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The two-dimensional boundary-value problem associated with hydrodynamic effects in a dc electric
field has been solved under the assumption of dynamic distortions. The time-dependent terms included
in the equations of motion are viscous forces and torques as well as displacement currents. Inertial
effects are ignored so that the calculations are performed in the zero-Reynold's-number limit. It is
foui|d that above a critical voltage, there is a band of domain wavelengths which grow exponentially
with time. The fastest growing solution is identified with the physical solution. The domain wavelength
and rise rates are calculated as a function of voltage, thickness, and relevant material constants. In
particular it is found that turn-on rates for the Williams-domain mode are bounded by the space-charge
relaxation time. These calculations are in good agreement with experiment for methoxybenzilidene-
butylaniline (MBBA). It is found that the difference between a domain mode and a field effect can
be correctly predicted on the basis of the dynamic analysis.

INTRODUCTION

In previous papers' ' we have attempted to model
electrohydrodynamic effects in conducting nematic
liquid crystals (NLC) by explicitly ignoring dynam-
ic terms in the equations of motion. Dynamic ef-
fects, such as the finite period necessary to estab-
lish a space charge, will determine the response
times of the system. We also assumed a static bi-
as electric field E, so that there was no external
frequency which could "resonate" with natural time
constants of the system. This lack of resonant
conditions seemed to reinforce the assumption that
dynamic effects would not fundamentally alter the
final state of the system. We then solved the set
of linearized equations of motion and boundary con-
ditions to make predictions about the systems. The
model correctly described experimental conditions
at threshold but was unsatisfactory at voltages
above threshold. Because the model was inade-
quate above threshold and because transit times
are important for practical considerations, I pre-
sent an extention of the model, including time-de-
pendent terms.

It will be shown that dynamic distortions are de-
scribed by a continuous relationship ("dispersion
relation"} between wave vector and growth rate.
All wave vectors transverse to the bias field are
allowed, but they, grow or decay at different rates.
In order to relate this abundance of possible solu-
tions to experiments which show a unique state, I
will appeal to the principle of selective amplifica-
tion which has been successful in describing spin-
odal phase transformations. Basically, this prin-
ciple states that the fastest growing solution domi-
nates. Using this assumption, I am able to predict
correctly a number of effects, including effects
above threshold.

At this stage of sophistication in the analysis, it
appears that dynamic effects are important in de-
termining the detailed structure of electrohydrody-
namic modes above threshold. This conclusion is,
of course, directly contrary to one assumption
made in Refs. 1-3. Since the present approach
seems to describe the experiments much better,
the remarks made in Refs. 1—3 about conditions
above threshold should be regarded as irrelevant
to the physical situation.

The present analysis offers a new interpretation
of electrohydrodynamic effects in NLCs. They can
be regarded as phase transformations in dissipa-
tive systems, the fluctuation spectra being gov-
erned by the applied electric field. Viewed in this
manner, one can more easily understand the de-
pendence of the final-state response on the dynam-
ic properties of the system.

In the analysis to be described below, I will make
use of a linearized theory to describe the periodic
distortion that can be expected at and above thresh-
old. It can be argued that nonlinear effects can be
expected to influence the steady-state wave vector
of the distortion above threshold. It should be re-
membered, however, that symmetry conditions
preclude a linear or a nonlinear analysis from de-
termining a unique wave vector transverse to the
bias field. There are no boundary conditions
transverse to the field, and thus translational sym-
metry in that direction is preserved. The basic in-
terest in the problem is the fact that the experi-
ments demonstrate a unique wave vector trans-
verse to the bias field in spite of this translational
symmetry. I will show that this paradox can be
understood qualitatively using the principle of se-
lective amplification as applied to the linearized
model. The degree to which nonlinear effects in-
fluence the theoretical dispersion relations will be
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determined by quantitative testing of the present
yredictions with experiments.

EQUATIONS OF MOTION

The general equations of electrohydrodynamics
were discussed in Ref. 1 as were the general ex-
perimental features of the %williams domain mode
(WDM). Maxwell's equations and the equations of
hydrodynamics form a set of seven nonlinear vec-
tor equations. The basic method of solution of the
nonlinear problem is to investigate small distor-
tions from the zero-voltage state. These trial
functions can be used to linearize the problem ac-
cording to the amplitudes of the distortions. Such
linear yroblems always can be solved by complex
exponential functions, in effect by a Fourier-trans-
form method. Consider the electric field in the
sample geometry shown in Fig. 1. An appropriate
trial function (p x h = 0) is

E = {0,0, 1)E,+ (1,0, S)E„e'~ ' ' ~" (1)

where

q=(q. , 0, q,), S-=q,le„
E, is the ayplied electric field and E, is the dis-
tortion field. The domain problems can be rea-
sonably approximated with a two-dimensional anal-
ysis.

