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Semiclassical theory of vibrational Raman intensities
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A semic1assical theory of the vibrational Raman effect based on the idea of different time
scales for the electronic and nuclear motions is given. The proposed model gives a physical
insight into the polarizability theory intuited by Placzek, the role of the electronic polariz-
ability being that of the perturbation which induces first-order transition of the nuclei between
vibrational levels. Extension of the semiclassical theory to the resonance Ra~~ri effect is
made for the case where the intermediate states are, or may be represented by, a vibrationa1
continuum. The specific case of the paralle1 components of the 0- 1 and 0 2 Raman transi-
tions in H2 is considered.

I. INTRODUCTION

Despite a number of recent theoretical studies,
the Raman. effect' still often suffers from rather .

complex discussions in which the actual physical
process undergone by the molecule remains to
some extent, obscured. We present here a con-
sideration of the Rama, n effect" based on the
use of different time scales for the electronic
and nuclear motions, and implemented with the
semiclassical theory of radiation. The model
provides an insight into the nature of the Raman
process and for the nonresonance case gives a
physical justification of the polarizability theory
of Placzek. ' The quantitative accuracy of the
polarizability theory will be shown, both formally
and by example to be reasonably good, in some
cases, even at resonance. The present discussion
builds on a previous study' which considered the
validity of the polarizability theory from a mathe-
matical point of view, and specifically dealt with
the static limit, o-O. Those ideas are readily
extended here to the frequency-dependent case
including the resonance Raman effect.

The role in the Raman process played by the
electric polarize)ility tensor e„, parametric in
the nuclear coordinates Q, is not usually fully
developed. Fox" example, the standard textbook
discussions are given not in terms of e„, but
rather its derivatives ("derived polarizabilities"},
which is unenlightening from the viewpoint of the
physics of the phenomenon since they are only
indirectly related to the perturbing operators
and are completely insufficient at electronic reso-
nance where the selection rules break down. A
somewhat different viewpoint of the Raman process
can be attained by foregoing the customary Herz-

berg- Teller expansions' which lead to the Taylor
series for n„.l, and leaving this quantity intact.
Unlike uv spectroscopy where these expansions
are introduced to treat the nuclear motion as a
perturbation, in the Raman effect the nuclear
motion is the phenomenon itself.

The essence of the Raman effect can be seen by
considering a homonuclear diaton. ic molecule per-
turbed by the classical radiation fieM associated
with the photons (were a permanent dipole moment
present, its contribution would merely be pro-
jected out m the ensulllg formalism). Initially,
with the field absent the nuclei move in, the Born-
Oppenheimer (BO) or adiabatic' potential given by
the ground-state electronic eigenvalue, E,(R},
parametric in B. In the electric field F of the
radiation the electronic eigenvalue is perturbed
by the amount =,'F a„(R, (u, ) F' and so the nuclei
experience a perturbation equal to this value and
undergo a firs& oxder tra-nsition from initial vi-
brational state yo, to final state X«, both of the
electronic ground state. The transition amplitude
is proportional to the matrix element
(Xo&~ &„.,(&, &0)~ g«}s =—&,&(BO, ~,) which can be shown
by ready extension of the method of Ref. 5 em-
ployed for the static case to be a very good ap-
proximation to the exact transition amplitude, de-
noted o.,z(ru ).' What we are saying is that in the
spirit of the BO approximation the slowly moving
nuclei experience the radiation indirectly through
the second-order optical perturbations (parametric
in R) of the electrons. Since the electrons move
much more rapidly, their response to the external
field is relatively rapid and they, in turn, or more
precisely their shift in energy serves as the actual
perturbation experienced by the nuclei. The nu-
clear transition, then, is essentially a first-order
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process despite the fact that the radiation field
interaction is second order.

The proposed model gives an explanation of
the role of the electronic polarizability in the
Raman effect more than does the usual classical
description based on radiation from an induced os-
cillating dipole moment coupled to the vibrations.
Here, the polarizability enters as the actual per-
turbation that effects a vibrational transition.

Our discussion will be developed in the following
way. SectionIIcontains the semiclassical, multi-
time-scale argument which furnishes the vibronic
transition amplitude as &r&z(BO, ~,). Extension of
the use of n,.&(BO, &u, }to the resonance Raman
effect is considered in Sec. IIIA and is illustrated
with explicit calculations on the H,

' molecule ion
in Sec. IIIB.

