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The cross sections for electron capture by positrons from atomic hydrogen are calculated using the
second Born approximation and the method of Padé approximants for incident positron energy ranging
from 12 to 500 eV. The results are compared with those obtained in the first Born approximation and
other theoretical calculations. The contributions from the intermediate states higher than the first to
the second-order rearrangement scattering amplitude are found to be significant. The nature of the
variation of the second Born and the Padé differential cross sections with the angle of scattering is

discussed.

I. INTRODUCTION

Electron capture by positrons from atomic
hydrogen is one of the simplest rearrangement
collision processes where the wave functions of
the initial and the final unperturbed states are
exactly known. A study of the process offers a
good. opportunity for making a comparison among
the different approximation methods available
for dealing with a rearrangement. Massey and
‘Mohr! used the first Born approximation (FBA)
to calculate the cross section for positronium
formation in atomic hydrogen. As is well known,
the first Born approximation to the rearrange-
ment scattering amplitude is the leading term
of the Born series for the amplitude. The second
term of the series involves a sum over an infinite
number of intermediate states and the evaluation
of the contribution of even the first state is labo-
rious.? There is also the problem of the con-
vergence of the Born series for the rearrange-
ment scattering amplitude and that of making a
reliable estimate of the amplitude from the first
few terms of the series. A suitable approach for
the solution of the last problem is to use the
rational Padé approximants® which can be used
to represent functions to a good approximation
even in cases where the convergence properties
of the power-series expansions are poor.

In the present work we have used the second
Born approximation (SBA) and the Padé-approxi-
mant method to investigate the positronium forma-
tion process in atomic hydrogen. The summation
over the infinite number of intermediate states
occurring in the second term of the Born series
is done following a method of approximation used
by Holt and Moiseiwitsch* for some direct scat-
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tering processes. This method and the Padé-ap-
proximant method are explained in Secs. II and
II. In Sec. IV we have compared our results with
those obtained by other workers.

Atomic units will be used throughout the present
work.

II. SECOND BORN APPROXIMATION

The proton will be assumed to be at rest and
_ the position vectors of the positron and the electron
from the proton will be denoted by ¥, and F,,
respectively. The electron is initially bound to
the proton, forming the hydrogen atom in its
ground state. It is captured by the incident posi-
tron and a positronium is formed, again in its
ground state. The Born series for the rearrange-
ment scattering amplitude for the process is

g(ey kt) =g1(9’ kl) +g2(9’ kl) tere, (1)

where 6 is the angle of scattering, Ei is the mo-
mentum of the incident positron, and the first
two terms on the right-hand side are given, re-
spectively, by

1 &7 - 1 1
o,k =__-fe'/ f o X(T )<———>
gx( i T (Pl( 12 "1 1,2
x etk Tuy (F,) dT, dT, )
and
gg(e, ki)= Z gg” )(9, ki) ’ (3)
with
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The summation on the right-hand side of Eq. (3)
implies a summation and an integration over all
the discrete and continuum states of the hydrogen
atom. Here T, =3(F, +%,), ¥y, =F, - T, and &, is
the momentum of the final positronium in its
ground state. ¢,(¥,,) is the wave function of the
ground state of the positronium and is given by

0,(7y) =(1/8m) /2 =0/ D2 (5)

¢, represents the wave function of the hydrogen
atom in the state n (discrete or continuous) with
eigenenergy E,, and k, is given by

2k, 2 +E, =3k +E, . (6)

If we retain only the first two terms in Eq. (1)
we get the second Born approximation to the re-
arrangement scattering amplitude and the cor-
responding differential cross section for posi-
tronium formation in atomic hydrogen becomes

1(6, k) = |g1(9 ki) +£,(6, ;) |2 (7

The difficulty lies in calculating the sum oc-
curring on the right-hand side of Eq. (3). Majum-
dar and Rajagopal® have calculated the cross sec-
tion for positronium formation by neglecting all
terms with z>1. In order to estimate the effect

—
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r
of these terms, we have followed a method used
by Holt and Moiseiwitsch® for direct scattering
of electrons and protons by hydrogen atoms. We
have replaced Eq. (3) by

N
&(0,k)=)" giP(6, k) + Y gl n+1 (6, ky),

n=1 n >N
(8a)

where g(")' ky+1 is given by the right-hand side of
Eq. (4) but with ky., substituted for k,. Because
of the computational difficulty involved in the
evaluation of the terms g{™, we have, for the
present, taken N=1. Equation (8a) can then be
written as

g2(9 kf) g(l)'kl(e’kt) —g;l)'kz(e’ki)
+3 glmi(6, k) - (8b)
n

The third term on the right-hand side of Eq. (8b)
can be reduced to a simplified form by using the
closure relation

