 A~!, Inthis region, we extrapolated the
result at #=0.4 A-! linearly to zero. This gives
the correct sound velomty This data, however,
only went up to 4.5 A~; for larger values we let
S(k) be equal to its asymptotlc value of unity. To
check whether the contributions for values of
E>4.5A ! are important in the evaluation of the
integrals in (53), we used a model®! S(k) which
oscillated about its asymptotic value for large k.
It was found that the combination of integrands in
(53) when integrated did not depend on the asymp-
totic form of S(k) but each integral in (53) did.
Thus the major errors incurred in the calculation
of E(k) are related to the experimental uncertainty
in S(k) only and is probably of the order of 5%.
The evaluation of the integral in (55) using this
S(%) gave us a value of —1.3 A~3. But this integral
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is found to be very sensitive to the exact structure
of S(k) for all k, in contrast to the evaluation of
(53).

Thus using S(k) from the recent x-ray scattering
experiments of AM, we evaluated E(k) at normal
vapor pressure. The results are given in Fig. 1.
For comparison, we have also calculated E(k)
from the JF formula using this S(2). Note that our
result is better in the low-% region and also has a
lower roton minimum, AB% = 12.3°K compared to
AJF ~12.7°K. The region from 0.4 to 0.8 7%, in
which both our result and the JF result are lower
than the experimental results of Cowley and Woods;*?
is of interest. Hallock®! has recently measured
S(k) at very low temperatures from 2= 0 to 1.1
A™!. In this region, Hallock’s data are lower than
those of AM. The difference is not explained but
is large enough to make our results for the energy
agree better with experiment in this region as Eg(k)
would then increase. Hallock did not measure S(k)
for all k, so his data are not useful in evaluating
E(k) for any k. The probable sources of error in
our theory are the uncertainty in S(k) and contribu-
tions from terms of order (1/N?) which probably
become important for larger values of 2. While
the agreement with experiment is only fair, it
seems to be the best such theoretical calculation
involving experimental S(k). The other types of

40 T T T T T
30— —
F
<
°
N 20 |~ Bz —
>
4 -
7
g OF /
& —\\ /
AN /
7/ N
1o \\//
EXPT
o ] l ! 1 ]
0 05 10 15 20 25 30
k (A™)

FIG. 1. Excitation spectrum of liquid Hen. The curve
F is Ep(k) using the Achter-Meyer structure factor; the
curve BZ is calculated from the BW perturbation expan-
sion (53). For comparison, JF is the Jackson and Feen-
berg (Ref. 33) second-order BW perturbation expansion
reevaluated using the AM structure factor. The dashed
lines are the experimental results of Cowley and Woods
(Ref. 42).

numerical evaluation of E(k) are based on model
potentials with at least two free parameters.

One could also evaluate N,/N by a similar meth-
od by replacing A, with S(k) in (52). We have done
this, but we find N,/N to be negative (-0.3). We
believe this to be a result of the sensitivity of the
integral to the exact structure of A, for all 2. We
are at this time unable to draw any further con-
clusions about this result. This seems to be simi-
lar to the difficulty encountered by FC, JF, and
the present authors in computing (55).

V. CHARGED BOSE GAS

From our discussion of liquid helium, it is clear
that the difficulties arising from a lack of know-
ledge of the Fourier transform of the potential
V() are a major stumbling block in deriving nu-
merical answers from the theory. In this section,
we would like to apply the BZ formalism to the
case of a charged Bose gas, for which V() is
well known. To the best of our knowledge, the
collective-variable approaches of BZ or S have
not been applied to this problem, except for the
calculation of ground-state energy by Berdahl.?

The Fourier transform of the Coulomb potential
is

V(k) = 4me?/k2%, k#0
V(e=0)=0.

(56)

V(R =0) is a result of a neutralizing positive-charge
background. Following Ref. 45, we introduce con-
venient dimensionless quantities:

22\ 12 -1/2
wﬂ=(41rpe ) , t=(2mwe,) i

2
m 73 (57)
2 _ 2w,
)‘t‘(1+t4)1zv EB(t)‘T'

Using (57) in the expression for the ground-
state energy given in Ref. 10, employing RS per-
turbation theory, we get the exact result obtained
by Brueckner® in the high-density limit. It may
be pointed out that there are no infinities such as
those encountered by Brueckner in our formulation.
Lee*® showed that the method of CBF in the uni-
form limit gave exactly the same result as that
of Brueckner for the ground-state energy. Berdahl
and Lee'® showed that for boson systems, the
ground-state energy in RS perturbation theory
based on BZ is the same as that obtained by the
use of CBF method in the uniform limit.

Ma and Woo** have shown that the single-particle
excitation spectrum has a cutoff momentum. In
the lowest order of approximation, this cutoff is at
t=2. The second-order correction to the excita-
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tion spectrum was first calculated by them using
standard field-theoretic techniques in the high-
density limit. They found that the cutoff momen-
tum is now at £=v2. Bhattacharyya and Woo*
found equivalent results with those obtained by
the method of CBF. We® have shown these re-
sults agree exactly with a RS perturbation expan-
sion in the BZ formalism for arbitrary V(). In
this region, the integrand contains no singularity
and BW perturbation theory is not needed as in
the case of liquid helium. The results for the
charged Bose gas are given in Refs. 44 and 45 and
need not be repeated here, in view of the equiv-
alences mentioned above.

