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Electrons trapped by their image potential on the surface of liquid 'He can escape into the gas by
thermal ionization. I have calculated the rate of ionization, assuming that the electron motion parallel

to the liquid surface is described by the collective motion of an electron crystal. The first electrons to
leave the surface extract their ionization energy from the kinetic energy of those that remain behind.

This adiabatic cooling effect rapidly lowers the electron temperature to a small fraction of the liquid

temperature. The ionization rate is substantially less for this electron-crystal model than for the free-

electron model of the electron motion parallel to the surface, The rate also depends on the density of
surface electrons.

I. INTRODUCTION

When an electron is near the surface of liquid
helium, the short-range repulsive force due to
the exclusion principle opposes the long-range
attractive force due to electrostatic polarization;
hence there is a potential minimum for the elec-
tron just outside the liquid. The electron motion
is nearly hydrogenic when perpendicular to the
liquid surface and nearly free when parallel to the
surface. This model' of the two-dimensional sur-
face state has stimulated much theoretical and
experimental interest, which is the subject of a
recent review by Cole. '

One of the early measurements on this system
was that of the lifetime in the surface state. ' This
lifetime was about 10 4 sec in the region 1.1-3.0 K.
This seems long since the binding energy is only
0.0007 eV.' Subsequently, Ostermeier and
Schwartz4 made a lifetime measurement and con-
cluded that the lifetime was shorter than 10 ' sec.
However, as has been pointed out by Cole, ' in
this measurement' the electrons were probably
free in the gas instead of bound to the surface by
the image potential. Therefore, they could not
have been measuring the surface-state lifetime.
In an attempt to explain this long lifetime, I cal-
culated the thermal escape rate (reciprocal of
the lifetime} from the surface state. ' The theo-
retical lifetime was, however, about an order of
magnitude shorter than the experimental value.
Even though the model calculation predicted too
large an escape rate, it did indicate why the elec-
tron lifetime is long. As Ref. 5 (henceforth re-
ferred to as Paper I} shows, the binding energy
is of secondary importance in determining the
ionization rate because neither the liquid nor the
gas atoms in the vapor can transfer sufficient
energy in a single scattering event to the electron
to ionize it. Therefore, their role is to mix the
electron motions parallel and perpendicular to the

liquid surface and cause the transfer of energy
from the parallel to the perpendicular motion.
Only if there is sufficient energy in the parallel
motion can the electron be ionized. Thus, the
ability of the parallel motion to replenish its ener-
gy from the liquid and gas determines the ioniza-
tion rate. The electron system is so weakly cou-
pled to the liquid and gas that the ionization pro-
cess, which removes the binding energy Eo from
the electron system, causes it to cool well below
the liquid.

To improve on this calculation I shall use a
different model of the electron motion parallel to
the liquid surface. The assumption that electron
motion is free-electron-like parallel to the liquid
surface is strictly valid only for a single electron.
If many electrons are on the surface, electron-
electron interactions ean. cause the electrons to
crystallize to lower their energy. ' ' In this case,
the motion is best described by the collective
modes of a two-dimensional electron crystal. '
Since the liquid and the gas atoms couple mainly
to the electron motion parallel to the liquid sur-
face, the escape rate depends on this motion. As
the following calculation will show, electron crys-
tallization reduces the escape rate. For this elec-
tron-cr&rstal model, as well as for the free-elec-
tron model of the motion parallel to the liquid sur-
face as discussed in Payer I, the surface state
is ionized when energy is transferred from the
motion parallel to the liquid surface to the motion
perpendicular it. In the former case ii is the lat-
tice energy stored in the phonon modes that ionizes
the surface state. The liquid and the gas atoms
act as a catalyst for the ionization since they trans-
fer little energy to the electrons. At high tem-
peratures surface-state ionization removes suffi-
cient energy from the eI.ectron lattice to reduce
its temperature to a small fraction of the liquid
temperature. Only below about 1 K is the ioniza-
tion rate sufficiently small to allow the lattice
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to remain in thermal equilibrium. Section II out-
lines the surface-state model. In Sec. III, the
ionization rate and the rate of energy exchange be-
tween the electron system and the liquid and gas
are calculated and the energy balance is used to
determine the electron temperature. In Sec. IV,
I discuss the results in terms of the experiments.

