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Hydrodynamic modes and light scattering near the convective instability
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An analysis is presented of the behavior of the hydrodynamic modes in a horizontal fluid
layer subject to a do'wnward-directed temperature gradient which, when reaching a critical
value, drives the system into convective instability. It is found that the combination of this
thermal constraint and gravity gives rise to a coupling between the heat-diffusion mode and

the transverse mode (curl curiv)~, with v, the velocity field, and the s axis pointing in the
vertical direction. As a result of this mode coupling, which is absent in a fluid at equilibri-
um, the damping factor of one of the coupled modes goes to zero when the temperature gradi-
ent increases to its criticalvalue. On the basis of this mode analysis, the spectral distribu-
tion of the light scattered by the nonequilibrium fluid is then computed. The main features
of the light-scattering spectrum consist of the appearance of an additional central component
and the respective narrowing and broadening of the spectral components corresponding to the
coupled mocfes as the instability critical point is approached.

I. INTRODUC'@ON

Consider a horizontal fluid layer in which a
linear downward-directed temperature gradient
is maintained. Stationary convection sets on spon-
taneously in the fluid layer when the temperature
gradient reaches a critical value. This example
constitutes one of the simplest cases of a hydro-
dynamic instability and is often referred to as the
Bernard problem in classical physics. ' The ques-
tion of the stability criteria in such systems, as
well as the determination of the critical value of
the parameters characterizing the transition be-
tween the stability region and the instability do-
main, has been studied for a long time. ' How-

ever, it is only recently that the problem of the
dynamics of fluctuations in such systems has re-
ceived attention. ' 4 In the present paper, we in-
vestigate, on the basis of linear hydrodynamic
theory, how the hydrodynamic modes character-
izing the dynamics of fluctuations in a fluid are
affected by the presence of the "external force"
resulting from the combination of an imposed
temperature gradient and gravity.

Section II is devoted to a description of the sys-
tem considered, for which the corresponding set
of linearized hydrodynamic equations for the fluc-
tuations in the steady state is given. In Sec. III
we present a treatment of the problem based on

the analysis of the structure of the hydrodynamic
matrix, an approach which possesses the advan-
tage of analytical simplicity. The analysis is per-
formed by comparison with the structure of the
hydrodynamic matrix for the fluid in the equilib-

rium state in order to exhibit the modifications of
the normal modes due to the external force. In
Sec. IV we apply this mode analysis to the compu-
tation of the spectral distribution of the light scat-
tered from the nonequilibrium fluid. Indeed, since
the dynamics of fluctuations can be probed experi-
mentally by light-scattering spectroscopy, infor-
mation on the dynamics of the fluid evolving
towards the instability critical point can be ob-
tained from the light-scattering spectrum. A dis-
cussion of the spectral features is given in See. V.
The present analysis predicts the appearance of a
new central mode when the fluid departs from its
equilibrium state. Furthermore, one finds that
one of the two central modes behaves as a '*soft
mode" &; this follows from the observation'4 that
the correlation time of the corresponding thermal
fluctuations diverges near convection threshold
as (R, -R) ', where R is the Rayleigh number

(the dimensionless temperature gradient) and R,
its critical value. This result seems to indicate
an analogy between the behavior of a fluid at the
instability threshold and the situation encountered
in structural phase transitions. '

II. I.INEARIZED HYDRODYNAMIC EQUATIONS

The steady state of the fluid in the stability
region is characterized as follows: a linear down-
ward-directed temperature gradient is maintained
steadily, the macroscopic fluid velocity is zero,
and the gravitational force is balanced by the

hydrostatic pressure gradient. Labeling the
steady-state variables with superscript s, one
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has

T' = T, —pz, v' =0, gradp' = gp-'n

= -pp divv + PU

Bv 1 2-—= ——grad~p + —V v
Bt pp Pp

+ grad divv —gR—,&+3n 6p

Pp Pp

(2)

Here the subscript 0 denotes the value of the cor-
responding quantity at the reference position
(taken here at the lower boundary z =0), P is the
value of the temperature gradient, g is the gravi-
tational constant, and e is a unit vector pointing
in the positive z direction.