Bhattarcharyya and Woo attempted to calculate
the first-order correction to S(k) but did not have
an explicit formula for it such as Eq. (44) or the
RS form given in I. By forcing the JF formula
for the first excited state energy to be equal to
the CBF result with a Jastow-type correlating
function, they were able to deduce an S(2). We
believe this method to be of dubious value as there
are additional corrections of the same order to
the JF result® and there is no a priori reason to
believe the two results to be equivalent. In the
high-density limit, S(k) can be expanded in powers
of (#3%) and we obtain from the RS formula given
in I [or equivalently let E(k) — E4(k) on the right-
hand side of Eq. (44)],

S(k) =x,+ 73S, (B) +O(r37?) . (58)

We have calculated S,(k) and the results are
shown in Fig. 2. We find S(%) to be slightly larger
than that found by Bhattarharyya and Woo,*® in the
entire region of £ considered by them. Berdahl®
informs us that he has independently made a cal-
culation of S,(k) and this agrees with ours. This
result has also been confirmed by Family and
Gould® who used the generalized dielectric formu-
lation.

Foldy?” was the first to consider the problem of
the charged Bose gas. He employed the results
obtained by Bogoliubov! for a weakly interacting
Bose gas to deduce the properties of this system
in the high-density limit. In the lowest order, he
could evaluate the integrals explicitly that appear
for the ground-state energy and the number of
particles in the zero-momentum condensate.

Remembering that 2, in the Bogoliubov theory
involves N,, in (52), Foldy*’ obtained in the lowest
order

No/N=1/(1+0.21173")
=~1-0.211734+0(»¥?). (59)

In our theory N appears in place of N, and we ob-
tain

No/N=1-0.21173"% +O(r37?) (59")

and we do not expect the higher-order terms (3"
and higher) to coincide with theories involving N,.
With our present calculation of S(%), the proper-
ties of the charged Bose gas at high densities for
T=0°K are thus completely enumerated. In view
of the various proofs of equivalences of the results
based on different approaches to the problem for
arbitrary V(k), the usefulness of the charged Bose
gas as a testing ground may have come to an end.

VI. CONCLUDING REMARKS

This paper is a complement to our recent work®
in several ways. A mathematical method to handle
the non-Hermitian Hamiltonian of BZ was de-
veloped and the results of a RS perturbation theory
of the ground- and excited-state energies, struc-
ture factor, and scattering amplitude for two-roton
scattering were all shown to be equivalent to
another collective-variable theory due to Sunakawa
and his co-workers. In the Appendix of I, an at-
tempt was made to relate the two theories directly
in view of such a close correspondence of the re-
sults. Most importantly in Ref. 15 we showed that
our theory for the BZ Hamiltonian is devoid of all
divergences such as those present in the S formal-
ism, even though they all are cancelled when the
calculation is carried out to an appropriate order
in the expansion parameter. In Sec. II of the pres-
ent paper, by employing the theory of many-body
systems with currents as coordinates!®’ ** we
establish a complete equivalence of the BZ and S
collective-variable formulation of the interacting
many-boson system. This demonstration is an
answer to the question raised in the Appendix of
our recent paper.'® It does not seem to be well

-+
0.03
~ 0.02—-
e
n
0.01
0 1.0 2.0

FIG. 2. Second-order contribution to the ground-state

liquid-structure factor, = (2mw,,/k#%) /%,
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recognized that the collective-variable theory

is not inconsistent with the notion of the presence
of particles in the zero-momentum state, which
is expected on general grounds based on the ideas
of off-diagonal long-range order in the single-
particle density matrix of the boson systems.
This was shown by Zubarev*® but his derivation
seemed obscure to us and so we offer our own
version of it in Sec. III. Even though the theory
does not assume the presence of particles in the
zero-momentum state, it is gratifying to find this
feature in this formalism. We have also developed
a matrix Green’s-function theory which general-
izes that given in I. We observe that the energy
of excitation to order 1/N is the same as that
derived in I. Also, we could deduce from this
matrix Green’s function the structure factor, a
feature which allows us to compute the excitation
spectrum in a consistent way. The second most
important feature of any theory of superfluid liquid
helium is a fair description of its phonon-roton
spectrum which is determined experimentally.

In view of the importance of this aspect of the
theory, we have given in Sec. IV a fairly detailed
account of the various experimental works and
their relation to our calculation and other calcu-
lations. Our calculation indicates that perhaps

a theory of the excitation spectrum which incor-

porates the experimental structure factor in com-
puting the excitation spectrum as was originally
suggested by Feynman?? can only be improved if
the experiments on the structure factor at low
temperatures (T =0°K) can be done accurately

for very low (k< 0.5 A™) to fairly high (¢ =8-10
A™') momenta. We hope to have made this point
emphatically in Sec. IV with our discussion of both
the theoretical and the experimental results.

We believe that the collective-variable theory
(presented in I and here) provides a fairly com-
plete description of the low-temperature (T
< 0.5°K) properties of superfluid liquid helium.
We are presently examining the extension of this
theory to incorporate the microscopic rotational
flow in the description of the system which would
become important on improving the theory for the
entire range of temperatures below and past the
transition temperature. Only a formal attempt
in this direction has been made by Yee®® recently.

We have also examined in this paper the model
of charged boson gas (Sec. V). We feel that the
BZ approach gives a satisfactory description of
this system also. We may therefore conclude
that the BZ formulation along with the mathe-
matical framework given in I has all the essentizal
features of a complete theory of interacting Bose
systems.
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