%'e explicitly choose to treat the case of a dc
applied field, although for various practical rea-
sons the best experimental results are obtained for
low-frequency alternating fields. The general fea-
tures of NLC hydrodyn3mics as a function of the
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frequency of an applied ac field have been de-
scribed by Dubois-Violette et al. ' Their work and
the original theory of Helfrich' have shown that the
essential features of the WDM are independent of
drive frequency ~~ for {d~r«l, where 7 is the
space-charge relaxation time. Our analysis also
differs from Ref. 4 in that we assume that the re-
sponse fields are not coherently related to the ap- .
plied electric field. Thus when products like E,F-,
and E,8, arise in the algebra, the choice of hetero-
dyne frequencies does not arise. %e are perform-
ing a classical stability analysis. %e seek solu-
tions which grow or decay as a function of time
(Im&o less than or greater than zero, respectively).
In this regard, Refs. 4 and 5 can be considered
steady-state analyses, (Im&u =—0).

The other vector fields involved in the problem
are the fluid velocity v, the director unit vector n,
and the pressure p. %e assume that the fluid is in-
compressible (p' v=0). The velocity field is given
by

( S 0 ])el(q'I GJt)

The director pattern associated with the domains
is shown in Fig. 2. In this paper we will assume
that the director is confined to lie parallel to the
electrodes at the electrodes (homogeneous geome-
try). Assuming a small-angle approximation (8,
«v), the director is given by

(1 0 e &f tq r -art)) (3)

The scalar pressure is given by an amplitude p,
times the same complex exponential.

The analytical part of the problem is completed
by using these trial functions to reduce the coupled
set of hydrodynamic and Maxwell's equations to an
infinite-medium dispersion relation. In order to
completely specify the problem, one must assume
a set of constitutive relationships between the var-
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Fluid Streamlines + Domain Lines

FIG. 1. Schematic drawing of the streamlines and the
domain lines associated with the WDM. The sample is
shown in cross section: a capacitor filled with NLC.
The electric fieM is applied in the s direction. The
electrodes axe treated in order to promote orientation .

of the director in the x direction (homogeneous geo-
metry). Above a critical voltage, vortex motion is ob-
served. The periodicity of the motion is A,, which is
roughly equal to 2d, Two sets of domain lines are ob-
served above and below the sample.

FIG. 2. Director orientation as deduced from the do-
main lines. The lines above the sample (observer's
side) are real images of a light source below the sample.
The bottom lines are virtual images. A series of cylin-
drical lenses results from the %DM pattern because of
the anisotropic index of refraction associated with the
NLC.
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ious currents and fields. These relationships were
discussed in some detail in Ref. 1. In this paper
we will emphasize the additional terms which arise
because of the time dependence. The viscous
stress tensor contains terms which explicitly de-
pend on the rate of change of the director with re-
spect to time. This feature leads to an extra vis-
cous term in the angular-momentum conservation
equation and to extra viscous terms in the force-
balance equations. The only nonzero component of
the torque equation is the y component:

i(u, —S'u, )q,v, —e, (e
~,

—e~)E,E,

+[(q.'k3, +q,'k„) —~0(~„—e,)E0+t(u, —u, )~]8,=0i

(4)

where the various Q's are Leslie viscous coeffi-
cients and the k's are elastic constants. E'II and E

are the dielectric constants with respect to the di-
rector. We use rationalized mks units. Inertial
effects are ignored. The assumption results in a
viscous response time that varies like u/kq .

The x component of the force equation' is

qp ~
+ 2iqgq„[S (us + u4 + ug) + up + u~ + 2 u5 + ug]v~

+i&su,q, 8, =0. (5)

The z component of the force equation is

iq.p, +-,'q„'[S'(u,-—u, + u, ) +(u, —u, —u, )]v,

+ iq„&o(& g
+ S f ~)EDEMA

+iq [E'O(E ii
E'~) E 0 Lu&d2] e& =0 .'(6)

Again we choose to ignore inertial terms in the
equations, in this case because u'»kp (p is the
mass density) for these materials; the Reynolds

number is zero.
The electric field leads to a conduction current

j and to an electric displacement D. Since an NLC
is a conducting anisotropic fluid, the medium must
be specified by conductivities parallel and perpen-
dicular (o t~

and o~) to the director as well as by a
dielectric anisotropy. According to Eq. (l) we are
assuming that the distortion electric field can vary
with time. This can lead to displacement currents.
The conservation of charge leads to the following
relationship between 9, and El.

t~~o(~
II ~J.)]EO~1

+[(op+S c&) 14leo(ep+S Eg)]E, =O. (7)

Up until this point, the formal derivation of the
equations has closely paralleled the work of Pieran-
ski et a/. ' for the magnetic field case. The possi-
bility of conduction adds considerably to the rich-
ness of the phenomena. Dividing the equati. on by

o~, it becomes apparent that e,e~/o~ is another
characteristic response time in the problem. This
is exactly the space-charge relaxation time re-
ferred to earlier. The essential physical content
of Eq. (4) is that any director distortion of ampli-
tude g, will lead to a distortion field E, in agree-
ment with the original Helfrich proposal. '

The viscoelastic and space-charge relaxation
times are the only characteristic times associated
with the problem if we ignore inertial effects. We

will show that both parameters are important in
understanding the dynamics of the WDM.