II. SURFACE-STATE MODEL

a = (e —I)/4(~ +1), (2)

A brief discussion of the surface-state model
follows. More detailed discussions can be found

in the original papers. "' At the liquid surface
the. electron experiences a repulsive barrier of
about 1 eV. Outside the liquid the electron is
attracted to the liquid by its image charge. The
electron, which is weakly bound, is far enough

away from the liquid so that the surface can be
assumed planar. If z is the distance above the
liquid surface, the potential energy of a single
electron is

V, (z}=-oe2/z, z&0

=+V~, z &0.

The potential V, is the liquid barrier. The strength
of the image charge is

spacing a, is much greater than (z). Hence, the
characteristic frequencies for the motion per-
pendicular to the surface are much higher than
those for the motion parallel to the surface. Thus
the z motion can be ignored in calculating the x, y
motion. Neglecting end effects makes V~ indepen-
dent of x and y. Therefore, as long as the elec-
tron system remains within 10' A of the surface,
V(x, y, z} separates, in lowest order, into a term
depending on x and y and one depending on z.

husks

V(x, y, z)=V~(z)+Vii (&~y). (4)

Because the electron system is dilute, the ener-
gy of Coulomb repulsion between the electrons
exceeds the kinetic energy of localization. Ac-
cording to Wigner, ' this Coulomb energy is mini-
mized if the electrons are ordered. Similarly, we

expect the surface electrons to form a two-dimen-
sional electron crystal. In the potential V~~(z, y},
the dynamics of an electron can be described' by
phonons. The frequency spectrum of these states
is shown in Fig. 2 for a square lattice of lattice
constant Ro. The transverse branch has soundlike
behavior at long wavelength. The dispersion curve
for the longitudinal branch, however, does not
exhibit soundlh behavicr at long wavelength;

where c is the static dielectric constant. For 'He,
n =0.006. The solid curve in Fig. 1(a) represents
the potential energy V, (z). In the original surface-
state model, V, (z) is the only potential depending
on z. Any potential depending on the coordinates
x and y parallel to the liquid surface serves only
to give the electron an effective mass. However,
if electron-electron interactions are included,
then the above assumptions are no longer valid.

When many electrons are present on the liquid
surface, the potential energy becomes'

1 g2
V(x, y, z) =V, (z)+—, , +V,.2, , j'r, —r, )

LIQUID

V

E - leV

= Z
(a)

V=O

E„=O
R Ep 0.0007 eV

The first term is the image potential, which re-
mains unchanged. The second term is the Coulomb
potential between the electrons, where r; is the

coordinate of the ith electron. Since the system
is neutral, the electron charge is balanced by an

equal number of positive charges on the electrodes
above and below the liquid surface. This is shown
in Fig. 1(b). The potential energy of interaction
between the electrons and these positive charges
is represented by V~.

The combination of the image potential and the
electric field due to the plates A and B localizes
the electrons near the surface; i.e., (z)=110 A.
Since the electron densities considered in experi-
ments are less than 10' cm ', the mean electron

FIG. 1. (a) Sketch of the potential energy of an elec-
tron outside of liquid helium. Potential energy is plotted
vertically and the z coordinate horizontally. Eo is the
binding energy. E„ is the vacuum level of energy. E,
is the conduction band in the liquid. (b) Schematic af the
electron system on liquid helium. The metal plate Bis
immersed in the helium, and plate A, held at ground po-
tential, is above the helium surface. The electrons are
shown by dots on the helium surface. The length L, a
rough measure of the size of the electron system, is
given by the plate size. The z direction is perpendicular
to the liquid surface.
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FIG. 2. Vibrational fre-
quency ~ q) in units of
e/(mR&) is plotted vs
normalized wave vector q
for the two principle direc-
tions of a square lattice.
The maximum wave vector
q is the value of q at the
zone boundary. The trans-
verse and longitudinal
branches are labeled ~z
and ~z, respectively. S is
the sound velocity.

0
I 0.5 0

qiqm

0.5

here the dispersion relation becomes the same as
for the two-dimensional free-electron gas'; i.e.,
& ~q' ', where q is the phonon wave vector.

For motion normal to the surface, the potential
of an electron is

g2
v, =v, (z) -zmg, „+v,(z),

41 Ri —R) t

(5)

where the second term represents the electron-
electron interaction; 8, is the coordinate of the ith
electron-lattice point. This term is much less
than V, (z}except when z a R,. This term causes
tunneling of the electron out of its ground state.
Because the tunneling distance is greater than
10' A, this process is unimportant compared with
thermal ionization. Henceforth, I shall omit this
term.