The linearized hydrodynamic equations for the
fluctuations in the steady state read'

nents of curlv, or by (curlv), and (curl curlv), .
When the fluid is subject to an external force

oriented in a preferential direction, there is iso-
tropy breaking of the system, which renders the
above separation into longitudinal (irrotational)
and transverse (rotational) components invalid.
Indeed, as described in Sec. I, the system con-
sidered here exhibits the following symmetry:
rotational invariance with respect to the z axis,
inversion invariance in the («, y) plane, and reflec-
tion invariance with respect to planes containing
the z axis. Therefore a convenient description
of the velocity field is the following'. the hori-
zontal component of the velocity is decomposed
into an irrotational part and a rotational part

BV BV„
+

Bx By

and

BBS PC@V~ K

Bt Tp ppTp

Here &p, &T, 6s, and v are fluctuations in the
corresponding steady-state variables, e.g. , p =p'
+Bp. To arrive at Eqs. (2), the following approxi-
mations have been made: the transport coefficients
(q, f, and «) and the specific heat at constant pres-
sure (c~) are taken as constants; after lineariza-
tion of the hydrodynamic equations, the quantities
p' and T' have been approximated by p, and T„.
in the first and third equation of Eqs. (2), the
terms p, gv, (Bp/Bp) g« pv, (Bp/BT)&] -and -p, 'gv,
x(Bp/BT) [«Pc~v, /T, ], respectively, have been
omitted. Equations (2) constitute the basic set of
equations for our investigation of the behavior of
the hydrodynamic normal modes under the influ-
ence of the external force defined above and mani-
festing itself by the presence of terms containing
either P or g in Eqs. (2).

III ~ HYDRODYNAMIC NORMAL MODES

For the sake of further comparative analysis,
let us briefly recall the hydrodynamic modes in
an equilibrium fluid. ' One notes first that in an
isotropic medium, the velocity field can be speci-
fied by the variables divv and two components of
curlv. Alternatively, the following choice is also
possible: divv, (curlv), and (curl curlv), , variables
which will appear to be particularly appropriate
below. For a fluid at equilibrium, one finds three
longitudinal modes: the heat diffusion mode Os

and two sound modes which are linear combina-
tions of 6p and divv. Furthermore, there are two
transverse modes defined by two of the compo-

" [= (curlv), ],Bv„Bv~
BX By

respectively, while the vertical component of the
velocity, v, , is used unchanged. The variables
P and v, transform as scalars and can thus couple
to the thermodynamic variables, while g cannot
couple to any of the other variables, as it changes
sign under reflections with respect to planes con-
taining the z axis. Since the following functional
of Pandv, ,

. B(j& B 82

Bz Bx' By'

with

&p(R, t)

y(%, t)

Bs(k, t)

((R, t)

q(%, t)

is just (curlcurlv)„one sees that the velocity
field is also defined by the set of variables divv,
P, and $, which, as mentioned above, is also ap-
propriate for the description of the velocity field
of the fluid at equilibrium. In this notation, g and

$ are the two transverse modes. It is now a matter
of simple algebra to write the set of Eqs. (2) for
the spatial Fourier components of the new vari-
ables Bs, Bp, y=divv, $, and g. For a fluid at
equilibrium [i.e., omitting the terms containing
P and g in Eqs. (2)], one obtains
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(x-x)x«' «.(—,)
-k'/p, (—', q+g)k'/

M(P)
oXk'/p.