Equations (4)-(7) are a. system of four linear
homogeneous equations. A necessary and suffi-
cient condition for such a system to have a solution
is that the determinant of the coefficients vanish.
The resultant secular equation is

(S'+1) (S'++) (S'+—)(S'+—)
— ', (S'+1)(——

1) (S'++) —
(
———

) (S' ™'—a
)

, (S'+—
)

(S'™—l~') —(S'+l)(S'++)( ')
2+k33 ~2+1 ~2+~2 ~2+~ + o E2 S2+1 2 ~2+~~ ~ —1

2 2- —Q 6 Q Q0 L 0& C6 ™3 2 ~ +g4 ~0+~+1 3~™2 ~ 3 +2 3 2
2

7g 0L kll 91 /1 01 ~L Ol ~L /1 gl

+ g2 g& + 6 II g2 +~ Q3 Ql Q2 +2 ~6 Q3 +~6 Y)2 ™3 Q2 ~Q 0

where q, and g2 are combinations of the Q's. '

Equation (8) is an equation for ~ as a function of

q„, q„and E, as well as the other material con-
stants. As such, it constitutes a classical disper-

sion relation. Equation (8) describes the two-di-
mensional modes for an infinite NLC medium in
the presence of an electric field. These modes can
be used to satisfy the boundary conditions appro-
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priate to the WDM. The unusual form of Eq. (8),
&u=f(q„, S), is useful in solving the boundary-value
problem.

The dispersion relation was derived under the
following assumptions: (i) the standard electro-
hydrodynamic equations of motion of Ref. 1; (jj)
linearity in distortion amplitudes, and linear con-
stitutive equations; (iii) negligible electrostriction;
(iv) negligible magnetic field effects; (v) the first
Leslie viscous coefficient o, equal to zero; (vi) an
incompressible fluid; (vii) negligible diffusion cur-
rents; (viii) zero gravitational potential; and (ix)
negligible temperature gradients. The last two as-
sumptions require further discussion. The Orsay
group' has shown that temperature gradients in
NLCs can lead to flow effects in a gravitational
field due to the Benard effect. In the present anal-
ysis it is assumed that the sa,mple is in an iso-
thermal environment to avoid complications due to
thermal effects. There is the additional factor of
power dissipation in the NLC due to current flow.
This heat must be transported out of the sample via
a temperature gradient. For a typical electrical
conductivity of 10"ohm cm a.nd a typica, l thermal
conductivity of 10 ' (cgs), ' this power conservation
requires a. temperature change measured in micro-
degrees. The gradient in a 1-mil sample is many
orders of magnitude below the threshold. ' Thus it
is reasonable to omit forces due to Bernard effects.

BOUNDARY CONDITIONS

Consideration of Figs. 1 and 2 reveal that all the
boundary conditions associated with the WDM must
be satisfied at the capacitor plates, Z =+—,'d, where
the Z origin is at the midplane of the sample.
These boundary conditions will limit the number of

q, wave vectors to a denumerable number, but they
will notplace any restriction on q„. The experimen-
tal observation is that q„= w/d, i.e. , the vortex pat-
tern is roughly circular. The difficult theoretical
problem associated with the WDM(after the funda-
mental mechanism had been proposed by Helfrich}
has been the prediction of q„(V,). The steady-state
theory of Ref. 1 demonstrated a unique q„at a
threshold voltage, but at voltages above threshold
two values of q, were calculated. As we will show

below, the solution of the dynamic problem per-
mits all values of q„as a. function of co, i.e., a,

dispersion relation.
There are eight bounda. ry conditions, four at

each of the two capacitor faces. The homogeneous
texture assumption means that 6(Z=+—,'d) =0. Since
the fluid must remain inside the plates, v, (Z =+—', d)
=0. The fluid flow parallel to the plates must be
zero at the plates to avoid a discontinuous change
in the shear rate sv, /sZ, and thus v, (Z =+-,'d) =0.

Since the capacitor plates are assumed to be good
conductors and the tangential component of the
electric field must be continuous across a bound-

ary, it follows that E,(Z =z—', d) =0. The assumption
of a linearized problem leads to the conclusion that
E,= V,/d, where V, is the applied voltage.

METHOD FOR SATISFYING THE
BOUNDARY CONDITIONS

The solution of the problem is q„as a function of
The approach used is to pick a given experi-

mental situation, i.e., d, V„and appropriate ma-
terial constants. We then pick a value for q„and
&u and solve Eq. (8) for q, or equivalently S. In-
spection of Eq. (8) will reveal that it is an eight-
order equation for S (fourth order in S'). This
means that there are eight possible values of q,
and that all the boundary conditions can be satis-
fied. It does not mean that any particular choice of

q, and & will satisfy the boundary conditions. Thus
the boundary conditions act as an implicit con-
straint on q„with u +s a, parameter.

We now restrict the choices of q„and + in order
to conform to the experimental observations. Since
there is an observed translational symmetry in the
g direction, we choose q„ to be pure real. We do
not look for convective instabilities, ' ones that
grow spatially. It is also observed that WDM pat-
terns do not exhibit an oscillatory motion near
threshold. Thus we choose the frequency to be
pure imaginary co =iR'. In the terminology of plas-
ma physics, we search for an absolute instability. '
These two choices are made in order to limit the
present investigation to a manageable size. Future
work could relax the last choice in order to attempt
to explain some of the oscillatory phenomena which
occur at voltages somewhat above threshold, i.e.,
the dynamic scattering mode (DSM}.