The remaining term in Eq. (5}, V~(z), arises
from the positive charges on plate B in Fig. 1(b).
This depends on the potential difference between
plates A and B. For example, if we imagine that
plate B is positive and plate A is at zero potential
and, furthermore, that the maximum possible
number' of electrons are on the helium surface,
then V~(z) is zero for z»R, . For a uniform elec-
tron density, V~(z) = 0 for z )0; it is +eFz inside
the liquid. On the other hand, for electrons in an
ordered configuration, the field due to plates A
and B cannot be completely screened at distances
closer to the surface than R,. For point charges,
V~(z) = eFz for z (R,. This situation for point
charges is shown in Fig. 3(a). The solid curve is
V (z). The actual situation is different from this
because the electrons are not point charges; they

are spread about their lattice points and partially
screen the applied field. If it were not for this
electric field I' holding the electrons on the sur-
face, they would be free in the gas phase at tem-
peratures above about 0.6 K." The electric field
increases the statistical weight of the bound states
ensuring that the electrons are in the ground hy-
drogenic state. It was just this absence of a suffi-
cient electric field F that affected the measure-
ments of Ostermeier and Schwartz. ' In what fol-
lows, I shall assume that the electrons are in this
ground state.

In calculating the lifetime, plates A and B are
assumed to be at the same potential. This approxi-
mates the experimental configuration of Ref. 3.
The resulting potential is depicted in Fig. 3(b).
At distances )R„ the field due to the surface
charge is F, =2wen, ; at distances less than Ro, the
field drops rapidly to zero Theref. ore, Vi(z) is
nearly equal to the image potential for z (Ro. Since
we require Vi(z) only at distances closer than R„
we shall set V~(z) =V, (z). Actually, the main pur-
pose of the last two terms in Eq. (5) is to ensure
that an electron excited over the image potential
barrier will diffuse into the gas region before it
can be captured by the surface state.

Because V(x, y, z) separates into components
depending separately on the coordinates perpen-
dicular and parallel to the liquid surface, the ener-
gy eigenvalues can be written as E =E~+E,i, where

Ei = &me /2n P —= I/2ml z-
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The free-electron mass is m, and z, is the Bohr
radius of this one-dimensional hydrogen atom.
Since we let V,-~, l is an integer. ' Because the
electron motion parallel to the surface is de-
scribed by an electron lattice, the values of E,

~

are quantized; i.e.,

HI. THERMAL IONIZATION

OF THE SURFACE STATE

The above model permits one to calculate the
lifetime against thermal escape from the surface.

Ep+ Q

Ey=O

(0)

LI QUID VAPOR

I

o

~R W

~Rp

V
Z (b)

FIG. 3. Sketch of the potential energy of a single elec-
tron in the presence of ~~my electrons at the surface of
liquid helium. The dashed curves are due to the i~~~e
potential. In (a) the metal plate in the liquid is positive.
80 is the lattice constant of the electron lattice. E„ is
the vacuum level of energy. The binding energy of the
electron is increased to roughly Eo+b, bee@use of the
incomplete shielding of the electric field between the
metal plates above and below the liquid. When the elec-
trons are spread uniformly over the surface, 4=0. In
(b) both plates are at the same potential, raising the
electron potential above that of the vacuum. Here the
potential energy in the liquid is shown omitting the shift
due to V~.

where & is the phonon frequency. To obtain an
idea of the magnitude of these energies, we note
that E,=vx10 ' eV and that the highest phonon

energy, for R, =10' A, is about 2.5x10 ' eV. Thus
E, &&E

The wave functions for the motion perpendicular
to the surface are identical to those of the s states
of the hydrogen atom multiplied by z/z, . These
functions are given in Paper I. The lattice is
treated by the usual second-quantization procedure.

The escape rate W, is the inverse of this lifetime.
To estimate W, we calculate the rate for electronic
transitions from the lowest-energy hydrogenic
state, l =1, to a hydrogenic continuum state labeled
by the wave vector k, . This excitation rate is a
good estimate of the escape rate if the electron
diffuses to the right-hand side of the potential
maximum in Fig. 3(b) before it makes a transition
back to the ground state. This is usually the case
because the recombination rate is small.

