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Flugge, Mehlhorn, and Schmidt have suggested that the dependence of the atomic photoeffect on a
bound-electron magnetic substate will have observable consequences for the angular distribution of
subsequent Auger electrons. Because of the constraints of parity and time-reversal invariance, this
possibility first arises for ejection from L», and M», subshells. We have calculated the relative
probabilities of ), ~

= 3/2 and ), ~

= i/2 ejection from these snbsheiis, both with the relativistic Born
approximation (Gavrila's formulation) and in the nonrelativistic dipole approximation. The ratio of these
cross sections can have a dramatic energy dependence, ranging from 7 at high energies to 9/11 in the
low-energy domain, and dropping to 1/3 near threshold if there is a Cooper minimum. Screening
effects are discussed.

I. INTRODUCTION

In most work on photoabsorption it has been as-
sumed that the magnetic substate from which an
electron is ejected is not observed. Consequently,
a sum has been performed over quantum numbers

j, corresponding to a given subshell. Extensive
discussions and calculations of the resulting total
photoelectric cross sections are now available. ' '

However, it has been suggested that the depen-
dence of the photoeffect on magnetic substate, al-
though not directly measured, could be determined
from observation of the transition which fills the
resultant vacancy, either through transition radia-
tion or Auger emission. ' Cooper and Zare' argued
that Auger electron angular distributions would be
isotropic and would not provide information on
magnetic substates. However, more recently
Flilgge, Mehlhorn, and Schmidt' (FMS) exhibited
significant anisotropy in explicit calculations and
concluded that the magnetic-substate dependence
of total photoelectric cross sections can be deter-
mined experimentally. ' We agree with these re-
sults of FMS and wish to emphasize that the dif-
ference from the Cooper-Zare conclusion is inde-
pendent of the choice of representation. '

If experimental interest warrants, it would be
possible to redo the "exact" numerical photoeffect
calculations and obtain quantitative predictions for
the magnetic-substate dependence with an accuracy
comparable to that achieved for other predictions
for a given energy, shell, and target element Z.
But meanwhile, to obtain some general insight, it
seems useful to discuss what can be said about
magnetic-substate dependence using analytic meth-
ods. In this paper we will use the relativistic
Born approximation and nonrelativistic dipole ap-
proximation, together with a discussion of screen-
ing effects, to indicate how magnetic-substate de-

pendence varies with energy and with shell and
subshell.

We begin in Sec. II with a brief description of the
formalism for these calculations. We show that
parity and time-reversal invariance imply cross
sections from the two substates +j, are the same,
so that interesting effects first arise in the LDJ
subshell. FMS note that the conclusion of Cooper
and Zare was obtained in an (I, m, ) representation.
We will show that the result of FMS can be obtained
in either representation. We comment on situations
in which interference terms may be neglected and
for which it is adequate to assume we are observ-
ing photoelectric cross sections (rather than con-
sidering matrix elements). In such cases the rel-
ative cross sections from different magnetic sub-
states will give the probabilities of the initial state
for the subsequent transition process. In Sec. III
we generalize Gavrila's" relativistic Born-approx-
imation calculation for the LIII-subshell photoef-
fect to include magnetic-substate dependence, find-
ing a dramatic energy dependence. Using photo-
effect normalization theory" these results may
also be applied to higher P,&, subshells. We dis-
cuss the range of validity of such results and how
they are modified by screening. In Sec. IV we pre-
sent two types of nonrelativistic dipole-approxima-
tion results. We give analytic point-Coulomb pre-
dictions for arbitrary shell and subshell, discuss
when they can be used and how screening should
be treated, and show the connection with the rela-
tivistic results in the P, i, case. We also present,
for comparison, some L- and M-shell numerical
results in screened potentials, which help to de-
lineate the situations where analytic results can be
useful. The dramatic variation at low energies
for MIII found by FMS, using McGuire's data, "is
a simple consequence of the presence of a Cooper
minimum. "'
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II. FORMULATION

subject to energy conservation; the total cross
section is obtained by integrating over the final
photoelectron variables. However, if the inter-
mediate state N is not observed, but rather the
final state E (or E'}, through detection of the
Auger electron p' (or the transition radiation),
then following FMS the observed cross sections
correspond to

const&& g P (E,P, P'(A(N, P&(N, P)M(I) ',

constx g g (E', P[R[N, P)(N, P[M [I& ',

in the two cases." In the situation discussed by
FMS it is assumed that we do not observe (i.e.,
sum over) the photoelectron p, so that we wish to
integrate (3) over photoelectron variables. As long

as we assume randomly oriented initial atoms and

unpolarized radiation, (3) then reduces to a prod-
uct of cross sections,

cons«p l(E, p I llN(E„~."&&
I o(E„~,",~)

gN (4)

constx g [(E'[R )N(E, Z )&) (r(Z, Z, k),

where 0' is the photoelectric cross section corre-
sponding to ejection of a photoelectron of energy
0 —E„ leaving the atom in the magnetic substate