In order to satisfy the boundary conditions, we
form a function to represent g„ the function being
a linear combination of the eight allowed q, 's. The
distortions v„, F.„, and 8 will also be linear com-
binations with coefficients depending on the cofa,c-
tors of Eqs. (4)-(7). There are eight coefficients
to be determined, v, (q„) through v, (q,s). The sym-
metry between the boundary conditions at Z =+,=-d

and the fact that the S values come in positive/neg-
ative pairs allow one to reduce the set of eight
equations to two independent sets of four equations
for the four amplitudes v, (q'„), v, (q'„), v, (q'„), and

v, (q',,). The equations are homogeneous as were
the infinite-medium differential equations. Solu-
tions to the problem will occur when either one of
the two 4x4 determinants are zero. We reproduce
one of the two boundary-value determinant (BVD)
equations below:
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cosS,y cosS2$ cosSSQ cosSqp

S, sinS, Q S,sinS, p S, sinS, y S,sinS, y

M, cos Sp M, cosSp M, cos Sy M, cosS,y

M, N, cosS,p M, N, cosS,g M, N, cosS,p M, N, cosS,p
where

=0 (9)

p = wd/A. ,

Ne = (c g
+ Sgc~) —Wfo(E „+S8EJ )

M8 = (n~ —S8o,)((c ~~

+ S8o~)(k,~ + S~k„)—(S8+1)(e,
~

—e~)o~eoE0/q,'

WI(c 4
+ S8oJ )(Q3 Q2)/q, + (k„+S8k„)fo(f

[~
+ S86&} E fop(Eg'f z)(S8~ + 1)EO/q, ]

+ W Eo(e g
+ Pe+)(op lt2))

The dual BVD equation is obtained by interchanging
since and cosines in Eq. (9).

NUMERICAL ANALYSIS

The transcendental nature of Eq. (9}and the gen-
eral complexity of Eq. (8) rule out any attempt at
an analytic solution of these equations. The simul-
taneous numerical solution of Eqs. (8) and (9) is
straightforward. We have chosen not to reproduce
the px'ogram generated for that purpose. A copy,
written in Fortran IV, can be obtained by request.
Inputs to the program are the material coefficients
for the particular NLC under consideration, the
sample thickness, the applied voltage, and the
ran@re of W and q, to be investigated. The (q„W)
plane is subdivided by a grid pattern. Equation (8)
is solve/ by use of the formula appropriate for a
quartic polynomial. The BVD is also calculated for
each (q„W}point in the grid. Regions in which the
BVD passes through zero indicate the solutions.
The accuracy of the treatment can be increased by
decreasing the grid size at the expense of extra,
computer time.

EXPERIMENTAL CONSIDERATIONS

Given the complexity of the boundary-value prob-
lem, it is useful to state explicitly the experimen-
tal conditions under which it could be expected to
apply. Before yresenting the calculations and com-
paring them with experiment, we review these con-
ditions. The most important consideration is that
the bias electric field should not produce electro-
chemical changes. As was discussed above, this
usually means using a, bias field whose frequency
is much smaller than (RC) '. The frequency must
be high enough so that the system does not relax
as the field goes through zero. The relevant mea, —

sure, of the amplitude is the rms voltage. Second,

I

the applied rms field should be stepped from zero
to the desired level instead of steadily increased.
The theory assumes that the original state is un-
distorted. Once a pattern has become established,
the states at higher voltages probably will be in-
fluenced by "memory" of the previous pattern. The
electric field should be applied from a voltage
source so that E, reaches its steady-state value
much faster than any other rate in the problem.

As will be shown below, the turn on times of the
electrohydrodynamic ~odes will involve amplitudes
which increase exponentially with time. Naturally
such growth cannot increase indefinitely, as non-
linear effects will become dominant and limit the
amplitude. Since the theory has been linearized,
the predictions of the theory are restricted to a
time frame when linear terms are dominant. The
final-state wavelength under a given set of con-
ditions need not, therefore, be the same as the
wavelength predicted by the linear theory. We will
show below, however, that the linear theory pro-
vides a good qualitative description of the final-
state response.

MBBA DISPERSION RELATIONS

MBBA (methoxybenzilidene butylaniline) is a
room-temperature NLC used extensively in WDM
experiments. We have chosen to calculate the
dispersion relations appropriate to MBBA at 25'C
for this reason. The steady-state material param-
eters used in this calculation. are listed in Appendix
C of Ref. 1. For the dynamic problem, the sample
thickness and conductivity must also be specified.
Figure 3 shows the dispersion relations calculated
for a 0.001-in. thick NLC with an gC time constant
(e,&. /c~) of 10 msec at 8 V. md/A can be seen to be
continuously distributed along the ordina, te. All
wavelengths in the x direction are permitted by
the boundary conditions, but generally different
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W's are associated with different X's. Four dis-
persion relations are shown in Fig. 3, the integer
N referring to the number of layers across the Z
direction. The patterns in Figs. 1 and 2 are as-
sociated with N = 1. Two layers" are indicated by
N = 2, etc. The higher harmonics correspond to
additional standing waves fitting into the "box" de-
fined by Z = ~-,'d.