Because little of the electron wave function lies
inside the liquid, ' the interaction with bulk liquid
excitations is weak. The only remaining perturba-
tions are collisions with the helium atoms in the
vapor above the liquid or with liquid surface waves
("ripplons"). However, as shown in Paper l, the
energy transfer in a collision with a gas atom or
ripplon is a small fraction of the binding energy.

How, then, does the electron gain sufficient
thermal energy from the liquid or gas? Since the
parallel and perpendicular motions of the electron
are uncoupled, it is possible for the total energy
to be positive with the electron still bound to the
surface, i.e., (E~~) ~ED. The surface state can
then be ionized if the lattice energy is transferred
to the perpendicular motion by gas atom or ripplon
scattering. Because the energy transfer from
these perturbations is small, their chief role is to
serve as a catalyst and conserve momentum. This
process will limit the rate of escape from the
surface as long as the electron system remains
in thermal equilibrium with the liquid and gas.
This means that the liquid and gas must supply
energy to the electron lattice rapidly enough to
keep it in thermal equilibrium. If not, the energy
exchange between the electrons and their sur-
roundings will limit the ionization rate. In Paper
I, I found that maintenance of thermal equilibrium
was the rate-limiting step above 1 K (the electron
motion parallel to the surface is free). Similarly,
I shall show that it also limits the rate when the
electrons are ordered.

First, I shall calculate the rate at which an
electron is excited from the ground state of the
perpendicular motion to a continuum state with
the simultaneous absorption of several lattice
phonons to conserve energy. Second, I shall
calculate the rate of energy exchange between the
electron lattice and the liquid or gas. Finally, I
shall compare this energy-exchange rate with the
energy-loss rate due to the ionization process
which removes energy Eo from the electron sys-
tem.

A. Transition rate

Since the transitions involve a large number of
quanta, it is convenient to use the time-dependent
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perturbation theory developed by Glauber" for
neutron scattering. In this theory, the information
about dynamical properties of the electron lattice
is contained in the correlation function. This func-
tion is the thermal average of the expectation value
of the product of the displacement components
u(R, , t} at different points separated by the dis-
tance R and time t. The correlation function is

I 1
Cr(R, t) = —[exp(-i~t+ iq R)

+ 2s~cos(q R —&t)],

where N is the number of electrons, n the phonon
occupation density, and p =1,2 is the unit polariza-
tion vector. Cr(R, t) is diagonal because the lat-
tice is assumed to be cylindrically symmetric
about the z axis. The matrix elements for the
perturbations were evaluated in Paper I; the inter-
action with a gas atom is assumed to be a contact
interaction; i.e.,

Vs =v,&(r —ro}, vo =ha, /m,

where a, is the gas-atom s-wave scattering length
and r~ is the gas-atom coordinate. Initially, the
electron is in its ground hydrogenic state and the
gas atom is in a plane-wave state described by
the wave vector P =P~]+zP, . After the collision
the electron is in a continuum state k, . The gas
atom changes to another plane-wave state de-
scribed by P'. Following Glauber, the time-
dependent matrbr. element for the transition in-
volving the gas atom and an electron is

hf{t) = (Vo(g exp(-i[5 P [8&+u(R&, t)] -Qt}),

(10)

where b, P = (P& —
P~, }. The difference between the

initial and final energies of the gas atom and per-
pendicular motion of the electron is KQ; ~ Vo~ is the
absolute value of the matrix element for the per-
turbation as given by Eq. (9) in Paper l. The ex-
pression M(t) is an operator capable of inducing
all possible vibrational transitions of the electron
lattice. Using this operator and applying the usual
procedure, "the transition probability for an n-
phonon process in the Born approximation becomes

w„=,~ ~ g exp(inP R~) pe[x-hP'C ( r00)]n I

x e " [4& C (R t)]"dt
w OO

The term exp[-dd"Cr(0, 0)] is the square of the
familiar Debye-%'aller factor. The transition rate
W, is given by the sum of se„over all n and all final

states. I find that, in the sum over R&, only the
point R& =0 contributes appreciably to se„. In other
words, the incoherent scattering determines the
transition rate. The coherent effects represented
by terms in the sum for R~k 0 are unimportant.
Therefore, momentum conservation will not re-
strict the available phase space. Before reducing
w„to a manageable form, we note that the same
expression holds for ripplon scattering with ~Vo~

replaced by ~ V„~ [Eq. (12) in Paper I]. Since both
the energy change of the gas atom and the energy
of a single ripplon are insignificant compared with
the energy change of the electron, SQ is the same
for both, i.e.,

KQ =E,[1+(k,s,)'].