The atomic photoelectric effect occurs if the en-
ergy of an incident photon A; is greater than the
binding energy E~ of an electron in the atom and the
electron is raised into a continuum state. In the
case of inner-shell ionization the vacancy can be
filled in an Auger transition (or a radiative tran-
sition). We may write the matrix elements for
these processes as

~pno~o = (» p 8 I
I& ~

M„„...=(E,p, p']a ~X, p),
M,,=(E',p(R)N, p&.

Here I is the initial state of the atom and N the in-
termediate (once-ionized state) of the atom; E and
E' are final (twice- and once-ionized) states of the
atom; p is the momentum of the photoelectron and
p' the momentum of the Auger electron.

The differential cross section for the atomic
photoeffect, averaged over initial photon polariza-
tion c, is

(2v)2ema'

I Q l,a..l'

J„averaged over initial orientation and photon
polarization. The Z axis has been taken along%.
This follows because if we are performing these
sums and averages we can take the photoelectron
variables as j~, jf (rather than momentum) and
quantize photon helieity X and atomic orientation
J along thea axis. Thenfor given j~ X, Z, the
magnetic substate of N is determined as A. +J,
-j~ —= J,". The total energy of the state N differs
from that of I by E~. Assuming that total energy
and magnetic substate completely characterize an
atomic state, the sum over N in Eq. (3) reduces to
a single term. Then the sums over X, J„and j~
ean be replaced by sums over A., J,', and J,". The
Auger and radiative matrix elements do not depend
on A. and J„since they do not depend on the photo-
electron p but only on N, and hence these sums
act only on the photoelectric cross section, lead-
ing to Eq. (4).

We have used the (g, J,) rather than an ',I,,M~)
representation above, but it is clear that the argu-
ment can be carried through in either case. In

fact we find M~» dependence in o (E„Mf,k) in model
calculations, contrary to Cooper and Zare. Note,
however, that the amount of anisotropy wiQ depend
on the experimental situation, i.e., whether tran-
sitions from I,i& states are distinguished from Qf
cases. Cooper and Zare's conclusion appears to
simply be a misinterpretation of their formulas,
which are correct. 9

%e wiQ restrict our subsequent discussion to a
simple atomic model, in which all electrons move
in a common central potential. Exchange and cor-
relation effects are neglected, and the matrix ele-
ments (l) can be evaluated in terms of single-par-
ticle electron wave functions. (The results pre-
sented by FMS are of this type. } Then, in a rela-
tivistic formulation,

d'r gt a ee~» ' gphoto f
4

where g, is the initial bound state, from which an
electron is removed, gz is the final photoelectron,
and (fr, e) are the momentum and polarization of
the initial photon. In the nonrelativistic case a is
replaced by p.

In this single-electr on model it is easy to prove
that the photoeffect total cross section, averaged
over photon polarization and summed over photo-
electron spins, is the same for the ejection of an
electron from the magnetic substates +j,. First
we show that the total cross section c(X,j~ j,) for
ejection of a photoelectron of definite j and j~ by a
photon of helicity A. is the same as the cross sec-
tion o(-X, -j~ -j,), all other quantum numbers
remaining unchanged. Using parity and time-re-
versal invariance on electron states of definite j,



1200 SUNG DAHM OH AND R. H. P RATT 10

up to a phase,

M2„,(«,(„),) = I d'«Q Td/

T(ro, e oT -1 (p7«yo) e+12 ' r

where q is the four-vector (E, q) and 2v'A (1)
= —Z a/(P + i12). The Born-approximation expan-
sion for this wave function begins with the terms

«i(t) ) = (do )"'
(& 2 -2) -(e —.

q —p -$f

=Mphoto( &, —j„-j,),~P

wherej 2 =A. +j,. This follows because' PTp* is
also a solution of the Dirac equation of the same
energy and angular momentum& but opposite mag-
netic substate, and because Te* e*T '—= e.c* if
e specifies a definite helicity (and then 2* is of
opposite helicity). Hence the corresponding total
cross sections are equal. Finally, summing over
A. and j we obtain the asserted result. Note that we
needed unpolarized photons and a sum over photo-
electron spins in order to have the freedom to pick
helicity states and states of definite j, for our com-
plete set. It is clear that a corresponding nonrela-
tivistic result for +j, or +m, can also be proved.
These results have the consequence that nontrivial
magnetic -substate dependence is only possible for
levels with j ~+ or l &1.

wherex/(p)=(1, 0, 0, 0)t for spin-up and (0, 1, 0, 0)t
for spin-down.