Since we have found that all possible values of A.

are permitted by the boundary conditions, it is
necessary to refer to the exact nature of the dis-
persion relation in order to indentify the unique
value of q, to be realized experimentally. Since
we are dealing with a dissipative process, free-
energy arguments do not determine the distorted
distribution. In the theory of stability analysis, it
is generally assumed that the fastest growing mode
will correspond to the physical solution. " This ap-
proach explicitly ignores the initial distribution of
thermal fluctuations. The physical argument be-
hind this assumption is that the amplitude of the
distortion with the largest growth rate will be the
first to reach a magnitude where a linear analysis
is no longer appropriate. Nonlinear effects will
then determine a finite steady-state amplitude
which will dominate the system since it was pres-
ent first. Cahn has referred to this as the princi-
ple of selective amplification when applied to spin-
odal phase changes " The domain appearance of

the %DM is remarkably similar to that observed
in a spinodal alloy. " Budd has used this principle
to describe electrically driven surface deforma-
tion of thermoplastic films (frost). "

It is straightforward to apply the principle of se-
lective amplification to the fluctuation spectra in
Fig. 3. Most solutions have values of W which are
greater than zero and so correspond to damped
fluctuations. For V =8 V there is a band of A, 's
which have negative values of 8' and thus are grow-
ing solutions. There is a maximum growth rate
(W,„-4.0) which we use to identify the physical so-
lution. W,„has associated with it a critical wave-
length A,, -3.0. Thus we have identified the unique
wavelength A, to be expected and have predicted its
rise rate at 8 V. The total response time of the
system will depend on how long it takes for non-
linear effects to limit the exponential growth. One
would expect T „ to be on the order of a few times
1jW„.

'The critical voltage nature of the WDM can be
deduced from Fig. 4. This figure shows a plot of
the fundamental mode dispersion relations with

voltage as a parameter. It can be seen that for
voltages of zero and 6 V all wavelengths corre-
spond to decaying solutions. Above a critic~1 volt-
age of 6.9 V for MBBA, growing solutions are pos-
sible, e.g. , the dispersion relations calculated for
8, 10, and 14 V.

There is a general tendency for 9;„to increase
as the voltage is increased above threshold. This
effect is plotted in Fig. 5. For a 1-mil MBBA

GRO

V=14

I 1 I

SR' - 1 — OECAV

10

MBBA
V=SV

1
d =1mil
RC =10m

-'l0 +10

W sec

i20

FIG. 3. Dispersion relations for MBBA at 8 V. A
normalized wave vector ~d/A, is plotted as a function of
a frequency W. W corresponds to exponentially growing
or decaying solution depending on whether it is negative
or positive. The four curves show the xesults for one
through four layers of fluid motion. The X=1 cuxve
has a band of growing solutions. We identify the largest
negative W with the turn-on time of the physical solu-
tion. The associated normalized wave vector deter~~~es

All values of A. are allowed by the boundary condi-
tions, but only one grows the fastest.

0-40 -30 -20 -10 0 10
W Me.1

40

FIG. 4. Dispersion relations of the single-layer mode
as a function of voltage. Below threshold (6.9 V) all
fluctuations are damped. The 0- and 6-V curves deter-
mine turn-off times. As threshold is approached, the
fluctuations take longer to decay and finally start to
grow as threshold is crossed. The frequency at zero
wave vector increases uniformly as the voltage is raised.
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FIG. 5. Turn-on rates as a function of voltages. 8',„
increases as the voltage is raised above threshold but
the effect saturates at about 100 V. Thinner samples
respond faster than thick samples, but this effect also
saturates at high voltage. The maximum rate is in-
versely proportional to the space-charge relaxation
time. Solid lines, calculated for RC=10 msec: circle,
12.5 msec; dot, 7.5 msec.

sample with an RC time constant of 10 msec, W,„
increases from zero at threshold to a saturation
value on the order of 300 sec ' at 100.V. Decreas-
ing the sample thickness to —,

' mil results in faster
response relative to the 1-mil sample, but the
saturation W,„remains approximately the same.
The ultimate response frequency is dramatically
influenced by the space-charge relaxation time.
This is indicated by the solutions at 100 V, + mil,
for RC=7.5 (dot) and 12.5 msec (circle). The sat-
uration value of W,„ is proportional to 1/RC as can
be seen from Eq. (8) in the large E, limit. Thus to
have an improved turn-on time, one can decrease
the sample thickness ox increase the sample con-
ductivity. At large voltages, the conductivity in-
crease will be more effective. The penalty to be
considered for either of these choices is an in-
creased power consumption.

Creagh, Kmetz, and Reynolds" have done ex-
tensive measurements of response times in NLCs
as a function of experimental parameters. Gener-
ally they find that their samples have turn-on
times (1/W, „)which tend to saturate at high volt-
ages (see Fig. 6 of Ref. 12). It is difficult to close-
ly compare their experiments with this theory in
detail. The experiments were conducted under
conditions where electrochemical effects can be
important. We have not constructed a sufficiently
complex model to take into account the turbulent
effects that take place at high voltages. The quali-
tative agreement between experimental work and
Fig. 5 is quite satisfactory under these conditions.