After substituting Eq. (8) for Cr(0, t) into Eq.' (ll)
for se„, interchanging the order of summation and
integration, the time integration gives

~.= (»I Vol'/s ta') exp[-~'Cr(0, 0)] (SnP'/2Am)"

s=0

xII Q — (0] + 41] (13)

This expression represents all processes consis-
tent with the energy conservation. In s of the pro-
cesses, a phonon of energy h& is absorbed by the
electron, and in n —s of these a phonon is emitted.
For an Einstein lattice (all lattice frequencies are
the same; i.e., v = &u, ) the evaluation of Eq. (13) is
trivial. The allowed transitions are those for
which Q = (2s —n)&u, . However, an Einstein lattice
is not a good approximation to the electron crystal
owing to the importance of the low-energy modes.
For a general phonon dispersion, the expression
for so„represents a complex summation beyond
the scope of this paper. However, by applying the
central limit theorem to Eq. (13), m„can be readily
evaluated. Sparks and Sham" have approximated
similar sums involved in optical absorption by
means of the central limit theorem. Using their
approach, I define

o.(() = ~.'Z ~((- ~),

a, (])= ~, 'Q '"
&((+(o),

where the normalization constants are

n~ g 1+n
4P ~ ~ CU

q

Using these definitions, Eq. (13) reduces to
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w„= (2z~ Vo~'/I' n! ) exp[-bP'Cr(0, 0)] (N~'/2Nm)"
~
Vs~' =4m'k, (c(,n, e')'kT(Vq', z',o, ) ',

ll J«, .((,(s(ss —E (, ~ E(). (18)

where a, is the liquid polarizability, n, the density
of liquid atoms, and o, the surface tension. To
obtain the matrix elements in the above form, I
used the high-temperature approximation for the
ripplon density and took the ripplon dispersion
relation to be

where

x exp[-(Q —Q,)'/2(P], (17}

n, =(n-s) j(s.d(+s J"(s d(.
s =(n —s( J(('s, d( —(J (s, d()

(18}

The product of integrals in the above expression
replaces the product of sums in Eq. (13). Accord-
ing to the central-limit theorem, these convolu-
tion integrals lead to a Gaussian for large n.
Therefore, w„can be written as

w„=[(2v)'"~ V,~'/g 'n! ]exp[-~P'Cr (0, 0}]

x (g~'/2Nm)" g ' n' a" '—n! 1
(n —s)!s! ' ' o

(v'„= o, q„'/d, (24}

which applies for ripplons with wavelengths less
than about 0.1 cm. Here d is the liquid mass den-
sity and &„ the ripplon frequency. Because the
matrix elements are small for k, z,~1, the limit
k, z, &1 is used for Eqs. (22) and (23). To account
for this in the summation over final states I multi-

ply so„by e '~~'~' . I feel this is justified at this
stage since a precise determination of the matrix
elements for all k, z, and subsequent summation
over k, would require an inordinate amount of
numerical integration. This is not justified until
the experimental situation is improved. Summing
w„over final states is straightforward. Thus

Il nl +s &n-s
4! a

, , (n —s)!s! (c(, +n, )"

+s $'(r d$ — +e~~ ~ (19) xBexp[-(1 —Qo/Q, )'B'] erfc[(Q, —Q,)B(2o') ' '],

Because of the central-limit theorem the multiple
sum over q, ~ ~ ~ q„has been replaced by a product
of sums over single-phonon coordinates. This is
a significant simplification of w„when it is to be
evaluated numerically. Since the transitions in-
volve at least ten phonons, we expect the central-
limit theorem to apply. For a lattice of infinite
extent, the summations over q in Eq. (15}would

diverge at finite temperature. ' However, since
the lattice is of finite extent, the lower limit of

q is the inverse of the diameter of the lattice. '
The next step in the evaluation of the transition

rate is to sum over the final states. For gas-atom
scattering this sum is

Qw„=, „d8ZP d~drdP, dk, w„, (20)

where hP, =P,'-P, . For ripplon scattering

Pw„=, de q„dq„dk, w„,
V

f 7T

(21)

where q„ is the ripplon wave vector, L0 is the length
of the gas space above the liquid, and V is the sys-
tem volume. For completeness we need the defini-
tions of