Although we will not consider the diagonal case
(i = f) for the molecular polarizability explicitly,
it should be clear that the analogous quantity

n&,.(BO, &d,) —= (g«~ o.'„(R, &u, )~ya,.) will furnish the
cross section for Rayleigh scattering or the proba-
bility that the molecule remains in its initial vi-
bronic state. All the results obtained for the ac-
curacy of the Raman matrix element nz(BO, &d,)
apply to the molecular polarizability as well where
the approximation is commonly termed "vibration-
al averaging. "

H. SEMICLASSICAL MODEL'OF THE
VIBRATIONAL RAMAN EFFECT

In this section we develop the theory of the
Raman effect employing arguments based, for
simplicity, on the case of a homonuclear diatomic
molecule. From the previous discussion we begin
by solving the electronic problem, holding the
nuclei fixed at various values of the internuclear
separation R. The incident and scattered radia-
tion are treated semiclassically in the dipole ap-
proximation by means of two electric fields, "F,
and F, with frequencies , and „and we seek
the change in electronic energy, n.E(R, t), which is
parametric in A. Now the electronic energy in the
presence of the two fields, a "pseudoeigenvalue"
since it is time dependent, can be expanded in a
perturbation series in the electric field strengths
I'0 and E, and the bilinear term" will turn out to
contain a contribution equal to the electronic polar-
izability times a frequency factor e " o ~", where
the frequency difference ~0 —~, corresponds to a
vibronic excitation energy Wz —W„(the first and
second indices of 8' designate, respectively, the
electronic and vibrational quantum numbers).

At some later time the nuclear problem can be
considered to begin, with the nuclei initially in

state y„. experiencing this harmonic perturbation

H"=-r ~ e E(e& 0'+e ' o')
0 0 (2a)

HOI1 r, e» ~ (e& blat ~e-&&~&)
S S (2b)

respectively, where -r symbolizes the electronic
dipole operator -Q& r, in atomic units (used
throughout) and e, and e, are unit vectors in the
respective directions of incident arid scattered
polarization.

The ground-state electronic wave function
@,& (r, R, &„&„t) is the solution to the time-de-
pendent Schrodinger equation

[K„(r,R, v„&d„ t) —t (8/st)] 4„(r,R, &d0, &d„ t) =0,

satisfying the initial conditions

(r R» t-- ) y (r R)e-&s, &a&& %a&(r, R, t), -

where

and the unperturbed ground-state wave function
and corresponding eigenvalue are obtained from

H,)yo =Eoyo .
It is convenient to write 4,&

as"

4'„(r, R, ~„~„t) = a, (R, &d„~„t)

xy(r R ~ sr t)e &so&""

where «, =(40&~4.,), a function of y, takes care of

bilinear in the field strengths. A simple varia-
tion-of-constants treatment of the vibrational
Schrodinger equation demonstrates that a first-
order transition go&

—X«, with amplitude propor-
tional to the matrix element &7.',&(BO, &o,}', will
ensue.

Consider, then, the electronic Hamiltonian X,~

of a homonuclear diatomic molecule (ion) in the
presence of two electric fields, which may be
written as

K„(r,R, &d„ ~, , t) =H„ (r, R) + H ' ~ '(r, &d„ t)

+H"(r, &d„ t),

where r symbolizes the electxonic coordinates
r,. measured from the center of mass of the nuclei
and II,,,&

is the field-free electronic Hamiltonian
(including nuclear repulsion) in a molecule-fixed
coordinate system. The interaction energies be-
tween the electrons and the incident and scattered
radiation (the nuclei-field interaction energies
being much smaller) are given by
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secular and normalization terms while y deals
with the physics of the perturbation problem. The
latter is obtained by solving

[H +H' +H ' —Eo —n.E —i(8/Bt)]y=0,

with the initial condition cp(r, R, &u„&u„-~)
= q&, (r, R), and having for later times the inter-
mediate normalization (yeI vI& = (yaI y, & =1. The
desired time-dependent perturbation energy is
obtained from the equation

r E=(q,IH" +Ho IIq&,

and, in particular, the desired bilinear term is
found after making the expansions

dependent part of the harmonic nucleax perturba-
tion (which we now consider to be turned on). This
is accomplished by solving Eqs. (15a)-(15c),