The dependence of wd/x, on voltage is plotted in
Fig. 6 for MBBA with a 10-msec RC time constant.
It can be seen that the wavelength decreases with
voltage, a fact observed by Vistin" and by Greu-

md

C

FIG. 6. Normalized criti-
cal wave vector as a func-
tion of voltage. The critical
wavelength X, is that as-
sociated with the fastest
growing solution. The do-
main density increases
roughly /nearly with high
voltages in both 1-.and
~mil samples.
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bel and Wolff. " At high voltages, a quasilinear
dependence of line density on voltage is predicted
for both 1-mil and —,'-mil sample thicknesses. The
experiments have indicated a linear dependence.
In Ref. 1, we attempted to distinguish between the
work of Refs. 13 and 14 and earlier work with the
WDM on the basis of a steady-state theory (W=O).
As Figs. 3 and 4 show, the two steady-state solu-
tions at any given voltage above threshold bound the
region of growing solutions, as suggested by Hel-
frich. " It follows that our previous prediction of
two distinct modes was incorrect. Figure 6 shows
that both thin and thick samples should exhibit the
same qualitative behavior with regard to the volt-
age dependence of «d/X, .

There have been reports that «d/A, is not ob-
served to be dependent on voltage in thick sam-
ples. ' These measurements mere limited to within

a few volts of threshold by the turbulence that is
observed in thicker samples. The thin samples (3
p, m) used by Greubel and Wolff did not undergo tur-
bulent motion at higher voltages. Figure 6 shows
that only a 30% variation in «d/A. , is predicted for
a 1-mil sample of MBBA by 10 V. Given the tur-
bulence difficulties, such a small variation could
have been missed. Greubel has reported that both
thin and thick samples exhibit the same increase
of «d/A, , with V, ."

In order to treat the question of turn-off times,
it is necessary to consider Fig. 4 again. The dis-
persion relations for 0 and 6 V show that all modes
are decaying. To determine the relaxation fre-
quency of the fundamental mode at a wavelength X

and a zero-voltage condition, read across from the
ayyroyriate «d/A. to the zero-voltage curve and
then down to the W axis (W,«). Since the zero-
voltage curve by definition implies no conductivity
or dielectric effects, it follows that the dispersion
relation mill be independent of these constants. The
decay frequency will be dominated by viscoelastic
effects. As mas discussed above, one might expect
W ff = kq'/ n. Figure 4 demonstrates that q, in-
creases as 8' increases, the behavior of q„vs 5'
being roughly the square root. As usual, it should
be understood that V=O imylies that a device is
short eircuited at turn off, not open cireuited. The
turn-off time will be longer than l/W, ff to the ex-
tent that the system needs time to relax to a region
describable by a linear theory.

Application of WDM devices which involve matrix
addressing are characterized by an off state at a
voltage just below threshold. "" Consider a 14-V
on state («d/X, -4) being switched to a 6-V off state
(Fig. 4). The relaxation frequency for wd/X=4 at
6 V is considerably smaller than it is at 0 V. This
means longer turn-off times under matrix address
drive, and an effect of this sort has been observed

by Goodman. " Since the ability to multiplex M dig-
its is dependent on W,„/W,«&M, matrix address
schemes actually increase M over what it mould be
thought to be using a V=O off state. "

HIGHER MODES

Figure 7 shows a feature of the linear dispersion
relations mhich may have a bearing on the basic
features of the dynamic scattering mode (DSM).
The DSM differs from the initial onset phenomenon

by being a turbulent motion and by scattering light
more intensely. It can be seen that at 14 V the
two-layer mode has become absolutely unstable;
thus one can expect a certain percentage of the
first harmonic mode to be present along with the
fundamental. As the voltage is raised further, W

=3, 4, . . . become unstable and mill contribute to
the total character of the cell. Bonne and Cum-
mings" and Pollack and Flannery" have demon-
strated experimentally that a consistent may to
describe the scattering at higher voltages is to
assume the presence of a multilayered structure.
This observation is consistent with the model. It
is well known in the theory of stability analysis
that turbulence may be expected when a stationary
solution has a nonsteady perturbation superimposed
on it." It would be intexesting to investigate the
significance of the higher harmonic solutions rela-
tive to turbulence by allowing 8' an imaginary part
in Eq. (l).

FIELD EFFECTS

Field effects or Freedericksz transitions' are
characterized by a uniform (A, =0) reorientation of
the director under the influence of an electric
field. The term field effect has been used because
a preliminary understanding of the effect can be
gained by considering only the dielectric interac-
tion of the field with the system, ignoring the pos-
sible influence of conduction currents. The bal-
ancing of dielectric and elastic torques leads to
the prediction of a, field effect at a critical voltage
fox material with a positive dielectric anisotropy
(e

~~

+ ez). Domains are occasionally observed, '
however, and the following investigation uses the
principle of selective amplification to determine
the influence of conduction on transitions driven
yrimarily by dielectric interactions.