E ‘pn(-fz)lp: (le) = 6(Fz - 1-72') ’ (9)

and is given by

f e=iks Ty o (712)(%_—}-) exp[:'q-(rl-.rl')]
1 2

q% -k —ie

x <_1__ -TIT) e'fiTly (7,)dT, dF,, d7!dg. (10)

7] 'rl,_rzl

~ In the evaluation of the integrals occurring in Egs. (2), (4), and (10) we first make a change of variable
from ¥, T,, to T,, T,. Using then the method of Fourier transform to separate some of the variables, we
arrive at the following expressions for g,(6, k;), g{"*(6,k;) (k=k,, k,), and Z}ngg")"‘z(e, ky):

,”2
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Using the Feynman parametrization technique
and the method of Dalitz® one can reduce the above
integrals to one- or two-dimensional integrals
with the variables ranging from 0 to 1. The final
integrations are done numerically. Substituting
the values of g,(6, k;) and g,(6, #;) [Eq. (8b)] in

Eq. (7) we get the differential cross section (9, &;).

The total cross section for positronium formation
is now obtained from

Q(ki)=21rf“ 1(6, k;) sin8do . (14)

This integral has also been evaluated numerically
taking proper care of the nature of the variation
of the differential cross section with the angle of
scattering.

III. METHOD OF PADE APPROXIMANT

If g(2) is a function with a formal power-series
expansion
g(2)=a,+a,z+a,z ++ « » | (15)
then its [N, M] Padé approximant is defined® as
the ratio of a polynomial P(z) of degree M and a
polynomial @(z) of degree N, the coefficients of

the polynomials being uniquely determined by
equating like powers of z in the equation

F(2)Q(2) — P(2) =AzM*N+1 L paM+N+2 L. .. (16)
and taking

Q0)=1 . . (17)
The [1,1] approximant to g(z), for example, is

aa, +(a%-aua,)z

a, —-a,z (18)

In many cases of physical importance it has been
found that the convergence properties of some
sequences of Padé approximants are much better
than that of a sequence consisting of partial sums
of the series (15). Garibotti and Massaro® have
found that for the elastic scattering of electrons
and positrons by hydrogen atoms, even the [1,1]
approximant is satisfactory. We have used the
[1,1] Padé approximant to the series (1) to get

(-t 4]
%Ef)“%]z(i—ﬁc)z([(a—if)z+1]'[(Ei-E,)zn] aj-

(13)

-
an approximation to the rearrangement scattering
amplitude,

gl(ey ki)_gz(ey ki) ) ( )

For g,(6, k;) and g,(0, ;) we take the expressions
given in Egs. (2) and (8b), respectively. The

gP(oy ki) =

" corresponding differential cross section for posi-

tronium formation is given by
. k
IP(ey ki)=-§t lgP(ey ki)lz ’ (20)

and the total cross section can be obtained from
Eq. (14) by replacing I(6, &;) by 1,(6, k;).

IV. RESULTS AND DISCUSSION

We have calculated the total cross section @
for electron capture by positrons from atomic
hydrogen using the SBA and the Padé-approximant
method for incident positron energy ranging from
12 to 500 eV. Our results are shown in Figs. 1
and 2. In these figures, we have also displayed
the energy dependence of the total cross section
obtained in the first Born approximation. The
FBA differential cross sections are calculated by
simply omitting the term g, occurring on the
right-hand side of Eq. (7); the total cross sections
are then determined by using Eq. (14). As is
evident from Figs. 1 and 2, the SBA total cross
sections are lower than the FBA values for all
incident energies above 13 eV. With the increase
in the incident energy the SBA curve first comes
closer to the FBA curve, but afterwards the two
curves separate out. At 100 eV the total cross
section obtained by the SBA differs from the FBA
result by about 3.3%, but the percentage difference
increases to about 8.7% at 500 eV. The total cross
sections calculated by the Padé-approximant
method are considerably lower than those obtained
by the SBA or the FBA in the entire energy range
considered. At 12 eV the Padé cross section is
less than half the value obtained by the FBA meth-
od. A similar lowering of the cross section for
positronium formation was obtained by Massey
and Mohr! at 13.54 eV when, in the initial positron
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wave function, the distortion of the /=0 partial
wave owing to the repulsive static field of the
hydrogen atom was taken into account.