[H,~ E,——~,]y"=r e,y„(15a}
[H„E,+-~,] 9IO I = r e,y„ (15b)

[H,&
Eo+-&, —&0]y, =r'coy+'

+r e,y"0+E +go, (15c)

via expansions in the unperturbed electronic states
rp„. Vfe obtain

y=y +Ey ' +Ey '+E Eq" +'''

E=E +ES1 Q+EE"+EE,E,"+" -=S +~a,

(10)

&n-&Q- ~Q

V.(e.lr e.le.&

which, on substitution into (15c) yields

(16a)

(16b)

and substituting these into Eq. (V). This yields the
sequence of decoupled equations

[H —E —i (6/sf)] y" = r e,(e' 0'+ e ' o') y„
[H„—E, —I', (6/St}] yo'I =r e, (e' ~ ~'+e '~~'}y„

(1lb)

[H„—E, — (8f/9 )]f9'"=r eo(e' 0'+e '~&&')ya'

+r e, (e' '+e '~*')yI'0

+gl pl~

etc. Clearly EQ' =E"=0 since the molecule
,

possesses no permanent dipole moment.
Equations (11a), (11b), and (12) may be readily

solved with the ensate

x[(E„-E,—~,) ' (E+„-E, ~+,) ']. (l7}

Aside from the over-all sign difference owing to
the definition of a polarizability, E,(R, ~0, ~,) is
just an element of the dynamic electronic polar-
izability tensor o,',j(R, a&„&o,), the two frequencies
arising from the two energy denominators of Eq.
(1V). This appears to be the appropriate form
for the semiclassical theory of the Raman effect,
but oie)(R, (do) is a good appl'oxllllatloll 'to 1't.

Having evaluated the relevant component of LE,
we may now insert the perturbation E + EQE, into
the nuclear Schrodinger equation

[T„+E,+E, r, s e-'" —f(s/st)]X(R, t) =0,

(16)
~1 ~ G 1 Q f &Qt, 1 Qe 'lfdQ

Qv 1 ~Q, 1 5 ~~t ~Qual e k ~~t

qa'1 =9 f(~Q+~8)t y et(~Q ~s)t

(13a)

(12b)

which may be solved by the variation-of-constants
method, writing

X(R, &) =g 5,(f) X.,(R)e ' ~',

e- &(fdQ+ flag)t~~+

E,"=E, e"""'+S e'( Q- "'
et(fd - vQ)t @ e-$(fdQ+fd~)t (14)

Now of the terms on the right-hand side of Eq.
(14}, with ~0 &, the third term will give rise to
(Stokes) absorption X„-X«since ar, —tu, =W~
while the second term corresponds to (anti-
Stokes) emission, X,z- X«. The remaining terms
correspond to two photon processes and need not
be considered further. Then for absorption we
need only evaluate E „which serves as the R-

with lllltlal conditions bl, (0}= 6~0. As ls well kllowll,
there will be a large probability of transition if
(t) = co —u, =5« -5«, which is the case here by
construction. The expression fox' the transition
probability, P«, is, after time integration,

&&« = I5&(t)l' =41 (x.&IE .(R, ~„~,)lx.&& I'E', E',

sin [~ (w~ —w„, —a ) t]

)
'

Then from our discussion of the approximate
equality of -E, and c..&(R, ~,) we have the desired
result, that I'&z is proportional to the square of
&&y(Bo, ~.) = (X„lII.i(R, &.) I X.,&, with F..O.& F,
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playing the role of an effective first-order pertur-
bation. As has been pointed out previously"
a«(BO, ~0} is nearly equal to o.'«(&0} since the
former approximate quantity just derived here
can. also be obtained from the dispersion-equation
expression for the exact matrix element a«(a&, ) by
keeping only the leading term latter energy-de-
nominator expansion and performing closure over
intermediate vibrational states. Thus, the present
time-dependent treatment has derived not only the
Placzek polarizability result, but also a good ap-
proximation to the exact transition probability. In
this context it is perhaps worth noting that a varia-
tion-of-constants treatment employing two per-
turbing fields and the exact molecular wave func-
tions" leads to an expression for P,&

similar to
Eq. (20) where the exact molecular polarizability,
dependent on 0 and &, replaces the matrix ele-
ments of a„(R, &uo, (u, ).

g(x}= lim(x+ iy, } ' = P, —is6(x},
y, 0

and identifying x with W„, —W„. —~„Eq. (21) can
be written as"' '