Following Gavrila, the L&1 wave function may be
written

u&(q) =,/. G(q)+E(q}r. Z"/'"(q/q)
4w '/' 0

q 0

(10)

with

7/2 1
G(q)=(3s)1/2( Z}

(q2 1~2Z2)$ E(q~) 2&O(q)i

Z»/» is a Pauli spinor. " Terms of u, (q)
which do not contribute to lowest order in ga in
the matrix element have been omitted. Equation
(10) may be rewritten in the more convenient form

u, (q) = (2/3v)'/'(NZ )'/'
~2

1
+oQZ )

III. RELATIVISTIC BORN APPROXIMATION x (1 +2r.r q)(r' )qr.r, X ,1

At high energies the relativistic Born approxima-
tion in a point-Coulomb potential may be used to
estimate the magnetic-substate dependence of the
photoeffect. We use the momentum space formal-
ism of Gavrila, "in which the matrix element for
the photoeffect becomes

Mp),...= )[(I)/t(r)a e e'"" )((r))d r2

where

r' = (- r» —r2 2r2) for j, = +—,
'

Again X, = (1, 0, 0, 0)t for positive j, and (0, 1, 0, 0)t
for negative j,. Using Eqs. (7) and (11) we can ex-
press the matrix element in the form M»„,=Xf f.
The matrix Q depends on the magnitude of j„. the
spinor X, on the sign ofj,. The differential cross
section summed over final electron-spin state f i s

uf+ q e'eu] q d~q. (7) d(r, n1
dQ k2~ (12)

The u(q) are the momentum-space wave functions.
As is well known, one must expand the continuum
state to second order in Ze to obtain the photoef-
fect matrix element correct to first order in Za.
The relativistic energy-conservation relation may
be taken as E = (p2+1)'/' =k +1 in the units 221 =ti
=c =1 used in this section, as the binding energy
O((Z(2}2) can be neglected in this approximation.

The continuum wave function u& (q) satisfies the
Dirac equation in momentum space:

Q —1)u/@=ie Jl $(1—q)u/(q)d'q,

After a very complicated trace calculation, fol-
lowed by an integration over photoelectron direc-
tions, we obtain the total cross sections summed
over final spins. " In agreement with Sec. II the
results are independent of the sign ofj,. We find~, E3 3E' 17E 21

2 10 20 20

4E' —12E + 13 —3/(E —1)
4(E2 1}1/2
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63E2 83 39 3 + 3/ (E —1)
2 10 20 20 4 (E2 —1)'

with

xl [E ~ 5' —1)'i']) (13)

G = (v/24) a'Z'[(E' - I)"/(E —I)'1 .

We shall now discuss the expected validity of
these results, which assume the relativistic Born
approximation and neglect screening. The rela-
tivistic Born approximation is expected to be valid
when Za/p«1. Thus, at best (i.e., for high en-
ergies) it is good for Za&0.2. For lower ener-
gies, the method remains valid for the lightest
elements. (Since we are concerned with a ratio of
cross sections which to lowest order is indepen-
dent of Za it is possible that, like other photoef-
fect polarization correlations independent of Z&
in lowest order, the Born series here actually con-
verges somewhat better. } For Z such that Za&0.2

there is a range of energies for which the relativ-
istic Born condition Z a/p «1 and the nonrelativis-
tic condition —,p'«1 can both be approximately
satisfied. Hence we expect relativistic Born pre-
dictions to agree with nonrelativistic results (not
Born approximation) in such ranges. The normal-
ization screening theory notes that the shapes of
electron wave functions are independent of energy
and of screening near the origin (electron Compton
wavelength distances). When the relativistic Born
approximation is valid the important regions of the
photoeffect matrix element are at small distances
(except in the lightest elements Z & 4) and the effect
of screening arises from the normalization of the
bound-state wave function. (The normalization of

a continuum wave function of such energy is near-
ly independent of screening. ) In the ratio of cross
sections being calculated here the bound-state
normalization cancels out and so screening does
not affect the ratio obtained in the relativistic Born
approximation. Further, since the wave-function
shapes are independent of energy, the ratio of
cross sections obtained from Eq. (13) applies not

just to the L~ shell but also to M&&& and all the

P,~, shells. We show in Fig. 1 the predictions of
Eq. (13) for the ratios of cross sections. The
curves above 20 keV were obtained with the rela-
tivistic Born approximation. We also note two
limiting cases, nonrelativistic (NR) (E- I) and ex-
treme relativistic (ER) (E-~):

im ' ' ' =— NR
, o(p, g„jg =+ —') 11'

(14)

The energy dependence of the ratio of cross sec-
tions for the two magnetic substates is thus very
dramatic in the relativistic region. The j,=+—,

electrons are much more likely to be ejected at
higher energies, and j,=+ & electrons at lower en-
ergies.