I
p, (r -1)xk'/~

I 0

I
yk'

0 0

0 0

vk' 0

(4)

0 vk2

Here. X = «/(p, c~) is the thermal diffusivity, v =qp '
is the kinematic viscosity, o. = -(1/p, )(sp/8T) is
the thermal expansivity, and y=c~/c„. Note that
for those wave numbers which can be probed by
light-scattering spectroscopy (k &2x10' cm '), it
generally holds that Xk'«kc„with c, = (BP/Bp),' ',
the adiabatic sound velocity (-10' cm/sec '), and
& =X or (& @+4)/p, ( 10 '-10 ' cm'/sec '). There-
fore, to a good approximation, the effect of the
coupling terms involving &p and &s is negligible,
and it follows that the characteristics of the sound
modes can be determined from the upper left block
of the matrix of coefficients M'". This matrix,
which we shall refer to as the hydrodynamic ma-
trix [the superscript (0) denoting the equilibrium
statej, has been partitioned into different blocks
by solid and dashed lines in Eq. (4) for the sake
of illustration. One has the well-known results'
that the frequencies of the sound waves are given
by , = Mcp and their damping factor by I;k'
=a[(—', q+L)/p, +(y —1)Xlk'. Similarly, one finds
that the damping of the heat-diffusion mode is
given by M33'=yk'. One also observes, as ex-
pected, that the two transverse modes with damp-
ing factors vk' are completely decoupled from the
other modes.

We now turn to the analysis of the nonequilib-
rium fluid. When the system is subject to the
external force, the variables 6p, 6s, p, and v,

are coupled as mentioned above. Consequently,
the variable $ (which in a system at equilibrium
is decoupled from the other variables) couples
to 6p, 6s, and y under the nonequilibrium condi-
tions, while g remains uncoupled because of its
symmetry properties. As a result of this new
coupling scheme, the longitudinal modes are ex-
pected to be modified.

Starting from the set of linearized hydrodynamic
equations for the fluctuations in the steady state
[Eqs. (2)], we proceed along the same lines as for
the analysis of the equilibrium system. The geom-
etry of the fluid is such that the system is con-
sidered to have infinite dimensions in the (x, y)
plane, and for the sake of mathematical simplicity
we further consider hypothetical boundary condi-
tions at z =0 and z =d such that all variables can
be Fourier transformed with respect to the three
Cartesian axes, as

+oo + OO

Y(r, t) =g j dk, t dk Y(%, t)e'"'. (5)
oo

Here F stands for any of the variables 6s, &p, y,
$, and g; k„and k„arecontinuous variables, while

k, is a discrete variable with k, =k~ =2mnd
where m is an integer. The equation to be solved
now is the same as Eq. (3), with M'0' replaced by
the nonequilibrium hydrodynamic matrix M as
obtained from Eqs. (2) and given bv

(r 1)Xk'-

-~v.. «(—,") «.i..
~xk'/p..(—'„')«v..

0

I p, (r 1)xk'/~—
t

( ', q+l)k'/—p, I gnTik gc~- 0

pc~i k~/(Tkm) I Xka pc~/(Tka)-
0 I glxTk()/c~- vk2

I

vk2

(6)

with k =k '+k ' and k =k +k
To compute the nonequilibrium normal modes,

one first determines the eigenvalues of the matrix
M. As expected from symmetry considerations,

it is observed that ttI) re~ains fully decoupled from
the other variables, while the transverse mode
g now couples to the longitudinal modes. ' This
situation is illustrated in Eq. (6) by the solid line
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separating the lower right 1&1 block from the
upper left 4X4 block of the hydrodynamic matrix.
The latter block is further partitioned as indicated
by the dashed lines, and we denote the diagonal
blocks which will appear to be of primary impor-
tance in the analysis by

11 12 M33 M34

Mr = and Mrt = . (V)
M21 M 43 44

Indeed, under the conditions Xk'«kc, (see above),
it can be shown that the Routh-Hurwitz stability
conditions' for the full hydrodynamic matrix M
effectively reduce to the stability conditions for
the matrix M„,the conditions of which read

(8)Tr M „&0 and detM „&0.