~ Vs~ and ~Vs~. They are given in Paper I
by Eqs. (9}and (12}, respectively. These are

[Vs~!' =v~0(8@k,z2/VBL)[1+(k, z +~,z,} ] ', (22}

(25}

where erfc is the complimentary error function,
B = (1 +2a'/Q', ) '~', Q, =E,/g, and A depends on

the scattering mechanism. For ripplon scattering
A. is

As = 2Ps(u')/n(n —1)z'„n & 1;

for gas-atom scattering,

A, =P, z',/(u') .
The coefficients P~ and P~ are

Ps =3mvmons/4k'z„

Pz = n(n, c(,e')' kT/4ffo, z', E„

(28)

(2'f)

(28}

(29)

where n~ is the density of gas atoms.
The terms contained in the summation over s

in Eq. (25) are independent of the scattering mech-
anism. Therefore, which scattering mechanism
dominates in determining the lifetime depends on

the parameter A. Above about 1 K, P~»P„.' For
free electrons, as discussed in Paper I, this
causes gas-atom scattering to determine the ioni-
zation rate above 1 K. Here, because the ratio
(u')/z, is much greater than unity for the electron
lattice, ripplon scattering determines the ioniza-
tion rate at much higher temperatures. The sum-
mation over s which represents a multitude of
possible multiquantum transitions determines the
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temperature dependence and magnitude of W, .
Because there is no restriction on the momentum

transfer, as in the usual case of neutron scat-
tering" or optical absorption, "processes in which
phonons are both absorbed and emitted are equally
probable. The summation over final states [Eqs.
(20) and (21)] removes the n! occurring in the
denominator of Eq. (17). If 6P were fixed, as it
usually is,"'"then the nt would remain, ensuring
the dominance of the lowest-order process, in
which just enough phonons are absorbed to ionize
the electron.

Before considering the mechanism of energy
exchange between the electron system and the
liquid and gas, I shall present the results of an
evaluation of Eq. (25) for ripplon scattering. To
numerically evaluate the sums over the phonon
spectrum needed to determine Q„o, &„and &, ,
I made an approximation to the phonon spectrum
shown in Fig. 2. I assumed that the dispersion
curve was cylindrically symmetric about z and
used the dispersion curve shown for the [10]di-
rection. This is a reasonable approximation be-
cause the ionization rate ought not to be sensitive
to small changes in the shape of the dispersion
curve as long as the long-wavelength behavior is
retained and the highest lattice frequency +p is
unchanged. Figure 4 shows the ionization rate W,

'

as a function of temperature T for the lattice con-
stants R, =10' A and 6300 A. Even though it is not
obvious from the exponential plot, W, ~T.' in the
high-temperature region, i.e., T»Tp where T,
=k&u, /k. Since both (u') and P„are both propor-
tional to T in this region, the quadratic depen-
dence on T implies that the summation over s,
which represents the multiquantum nature of the
transition, is independent of temperature. This
occurs because the temperature dependence of the
Debye-Wailer factor just cancels the strong tem-
perature dependence of [Cr(0, t)]" in Eq. (11). The
Debye-Wailer factor has a strong temperature de-
pendence because of the large momentum transfer
and the large magnitude of Cr(0, 0). The large
momentum transfer also causes the coherent scat-
tering to be much smaller than the incoherent
scattering.

At low temperatures (T & T,) the ionization rate
decreases nearly exponentially with decreasing
temperature. The slope of the exponential depen-
dence is nearly equal to -E,/k. However, the-
magnitude of the slope increases with decreasing
temperature; This occurs because, as the tem-
perature decreases, Q„as defined by Eq. (18),
decreases at fixed n and s. Therefore, a larger
number of quanta are needed at lower temperature
to maximize the Gaussian function in Eq. (17).
Physically, more phonons are needed because the

high-energy phonons are not excited. The larger
n then leads to a stronger temperature dependence.
One should note that 8', is less than the corre-
sponding quantity for the free-electron case. '

B. Energy balance

Ro
I-Io
I-
N
R
O

0
IO

IQ
I I I I I I I I

0.4 0.8 I. 2 I.6 2.0 2.4 2.8 3.0
T '(K )

FIG. 4. Ionization rate plotted as a function of recipro-
cal temperature. The solid curve corresponds to a lat-
tice constant Bp of 104 A; the dashed curve, to Ap =6300

The liquid and electron temperature are the same.