From an applications point of view, the expec-
tation of a field effect versus domain mode makes
a qualitative difference in the device appearance.
Field effects require polarizers for observation
and so have a dull, high-contrast character. Do-
mains scatter light and so can be obsex ved by the
unaided eye. This A, &0 mode is inherently bx"ight

but has a rather poor contrast in certain situations
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N=
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RC = tOms
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FIG. 7. Dispersion relations for MBBA at 14 V. It
can be seen that the linear theory predicts a band of
growing solutions associated with the two layers of
fluid motion. The N =3 and higher modes have been
suppressed for clarity. The instability of the N=2
mode may be associated with turbulent motion observed
in this voltage region.

5.0

owing to the small-angle character of the scatter-
ing. Thus the investigation of the theory in the
positive dielectric region is not entirely of aca-
demic interest.

Figure 8 shows the dispersion relations calcu-
lated at various voltages for a material with e,~/e~
=1.1 and BC = 10 msec and with the homogeneous
geometry employed. The cell thickness was taken
to be 1 mil, and the other material constants were
assumed to be the same as for pure MBBA at 25 'C.
It is possible to add small amounts of positive di-

electric impurities to MBBA in order to achieve
e ~~/e~ = 1.1 without drastically changing the other
material constants. For this dielectric aniso-
tropy the threshold voltage is 3.6 V. Figure 9
shows that at 4 V the fastest growing solution cor-
responds to A, =O, i.e. , a field effect in agreement
with the standard dielectric theory. As the voltage
is further increased, however, the fastest growing
solution changes from a field effect to a domain
mode between 5 and 6 V. The prediction for im-
pure materials would then be a field effect at low

voltages and a. domain structure at larger voltages.
The tendency toward domains diminishes as the

conductivity of the samples is decreased. Calcula-
tions for RC =10 sec instead of 10 msec reveal
that there is little if any tendency for domains at
higher voltages. The model thus predicts a simple
field effect for high-purity material. This behavior
seems to be well documented experimentally.

One final qualitative comparison between theory
and experiment is possible in the case of material
having a dielectric anisotropy which is slightly
positive. De Jeu and Lathouwers" have developed
a compound for which the dielectric anisotropy can
be varied via dispersion in c „. The experiments
show that domain structures are observable at
threshold for material which has a small positive
dielectric anisotropy. We have calculated the dis-
persion relation for e,~/e, = 1.04 to test the model
in this area. At 5.5 V, which is very near thresh-
old (5.2 V), the fastest growing solution is at vd/
~-2, as is shown in Fig. 9. Thus the. model suc-
cessfully predicts the threshold property which is
independent of response times. De Jeu and other
workers also observe that at higher voltages the
domains disappear and the response becomes a

4.0—
d=1mil

I I

GROW~ DECAY

4—

2.0
3—

7r4

1.0—

-7 -6 -5 -4 -3

W sec

-2

FIG. 8. Dispersion relations calculated for a positive
dielectric anistropy (N =1) at various voltages above a
threshold voltage of 3.6 V. For conducting material
(RC =10 msec) the effect starts out as a field effect. At
V=4 and 5 V, the fastest growing solution corresponds
to A, =O. At higher voltages, however, the calculations
indicate that domains should appear. For purer ma-
terial (RC =10 sec), the model indicates that a field
effect will be observed at the higher voltages.

-1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
W sec'

FIG. 9. Dispersion relation calculated for a slightly
positive material in the homogeneous geometry (N=1).
The fastest growing solution at 5.5 V corresponds to a
normalized wave vector of 2. Thus for slightly positive
material, domains may be expected at threshold. The
behavior at higher voltages depends on the RC time con-
stant. For RC large, domains give way to a field effect.
For RC small, domains persist to higher voltages.
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pure field effect. The model calculations show

that materials with large values of PC (&I sec) ex-
hibit the qualitative behavior observed by de Jeu.
For more highly conducting samples, the domain
structures persist to higher voltages. We are in-
debted to W. de Jeu" for pointing out the experi-
mental significance of Fig. 9.

It is possible to predict turn-on times as well as
critical wavelengths for the positive dielectric
case, as was done to determine Fig. 5. In the case
of conducting material (RC= 10 msec) the growth
rate of fastest growing solution went at the fourth
power of the voltage above threshold. In the case
of pure material (RC = 10 sec), the growth rate
was proportional to E'. This type of dependence
has been predicted and observed by Pieranski eI;
aL' in the magnetic case and has been observed by
Baur eI, gl." in the electric case. Jakeman and
Haynes" have observed similar F.' dependence of
turn-on rates in cholestric systems. It is possible
to obtain a quantitative expression for the simple
field-effect rise time by taking Eq. (8) in the limit
of large 8. The result is

(10)

which is in agreement with the results of Refs. 7
and 25. We have plotted the W'S at md/X= 0 from
Fig. 8 as a function of voltage and they agree with
Eq. (10). It is obvious from Fig. 8 that the vd/a
=0 (field-effect solution) will not correctly de-
scribe the case of high-conducting material if the
principle of selective amplification is valid.