The first condition is obviously fulfilled [see Eq.
(6)], but it requires that Xvk'& opgk()k ' to satisfy
the second one. Now, this inequality can be re-
written

R/R, (k) = (QPg/VX) k((/k' ~ 1,

where R = oPgd'/vX is the Rayleigh number, and
R,(k) is the critical value of the Rayleigh number"
for the mode specified by the wave numbers k~~

and k~. Thus, in the region where R is smaller
than its critical value (which is the domain we are
investigating here), it follows from the above
considerations that (kc,)'» opg. Under these con-
ditions, the elements not contained in M, and M»
have a negligible effect on the normal modes, and
the characteristic polynomial of the matrix M
is then given, to a good approximation, by

usual results for the fluid at equilibrium). Be-
cause in most fluids v is larger than y, it follows
from Eq. (11) that the damping of the heat-diffu-
sion mode will decrease, while the damping of the
vorticity mode will increase, as the temperature
gradient increases. In particular, when the in-
stability critical point is approached, one finds
that X -0 and X, -(v+X)k'.

The coupling also induces changes in the struc-
ture of the normal modes, i.e., in those com-
binations of 6s(k, t) and $(k, t) which exhibit the
average time behavior

(y, (R, t)) =y, (k, t) s-"".
Explicit computation yields

agT'k'k(( ' ' Xk' —A.

~k2-~
x&)s(r, )).(, „.- ((r, )),

t k'-x
r (R, )=()&, &,

-
&)s(f, &)

pc 2 1/2 Xk2 X 1/2

k'k yk + pk —2A.

(12)

In the limit P-0, it follows from Eq. (11) that
X -yk', and it is clear from the above expres-
sions that y+(k, t) ((k, t) and y (k, t) 6s(k, t)
i.e., one retrieves the normal modes for the equi-
librium fluid.

p(X) = ( k'- X)p, (X)p„(X), (10) IV. LIGHT-SCATTERING SPECTRUM

where p, (X) and p„(&)are the characteristic
polynomials of the matrices M, and M», re-
spectively. In the matrix M&, the term con-
taining g is much smaller than the usual "equilib-
rium term. " Therefore the sound modes remain
effectively unchanged by the presence of the ex-
ternal force. However, the situation is quite dif-
ferent when one analyzes the matrix M« —i.e.,
for the heat-diffusion mode and the transverse
mode $. The damping factors of these modes are
obtained from the equation p«(A) =0, which yields
t le eigenvalues

k2 R.(k)-R ~/2
(v+X) ~ (v+X)' -4vX

R, k)

Equation (11)expresses the effect of the coupling
between the heat-diffusion mode and the trans-
verse mode $ due to the external force. One ob-
serves that their eigenvalues reduce to A.+" = vk2

and X'O' =Xk' when R =0 (i.e., one retrieves the

Because the dynamics of fluctuations in a fluid
can be probed by light-scattering spectroscopy,
and since, as seen above, the hydrodynamic nor-
mal modes are modified when the fluid is subject
to an imposed temperature gradient, we now com-
pute the spectral distribution of the scattered
light and discuss the ensuing changes in the light-
scattering spectrum. '" The latter is propor-
tional to the spectral density of the %th spatial
Fourier component of the fluctuations in the optical
dielectric constant &e, which in turn can be ex-
pressed in terms of the thermodynamic fluctua-
tions. Thus the intensity of the scattered light can
be written"

2 2

&(i, ) (
—„&(5(k, )I*). —, &15)(k, )I'),

P S

where we have omitted the cross terms of the type
(6s*(k, &())6p(k, (d)), as they are negligible under
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the condition Xk'«kc, . The second term on the
right-hand side of Eq. (13) represents the spectral
contribution of the sound modes, which, as seen
in Sec. III, are essentially unaffected by the non-
equilibrium conditions. We shall therefore re-
strict our analysis to the behavior of the spectral
density of the entropy fluctuations, which under-
goes significant changes under the influence of
the external force. Because in this case &s re-
laxes into two normal modes [see Eq. (12)], it is
expected that the central line of the light-scat-
tering spectrum will consist of two Lorentzians.
By a standard calculation one indeed obtains

vk' —A. A.
X 2+ Vk2 2A g2 +Qp2

gk2 —A. A.
( )

Xk2+ Vk2 2g ~2 +2

where A., and A. are given by Eq. (11). Here
again, it is easily recognized that when R =0 the
second term on the right-hand side of Eq. (14)
vanishes; the central line of the spectrum then
reduces to a single Lorentzian (with &"' =yk')
characteristic of the heat-diffusion mode for a
fluid at equilibrium.