IV. NONRELATIVISTIC DIPOLE APPROXIMATION

If the incident photon energy is small compared
to the electron mass m c', then the energy of the
photoelectron is also small compared to mc2 and
nonrelativistic approximations may apply. If the
more stringent condition kv «Zemc' is also satis-
fied, then the photon wavelength is also large com-
pared to the radius of the bound electron. In this
case we can neglect retardation and use the dipole
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FIG. 1. Fractions of Psy2
total photoelectric cross
sections corresponding to
ejection of (j, (=pand (j, [

=2 electrons, for Ca and

Mg and photon energies
from threshold to 10 MeV.
Predictions above 20 keV
were obtained with relativ-
istic point-Coulomb-Born
approximation; predictions
below 20 keV were obtained
with a nonrelativistic dipole
calculation in a screened
potential.
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approximation. In fact one finds that, when the
higher multipole terms become important in the
total cross section, so do relativistic effects."
So no useful purpose is served by including re-
tardation in our calculation of the nonrelativistic

matrix element. Here we will discuss analytic
point-Coulomb and numerical screened calcula-
tions in nonrelativistic dipole approximation.

The cross section in the dipole approximation is

f&m&, ~& p P pg, ml ~ fns

l(E«, s«, mf, m«lrY, zll, s,j,j,)l (15)

Here X specifies the helicity of the photon and
l

1«, s«, m f, m«) are the possible continuum states in a dipole
transition. For an unpolarized incident beam we obtain a total cross section

Z f&" Q 8s ( )I Q( ) I~
I

~
'I

(16)

where

R, ~, = R~, ,~, r R„,dr .
40

Here R~ », and Rn, are continuum and bound radial
wave functions.

Then the ratio of the cross sections for P,~, is

Rt+y p +l $+ 1R'+' ——2l q«+ (i+1)« l
for n = l+1

2l ((q'+P)[g'+ (l+1)']P~'
l (l + 1) +g'1 (l + 5)/(l + 2)'

(20)

(17)
The ratio of the cross sections from the magnetic
subshells for the case of n =L+1 and 1+2 is then

R~+g/R~ y:21 (18)

From our previous discussion, we expect this re-
sult to be independent of screening when the Born
approximation is valid (q=—Zo/p«1). From Eqs.
(17) and (18) we have

o(p«~. j,=+«)
o(p, ~„j,=a $) 11'

in agreement with the nonrelativistic limit of the
relativistic Born approximation. The ratios of
the dipole radial matrix elements can be calculated
explicitly for the point-Coulomb potential without
using the Born approximation by the factorization
method. " The needed recurrence relations are

2lA'R' "= (2l+1)A"'R'"'+A'+'R '+"'
n n, fq lg n fg n n fg &

2 lA ' n " ' =A '+ 'R "+' + (2 l + 1)A '+ ' R""
fq n ig fg n fg n n, ig

with

A„' = En' —l')' '/nl, A', = (ri'+1')' '/gl

(19)

and

R" = R' *r'R'd'r .nfg fg n

Simple calculation gives the ratios:

If we calculate R», in Born approximation, we find
that

o(j,= + 2 ) 103rl + 108
o (j,=+ —,') 117&'+132

176'' + 885rl' + 729
204rg+1035rP +891»I .

The value of ~» (for q-0) agrees with the Born-ap-
proximation result, confirming our earlier asser-
tion that there was a region of overlap between the
Born approximation and nonrelativistic dipole ap-
proximation. We have indicated that in this region
screening may be neglected. As g increases the-
energy is decreasing and we may expect the im-
portant regions of the matrix elements to be larg-
er, perhaps characterized by an effective charge
Z,ff which changes the value of g. Since the ratio
is not sensitive to g this suggests that the ratio
will not be sensitive to screening. This agrees
with numerical data of McGuire" and Kissel' at
energies of 2-10 times binding energies, as shown
in Fig. I.

At lower energy, very near the threshold, the
outer region begins to dominate in the radial inte-
gration (1/r potential). At a certain energy R„,
vanishes and then changes sign for M&~~ levels.
This phenomena, called a Cooper minimum, can
be explained by quantum defect theory. At a Coo-
per minimum, we see from Eq. (17) that o(j, =+ —,')/
o(j, =+—,') will have a peak value -3, which agrees
with McGuire. These features are also shown in
Fig. 1. Note that for Mg, which does not have a
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Cooper minimum, the general behavior of Eq. (21}persists almost to threshold
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