EXTENSIONS OF THE MODEL

The equations of motion and boundary conditions
involved in this treatment are both homogeneous in
character. It is the nature of such problems that
the distortion amplitudes are undetermined to
within a multiplicative constant. As with all lin-
earized treatments of nonlinear problems, the ab-
solute amplitude factor is determined by nonlinear
effects. It has been shown experimentally that the
region immediately above threshold is character-
ized by a small tipping angle in the case of the
WDM. ~' The amplitude 8, is primarily controlled
by E,. Since 8, remains less' than 45' typically, "
we feel justified in calculating the disPersion reLa-
Iians above. threshold with a linear approximation.
The considerable qualitative agreement between the
linear theory and experiment is an additional indi-
cation of the validity of this assumption. A pre-
cise quantitative comparison of experiments with
the linearized model will be necessary to deter-
mine the extent to which nonlinear terms influence
the dispersion relations. For a treatment of the

nonlinear problem see Ref. 28.
The boundary-value problem discussed in this

paper is of the form TY= 0, where T is a 4 x4 ma-
trix [see Eg. (9)] and Y is a column vector. The
homogeneous nature of the boundary conditions re-
quires that detT=0 for a solution to exist. An in-
homogeneous boundary-value problem could be
simulated experimentally, for instance, by a
striped electrode. The theoretical model would

then produce a matrix equation of the form TY= Y„
where / is the characteristic spacing of the applied
pattern. The solution is Y„=T 'Y, so that the dis-
tortion amplitudes will vary as (detT) ' with the
requirement that l= X. This means that one would

expect a "resonance" for voltages above threshold.
Such a geometry might lead to sharper threshold
characteristics. For a similar resonance in the
case of driven elastomers see Sheridon" and
Cress man. "

We have explicitly considered only solutions of
Eq. (8) which grow or decay with time. It is pos-
sible, in a purely formal manner, to look for solu-
tions which propagate. Such solutions are charac-
terized by a pure real dispersion relation. We

have found that under certain conditions it may be
possible to have a traveling electrohydrodynamic
mode, the viscous loss being continually supplied
by the bias field. We will report on this else-
where.

CONCLUSION

The fluctuation spectra of an NLC have been cal-
culated under a variety of circumstances. It has
been found that absolute instabilities can exist
above threshold voltages which depend on the ma-
terial properties. A unique prediction of the be-
havior to be expected from the dissipative system
can be obtained by employing the principle of se-
lective amplification. This method of analysis has
led to a semiquantitative agreement between theo-
ry and experiment in a number of cases. It follows
that the dynamics of the problem determine the
unique wavelength in the g direction, a determina-
tion which obviously cannot be made by boundary
conditions in the z direction. We have not exhaus-
tively investigated the model and several interest-
ing features could still be pursued. We have shown
that the model is capable of explaining much of the
richness of electrohydrodynamic phenomena in
NLCs.

We have referred to the dispersion relations as
fluctuation spectra. This terminology has been
used because of the similarity between the various
electrohydrodynamic instabilities as modeled here
and phase transformations. The classic descrip-
tion of a phase transformation is that one fluctua-
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tion of the system exhibits a slower and slower de-
cay rate as the temperature is changed. Figure 4
shows that the liquid-crystal dispersion relation
exhibits exactly this sort of behavior as the voltage
is increased toward threshold. The WDM mode can
be interpreted as a phase transition in a dissipative
system, a matter which has received some atten-
tion recently. " Most theories of dissipative struc-
tures require significantly more analysis, e.g. ,
minimization of entropy production or a general-
ized thermodynamic potential. " The extent to
which these phenomena can be explained by a lin-
ear theory and an appeal to the principle of selec-
tive amplification is interesting and perhaps sur-
prising.

We have calculated the response rates asso-
ciated with the WDM. It was found that the maxi-
mum turn-on rates are determined by (RC) '.
Turn-off rates are determined by viscoelastic ef-
fects and can be decreased by switching to voltages
just below threshold. By-increasing sample con-
ductivity, it should be possible to directly multi-
plex a modest number of scattering displays.

We would like to thank G. W. Ford for pointing
out the physical significance of the fastest-growing

solution. A. W. Overhauser referred us to Cahn's
work in this area and J. A. Becker pointed out the
similar physics involved in thermoplastic deforma-
tions. We mould also like to thank T. E. Hasty,
R. T. Bate, and H. Kroemer for helpful discus-
sions during the calculations.

The following changes should be made in Ref. 1:
(i) Equation (26) should read

PI + P& &@ + &4+ Q6 +g Ag+(24+2@6 g)~ =0.

(ii) Equation (31) is incorrectly typed. It can
easily be obtained by rewriting Equation (30),
which is correct.

The following changes should be made in Ref. 2:
(i) In Eq. (1) (a) the coefficient of the 8 term

should contain (E,/q„)' instead of the E,/q, factor
indicated; (b) the coefficient in the 8' term should
contain g, /q, instead of the —,

' shown. The sign of
the (e —e

~, ) g,/q, term in the same 8' bracket
should be plus instead of minus.

(ii) The formula for the threshold voltage as a
function of dielectric anisotropy should have a co-
efficient of v rather than 3.21 [Eq. (3)j.
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