In Fig. 1, extending up to the incident energy
of 100 eV, we have also shown the total cross sec-
tions obtained by a truncated second Born ap-
proximation (TSBA) and those calculated by Ba-
nerji, Ghosh, and Sil’ (BGS). The TSBA total
cross section at any energy is determined by
integrating the corresponding differential cross
section, the latter being calculated by replacing
&, in Eq. (7) by g{" [see Egs. (3) and (4)]. The
_assumption in the TSBA is that the second-order
Born term in the rearrangement’ scattering am-
plitude is dominated by only one intermediate
state, namely, the ground state of the hydrogen
atom, and hence the contributions from other
intermediate states can be neglected.? The SBA
results include the effect of all the intermediate
states. It is seen from Fig. 1 that the contribu-
tions of the intermediate states higher than the
first are significant and have, in general, an
effect of lowering the total cross sections by con--
siderable amounts. Banerji et al.” have calculated
the total cross section for positronium formation

10
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FIG. 1. Comparison of the second Born approximation
(SBA) and the Padé total cross sections for positronium
formation in atomic hydrogen with those obtained in the
first Born approximation (FBA), a truncated second
Born approximation (TSBA), and by Banerji et al. (BGS)
for incident positron energies up to 100 eV.

in atomic hydrogen by applying an approximate
form of the Faddeev equations as used by Sloan
and Moore.® Their results lie between the FBA
and the SBA cross sections for all incident en-
ergies above 16 eV.

Chen and Kramer® (CK) have used the first-
order Faddeev-Watson multiple-scattering ap-
proximation for finding the electron transfer
cross section in positron-hydrogen-atom colli-
sions. The CK total cross sections for incident
positron energy ranging between 100 and 500 eV
are compared in Fig. 2 with our SBA and Padé
results. Unlike the cross sections obtained by
the last two methods the CK cross sections lie
always above the corresponding FBA values.

Figure 3 shows the SBA and the Padé differen-
tial cross sections for positronium formation in
atomic hydrogen for two different incident en-
ergies (12 and 100 eV). While the differential
cross sections are all peaked in the forwerd direc-
tion, the nature of the variation with the angle
of scattering in the Padé-approximant method
is different from that obtained in the SBA. The

! 1 1
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FIG. 2. Comparison of the second Born approximation
(SBA) and the Padeé total cross sections for positronium
formation in atomic hydrogen with those obtained in the
first Born approximation (FBA) and the first-order
Faddeev-Watson multiple-scattering approximation
(CK) for incident positron energies ranging from 100
to 500 eV.
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FIG. 3. Comparison of the nature of the variation of
the second Born approximation (SBA) and the Pade dif-
ferential cross sections for positronium formation in
atomic hydrogen with the cosine of the angle of scatter-
ing 6 for two different incident positron energies (12 and
100 eV).

Pade differential cross section goes to zero at

an angle whose value decreases from about 44°

to about 23° as the incident energy increases from
12 to 500 eV. This feature is similar to that ob-
tained in the FBA and, as can be seen from the
expression for the [1,1] Padé amplitude given in
Eq. (19), really reflects the behavior of the first
Born amplitude g, which vanishes at an angle
where the contribution of the positron-electron
interaction cancels exactly the contribution of the

positron-proton interaction. The SBA differential
cross section does not have this characteristic,
as the second-order Born term in the rearrange-
ment scattering amplitude gives a nonvanishing
contribution when the first-order term is exactly
zero. ,

In the absence of any experimental results for
electron capture by positrons from hydrogen atoms
there is no unambiguous way of speaking in favor
of one theory or the other. But in any second-
order calculation the summation over the infinite
number of intermediate states must be carried
out and our approach is convenient for this purpose.
There is scope for improving the result by taking
the effect of a few more intermediate states exactly
and by modifying the value of ky,, [see Eq. (8a)]
judiciously in the light of experimental results,
when available. In another approach Kramer!®
has used the free-particle Green’s function in the
second-order Born term [this amounts to the
replacement of the intermediate states §, occurring
in Eq. (4) by plane-wave intermediate states] and
has given numerical results for the total cross
section for the proton-hydrogen rearrangement
process. In cases where the second-order Born
term in the rearrangement scattering amplitude is
not small compared to the first, the [1,1] Padé-
approximant method is expected to give better
results. It is desirable to make the calculation
with the higher approximants, but this necessi-
tates the computation of Born terms of order
higher than the second and the task, for the pres-
ent, seems arduous.
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