V. DISCUSSION

We have presented a treatment of the problem
of a horizontal fluid layer subject to an external
force resulting from the combination of a thermal
constraint and gravity. We have investigated the
dynamics of such a system, which evolves towards
convective instability when the external force in-
creases up to a critical value.

Our treatment is based on the analysis of the
structure of the hydrodynamic matrix, from which
the normal modes are obtained and the light-scat-
tering spectrum is calculated. The most important
feature of the spectrum consists in the structure
of the central peak, which is composed of two
Lorentzians. In order to examine how the spec-
trum is modified by the external force, let us
consider two typical cases. Considering common
liquids at room temperature (e.g. , toluene), typ-
ically v-10X, and consequently the second term
on the right-hand side of Eq. (14) can be ignored,
as this spectral line will be much broader and
much less intense than the heat-diffusion line. In
the limit where X may be neglected with respect
to v, the spectrum exhibits one single central
component whose width h+ =Xk'[1 -R/R, (k)]

narrows from its equilibrium value Xk' to zero
when R increases from zero to its critical value
R,(k). Consider now the case of a simple fluid
(e.g. , argon) where v and y are of the same order
of magnitude (with v slightly larger than X). Then,
both central components should be visible in the
spectrum. One predicts from Eq. (14) that, when
the temperature gradient increases towards its
critical value, the heat-diffusion mode narrows
(as in the previous case) while the spectral line
corresponding to the transverse mode broadens to
the value (v+X)k' when R goes to R,(k).

Now, it is clear from Eq. (11}that, since
R/R, (k) o-k ', the modes which will be most af-
fected by the external force are those with small
wave number. In particular, the mode which is
the first one to become unstable has a wavelength
on the order of the vertical dimension of the sys-
tem' —i.e., typically X,-1 mm. As a result, the
most important modifications in the spect-. um are
to be observed at ve..:y small scattering angles.
This certainly represents a nontrivial difficulty,
as probing the "critical mode" then requires a
scattering angle -10 ' rad; i.e., experiments
should be performed in the very-near-forward
direction. Presently available techniques in light-
scattering spectroscopy should allow the probing
of such modes, which are expected to exhibit
dramatic changes in a fluid subject to an external
force. However, as the other modes (A&X,) are
also affected when the instability critical point is
approached, it might appear more feasible to
investigate those modes with the shortest wave
number experimentally accessible. In addition,
the smaller the wavelength, the broader the line-
width —i.e., the easier the measure of the width-
but also the smaller the effect of the narrowing
near the critical point. Consequently, the most
appropriate experimental conditions will depend
on a good compromise between these difficulties,
taking into account the performance of the experi-
mental setup.

It is worth noting here that the first measure-
ments of the convective-velocity field near the
Bernard instability threshold [for R &R,(k)] have
been performed very recently by Bergs and
Dubois precisely by using light-scattering spectro-
scopy. " It should also be mentioned that some
years ago Goldstein and Hagen investigated the
spectral changes of Doppler-scattered light in a
fluid passing from the laminar flow regime to the
domain of turbulence. "

Finally, let us mention that the treatment given
in the present paper is being extended to the study
of the hydrodynamic modes and the light-scat-
tering spectrum in a binary mixture heated from
either below or above. An analysis of such sys-
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tems based on the structure of the hydrodynamic
matrix would indicate that the most important
effects will arise from the coupling between the
heat-diffusion mode, the transverse mode &, and

the concentration mode. This application of the
present approach is of interest in view of the new
and unexpected phenomena found in these binary
systems. "
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