(24)

a)~((u, ) = P a', ~~(W„, , ~,) p(W„,) dW„,
0

—I v&x., I f'„Ix(W~)& &x(W.*,)l f'„Ix„&p(W.'),
(25)

where W„*,=W«+ 0 corresponds to the resonance
condition. Now the principal part of Eq. (25) still
admits closure since the only values of W„, which
have been removed from the integral make no
contribution as the integrand is odd-valued about
W„*~. Thus, the expansion of [W„,—W~ —+,]
about [E„(R)-E,(R) —&,] ' [Ref. 5, Eq. (14)] is
at least formally valid, furnishing the leading
term

HI. RESONANCE RAMAN EFFECT

A. Theory

Because of the growing experimental importance
of the resonance Raman effect and the simplicity
of the semiclassical polarizability theory, it is of
interest to see that in some instances, at least,
the latter may be readily adapted to the resonance
problem. When resonance irradiation takes place
via a repulsive electronic state, or via a bound
state above its dissociation limit (or if the inter-
mediate contribution can be treated as if it were
from a continuum) o'~«~((u, ) is given by (neglecting
small terms from electronic states not at reso-
nance}

&«'(~.) =
J ~f,'(W.„~.) p(W..) dW..

0

where

(21)

&x. If, '.Ix(w, )&s&x(we}l f'.Ix~&s

nh Ot 0

(22)
(Small terms with +e, energy denominators are
also neglected here. ) The initial and final vibra-
tional functions, g«and y«, and the continuum
functions x(W„~,R) having a density p(W„~) and
written simply as x(W„~}are solutions to the nuclear
Schrodinger equation

[Tz+E,(R) —W,„]X,„=O for all e, v. (23)

The transition dipole moment matrix element for
the electronic ground state y0 and intermediate
electronic state cp„ is defined by

f'.(R) = &y.l&,19.&,

Now using the function"'"

d0
x.,f'„(E. E, ~,)-'f'„X„dR.

This integrand itself also possesses a pole, name-
ly, at that value R* for which E„(R*)—E,(R*)

(d0 0 and in analogy we may attempt to write

B. An example: Resonance Raman effect in H2

The parallel component of the H,
' Raman matrix

element, &,&
-=&0&, for transition between the

vibrational ground state (0) and final vibrational
state (f), both of the electronic ground state
(Iso,), provides a convenient test of the previous
arguments for the resonance Raman effect. In
this case the intermediate electronic state y„
=2po„provides the contribution to Eq. (25) (it is
essentially the sole contrib'utor even in the static
limit} and its electronic energy is the repulsive
potential for the intermediate continuum functions
x(w, ).

In order to evaluate Eqs. (25) and (26) for the

n~«(BO, &.) = P X„f'„(E„-E. ~.) 'f'„X„dR
0

—isX„(R*)f'„(R*)f'.(R*)X.,(R*)

(26)

It is of interest to ask whether the principal parts
and residues of Eqs. (25} and (26) correspond.
This is certainly plausible in the case of the resi-
dues since the approximation of x(W„*~) by a 6 func-
tion at the classical turning point R, of E„ is usual-
ly quite adequate" and R, =R* [the 5-function nor-
malization takes care of the density of states in
Eq. (25)]. That the principal parts of n«(to, ) and
ci«(BO, &u, ) are also approximately equal in at
least one system is illustrated in Sec. IIIB.
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exact and polarizability theoretic values of the
Raman matrix element for various +, it was neces-
sary to obtain accurate values of E,(R), E„(R)
(here, n = 1), f;(R) and to obtain the bound and
continuum vibrational states, go, (a =0, 1, 2) and

g(W»), with respective energies W„and W„, . These
quantities are illustrated in Fig. 1.

The electronic energies were obtained by fitting"
the E values of Wind" and the E, values -of Peek."
The transition dipole matrix elements f~(R) were
computed by fitting the linear-combination-of-
atomic-orbitals (LCAO) values obtained previously'
with three significant-figure agreement with the
results of Bates." Bound and continuum vibra-
tional wave functions and energies were obtained
by solving the equation

for e=0, v =0, 1, 2 and e=i, v =k using the
Numerov-Cooley procedure. " For convenience
the X(W») were normalized in a box of length
R =50 a, corresponding to the energy interval ca.
0.003 a.u. Technically speaking, the )(' are discrete
(y» in previous notation). However, it was veri-
fied that the y tended to sin(kR+5}/k for large R.