When an electron escapes from the surface state,
it.removes, from the electron system, an energy
E, which is greater than kT. If this energy is not
replenished by the gas or liquid, "the electron
system will be forced out of thermal equilibrium;
i.e., it will cool. Since the energy-loss rate de-
creases with decreasing temperature, the electron
system cools until the energy loss is balanced by
the energy input. Many ripplon or gas-atom colli-
sions are necessary to replace the energy Ep re-
moved by a single electron, because the energy
exchange with a gas atom or ripplon is a small
fraction of O'T.

To find out how much the electron system cools,
we assume that, after the initial cooling transient,
there is a steady state with the energy loss just
balanced by the energy input. In steady state the
energy-balance equation is

«l) -«) =o. (30)

It balances the average of the energy-loss rate
E, against the average of the energy-input rate
E,. The input is from gas atoms and ripplons and
the loss is by ionization of the surface state.
These averages are taken over the distribution
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(V'['=[U /V[2[I+-,'(~P z )']-' (32)

Fox ripplon scattering,

I
~R

2 ~o T/
( )Vz = gk Pz Eo d I T&,~2 . 33

Here 6N is +1 or -1 for ripylon emission and ab-
soxption, respectively, and A, is the lattice area.
The energy transfer in ripplon scattering is

while for gas-atom scattering it is

hO« )[f(m)--2 2aPZ~~cosy]/2M, (35)

where Q is the angle between P„and b P, and M is
the mass of a gas atom. Since the hydrogenic state
remains unchanged, there is no final-state sum-
mation over k, . Upon performing the summations
over q in Eq. (13), averaging over the initial
states, and integrating over the final states, the
energy input rate, correct to lowest order, is

function for the electron motion parallel to the
liquid surface. Finding the exact distribution func-
tion requires the solution of the appropriate trans-
port equation. Since this is beyond the scope of
this paper, I shall make, as in Paper I, an elec-
tron-temperature approximation fox' the phonon
distribution function; i.e., I assume the phonons
are characterized by a Bose-Einstein distribution
function at a temperature T~.

The energy-input rate is defined by

E, =g ~, Ifn„ (31)

where m, is the transition rate for a one-phonon
process and IA, is the energy transferred between
the electron lattice and gas atom ox' ripylon during
the transition. . Because we consider only the
lowest-order process, the central-limit theorem is
of no use. Fortunately, for n =1 the summation
over q in Eq. (13) can readily be performed. For
the n =1 transition, there are only two tex ms in
the summation over s in Eq. (13). The term for
s =0 represents absorption of energy by the lattice
and the term s =1 represents energy loss.

For energy exchange, the matrix elements differ
from Eqs. (22) and (23). Because the electron
states quanti. zed in the z direction are widely
separated in energy, no energy is transferred be-
tween these levels. Therefore, the electron re-
mains in its ground state along the z direction
during the transition. The matrix elements for
this type of transition were calculated in Paper I;
For gas-atom scattering

for gas-atom scattering, and

) ( ~T) P„(-',)! (~v)'~' a', z'.

(37)

for ripplon scattering. The ripplons and gas atoms
are in thermal equilibrium at a temperature T.
The lattice phonons are assumed to be in thermal
equilibrium at T~. These expressions show that for
energy to be transferred to the electron lattice
T~& T. These expressions are both less than the
corresponding expressions for the free-electron
case [Eqs. (26) and (27) in Paper I]. In contrast
to the ionization rate, the energy-input rate is
determined by gas-atom scattering above about
1 K. Below 1 K the gas atoms are frozen out and
ripplon scattering supplies energy to the electron
lattice. This also occurs for the free-electron
case.

The energy-loss rate is given by the product of
the ionization rate W,

'

and the energy lost per ion-
ization event. Thus the energy balance becomes

W, E, -(i„)—(i,„)=O.

In this case the ionization rate is to be evaluated
using a phonon distribution at the lattice tempera-
ture T~, which is determined from the solution
of Eq. (38).

IV. MSCUSSION

As in the free-electron case, the failure of the
electron lattice to remain in thermal equilibrium
with its surr'oundings is the main factor deter-
mining the electron lifetime above 1 K. This
failure to achieve thermal. equilibrium with the
liquid arises because the energy transfer in a
collision with a ripplon or gas atom is a small
fraction of the electron binding energy. It is typi-
cally less than 10 'E,. Because of this small ener-
gy exchange in a collision, the energy-exchanging
collisions must be 10' times more frequent than
the ionizing collisions if the lattice is to remain
in thermal equilibrium with the liquid. As refer-
ence to Fig. 4 shows, the probability of ionizing
collisions is large for temperatures above To.
Thus, we might expect that the lattice would have
to cool to a temperature near T, to obtain energy
balance. This is substantiated by a numerical
evaluation of Eq. (38) to find T~ as a function of T
and hence the ionization rate.

In Fig. 5, the escape rate is plotted as a function
of reciprocal temperature for a square lattice
with Bo =10' A and A, =1 cm'. This lattice con-
stant is roughly that corresponding to the electron
density in the experiment. ' The dashed curve ob-
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FIG. 5. Escape rate vs reciprocal temperature for a
lattice with Q =104 L. The solid curve corresponds to
an energy balance. The dashed curve is the T&= T. The
broken line corresponds to the energy-input rate being
calculated vrith the free-electron model.

tains in the absence of an energy balance mith
T~=T. This curve is also in Fig. 4. After de-
manding energy balance, I obtain the solid curve
where T~ and T are the same only belom 0.45 K.
T~ decreases monotonically from a value of 0.9 K
at T=4.2 K to 0.45 K at T =0.45 K. Thus, as I
found for the free-electron case, there is signifi-
cant electron cooling accompanied by a striking
decrease in the escape rate. I made a preliminary
estimate'~ of the escape rate using the Einstein
approximation to the lattice to calculate W, and the
Debye approximation to calculate the energy-loss
rate. The results are mithin a factor of 2 of the
results presented here.

The values of W, shown by the solid curve are
significantly lower than the values calculated with
the free-electron model (see Fig. 2 in Paper I).
This reflects the weak coupling between the elec-
tron lattice' and the liquid and gas. The results
based on these tmo model calculations straddle the
experimental values. For the potential configura-
tion corresponding to Fig. 3(h) the measured' es-
cape rate is about 104 see betmeen 1.2 and 3 K.
This value is roughly midway between the values
of 8', calculated with the free-electx on model and
with the electron-crystal model. One expects
the lattice model to underestimate lV, because
of the assumption of long-range order.

At this point, me must ask if long-range order
exists in this two-dimensional lattice. The absence
of long-range order would significantly affect the
energy-input rate since it is determined by inter-
actions with long-wavelength phonons. The ioniza-
tion rate is less sensitive, however, because it is
determined by scattering with short-wavelength

IO
O.OI 0.I I IO IOO

LATTICE TEMt ERATURE t K)

FIG. 6. Phase diagram of the electron crystal. The
electron density is plotted vs the temperature. The
solid region is inside the curves; the liquid region, out-
side. y is the value of (u2)/B02.

phonons and we expect short-range order to hold.
To estimate the degree of crystalline order I

use the usual melting criterion, which is to set
Cr(0, 0)/R', =y, where y is a constant. Figure 6
is a plot of the melting line for two different values
of y. The line y=1.35 corresponds to the melting
criterion of Elgin and Goodstein as applied by
Cole. ' This estimate predicts the existence of the
solid phase over a wide range of density and tem-
perature. The line y=0.135 is a more conserva-
tive estimate that presumably underestimates the
solid region. Therefore, we expect the melting
line to lie somewhere between the two.

To estimate the size of the effect of the loss of
long-range order on the escape rate, I assume
that the lattice contains only q vectors larger than
0.1q mhen calculating W, . Even when the lattice
has melted, the existing short-range order makes
W, much less than the corresponding quantity for
the free-electron case. ' For the energy-input
rate me use the expressions fox the free-electron
case. This gives an upper limit to the energy-
input rate. The dot-dash line in Fig. 5 represents
the escape rate in this case. It lies higher than
the solid curve because the energy-input rate is
greater fox free electrons than for the electron
lattice. I expect the actual situation to be some-
where in between.

A lifetime measurement could be used to shorn
the existence of the electron lattice. By varying
the electron density on the surface, and, hence,
the lattice constant, the ionization rate wmIld
change if the electrons mere ordered.
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