To economize on computer time, not all of the
set of y was generated —only about 40% in the
Franck-Condon region, and 300X» in all. Instead,
a density of states p(w») was obtained by counting
the nodes of each y» and assigning p(W»} =1 if
the state y, ~

~„was present, p(W»} =2 if y, „,was
absent but y, ~ „was present, etc. The adequacy
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FIG. 1. 1su~ (Ep) and 2PO'„(Eg) potential curves of H2

plotted as a function of internuclear separation. Quanti-
ties appearing in Eqs. (25) and (26) are depicted.

of this procedure was then tested by numerous
sum rules, e.g. ,

(x l(f;)'Ixl), =
J dw„p(w„)&x~lf;Ix(w„)),

x (x(w,.)l

foal

x,.)„, (2'I)

which would be satisfied exactly for a complete
set of intermediate states. Evaluation of the two
sides of Eq. (27) by nuinerical integration using
Simpson's rule gave agreement to four decimal
places.

Table 1 contains the principal parts of ooi(ur, )
and o.,'i(BO, &0) for the f =1 and f =2 cases at eight
resonance frequencies, evaluated from Eqs. (25)
and (26). Included in the table are the corre-
sponding values of R* and it can be seen that all
the important regions of R space are represented.
The values of &0& and &02 are seen to be extremely
rapidly varying functions of &0, particularly for
resonance in the vicinity of the E, minimum where
there is even a change in sign. Nonetheless,
o.",&(BO, ~,) is reasonably close to n,'&(&uo) in almost
every instance. " Notice also that for the static
limit (&uo =0 or R*=~) n,'*, » oo,'confirming the
selection rules, but that this is not true for the
resonance case. In fact, in a number of instances
the 0-3, 0-4, etc. , transitions will have
similarly large amplitudes for certain p values.

The residues which correspond to these princi-
pal parts are very small and it will be sufficient
to give a few values. The sum-over-states and
BO residues corresponding to R*=2.0 a, are
-5.3&&10 ' and -6.6&10 ' a,', respectively for
o.",f(&uo) while for ng", ((u, ) they are -8.1 X 10 ' and
-7.0x10 '. These were the largest residues
found, as they drop off rapidly with increasing
distance from R*=2.0 a.u.

The results of this section then imply that the
polarizability theory has application to the reso-
nance Raman effect as well as the nonresonance
case.

0
0.021
0.101
0.145
0.208
0.305
0.431
0.621
0.887

6.0
4 0
3.5
3.0
2.5
2.0
1.5
1.0

1.993
2.00
2.30
2.76
4.60
5.30

-13.7
1.90
0.183

1.997
2.01
2.35
2.88
5.00
5.27

-12.7
1.25
0.177

0.158
0.159
0.270
0.485
1.93

-9.34
9.69

-1.09
-0.078

0 ~ 160
0.165
0.307
0.610
2.02

—9.49
10.2
—.234

-0.072

'Equation 25
Equation 26.
Value of R at which E &(R)-Ep(R) =(d p. See also ref. 21.

TABLE I. Principal parts of n&&(cup) and o. p2(~p) given
by the sum-over-states and semiclassical expressions
for several values of the resonance frequency cop.

0(a.u. ) R*(aO) nOi(C"'0) ~Oi+0 ~0) n02(ado) O'O QO WO)
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IV. CONCLUSIONS

The present discussion of the vibrational Raman
effect has furnished a physical model giving a
somewhat new quantum-mechanical role to the
electronic polarizability in the phenomenon. The
notion of events on two different time scales has
been invoked, this being in accord with the general
discussion of time-independent phenomena given by
the Born-Oppenheimer' approximation and the
Hellmann-Feynman theorem, with the electrons
said to be moving far more rapidly then the nuclei
and contributing in an averaged manner to the
potential and forces, respectively, experienced
by the nuclei.

The semiclassical result has also been shown

to have application to the resonance case when the
intermediate states are, or can be represented by,
a molecular vibronic continuum. The detailed con-
ditions for the success of the semiclassical theory
to hold at resonance are to some extent still open,
particularly where resonance occurs through
discrete intermediate states. There, it appears
that the damping constant, which for the continuum
case may be neglected, need be included.
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