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Role of electron correlation in deternnning the binding limit for two-electron atoms
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Using two trial wave functions for a nonlinear variational study, the ground state of the two-electron
isoelectronic sequence has been investigated for a continuously variable electron-electron coupling constant
k These calculations extend the analogous study of the preceding paper by including explicit angular
correlation on the one hand, and extra orbital flexibility on the other hand. The results confirm the
earlier conclusion that for su8iciently large positive X {corresponding to nuclear charge Z g 1) the
ground-state energy penetrates into the continuum as a localized "bound" state, before terminating at a
branch-point singularity.

I. INTRODUCTION

A convenient mathematical setting, in which to
assess the influence of electron correlation on
atomic eigenstates, is provided by "1/Z perturba-
tion theory. " This format measures energy in
terms of the unit

m,z'e4/s',

and lengths in terms of the unit

lf'/m, Ze&,

where Z is the atomic number, m, is the electron
mass, and 0 and e have conventional meanings.
Consequently, the spin-independent, nonrelativis-
tic Hamiltonian for n electrons moving in the pres-
ence of an infinitely massive point nucleus has
the following reduced form:

1 2 1 1ff(X)= —W —V'+—+X g —,X=1/Z.2

rj=l gk

(1.8)

For large atomic numbers, A, is small, so it makes
good physical sense when Z ~ n to consider the last
terms in the Hamiltonian to be a perturbation of
modest influence.

Kato has proved' that all eigenvalues e~"~(Z) of
Hamiltonian If(A), which are izolated when X=O,
are analytic functions of the coupling constant A. in
the neighborhood of the origin. This implies that
power series for those eigenvalues,

es'(x) = -0.8O568(x* —x)' ""+t (x) (1.5)

The function g(X) is regular at X* (or at worst very
weakly singular), and is accurately determined by
known coefficients. The form shown in Eq. (1.5)
effectively sums the z power series to infinite or-
der, and permits analytic continuation past the
singularity at X".

The result (1.5) exhibits a particularly interest-
ing feature. As ~ increases from 0 toward A, *,
e'(X) rises toward and penetrates into the continu-
um that begins at energy equal to ——,'.' This pene-
tration occurs at'

for the relevant power series (1.4), it becomes im-
portant to be able to effect analytic continuation of
0"~(X) beyond the power-series convergence circle.
Equivalently, one seeks to specify the positions
and types of the singularities of the e~"(z) through-
out the complex A. plane.

As a result of concentrated numerical effort, an
extensive set of precisely determined powex -series
coefficients is available for the two-electron (n =8)
ground state. ' ' These coefficients present a sys-
tematic pattern from which it is tempting to infer
the behavior of the underlying analytic function
e~'~(~). By using ratio-test methods that were de-
veloped to analyze power series in phase-transi-
tion theory, ' it has been concluded that a branch-
point singularity on the positive real X axis (at X*
=1.1184) defines the radius of convergence of the
power series. ' By extrapolating the established
coefficient trend to infinite order, one obtains'

e'"&(z) = g e',"b.',
y=O

(1.4)
x, =1.0975, (1.6)

are convergent.
As X increases from zero along the positive real

axis, the magnitude of electron repulsion likewise
increases until the nucleus is no longer able to bind
all n electrons simultaneously in a localized eigen-
state. Since the value of ~ at the critical binding
limit may equal or exceed the convergence limit

and when ~, ~~ ~A, ~ the eigenstate consists of a
bound (localized and normalizable) state in the con-
tinuum.

The notion of a stable bound state embedded in
the continuum is sufficiently at variance with or-
thodox intuition that independent verification is im-
portant. After all, the finite set of coefficients
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upon which Eq. (1.5) is based conceivably could be
atypical and therefore misleading. However, qual-
itatively, the same behavior as exhibited by Ec(.
(1.5} has been shown to follow from a nonlinear
variational approximation for the two-electron
ground state. ' That variational study was based on
the Hylleraas-Eckart-Chandrasekhar (HEC) wave
function

g(r r )
—e-arl- Sr2+8 Srl-nr -2

1P 2 (1.7)

for which orbital exponents a and P were optimized
for each value of the coupling constant A. . The re-
sulting variational energy crosses into the continu-
um (at A., =1.048486) before terminating at a branch

point [when X=A2(HEC) =1.0780113].
Though the ease for stable bound atomic states

in the continuum is strengthened by the cited varia-
tional result, it is still not definitive. Wave func-
tion (1.7) contains radial correlation between the

electrons but no angular correlation, and it is pos-
sible that inclusion of the latter might inhibit pene-
tration of the continuum. It is the specific aim of
this paper to establish numerically the effect of

improving wave function (1.7) on the continuum

penetration and critical binding phenomena for the

two-electron ground state.
Two specific improvements have been studied.

One (Sec. III) introduces angular correlation by
multiplying form (1.7) by an explicit function of the

interelectron distance r„. The other (Sec. IV) pro-
vides extra orbital flexibility by replacing each
Slater orbital in (1.7) by a function of the Hulthen

type 8

Before launching into a description of our specif-
ic calculations, we dispose of an important matter
of principle in Sec. EI. "Conventional wisdom" in

atomic quantum mechanics is normally based on

independent electron arguments. Among other con-
clusions, this type of reasoning implies that ap-
proach to a continuum edge from below (i.e. , the

ionization potential going to zero) is accompanied

by an orbital exponent going to zero. ' As a result
an eigenstate could never penetrate the continuum

as a localized bound state. The analysis in Sec.
II demonstrates the inapplicability of the indepen-
dent-electron viewpoint, and thus stresses that
stable bound states in the continuum can only owe
their existence to explicit correlation effects.

Our detailed numerical procedures and results
are discussed in Sec. V. The major impact of
those results is further support for the presump-
tion that e"~(X}for two electrons penetrates into
the continuum.

Section VI attempts to point the way toward future

contributions to understanding the mathematical
nature of the exact eigenfunctions and their analyt-

ic eigenvalues e '
(A.).

Although the emphasis in this paper is primarily
mathematical, physical consequences of our gene-
ral n-electron perturbation theory have been
stressed previously. '' Included among them are
scattering resonances for states that have been
forced to penetrate the continuum (0 +e provides
a particularly interesting ten-electron example' ).
furthermore, potential energy curves (such as
H+H ) involving anions develop anomalies, related
to analytic singularities discussed here, that af-
fect the collision dynamics and electron ejection
probabilities. ' Finally, efficient high-accuracy
calculations of anion structures and properties
can best be designed with knowledge of nearest
singularities in the coupling constant (A. ) plane,
and indeed that knowledge permits summation of
perturbation theory to infinite order. ' The present
paper represents a small contribution to elucida-
tion of these phenomena. .

g
—e rl r2--

(2.2)

As X moves along the positive real axis toward
A.„s"(X) rises monotonically to ——', .

Choose A. to be slightly less than A,„so that the
ionization energy

(A.}——,
(o) (2.3)

is small but positive. Under this circumstance,
we ask how g behaves in that specific asymptotic
region of configuration space where an electron,
say the one at r„ is far from the nucleus. It is
tempting then tentatively to write the asymptotic
form

(2.4)

where y describes the spatial distribution in the
large-distance "fringe region" of the atom. The
inner electron 2 experiences the full nuclear
charge, without the perturbing influence of a near-
by partner electron, so X should resemble a hy-
drogenic 1s orbital.

After substituting expression (2.4) into Schro-

II. COUNTERARGUMENT

The Schrodinger equation for the ground state of
the two-electron system is the following:

——V, ——V2 ————+—g(r„r, ) = e (X)g(r„r,) .~~1 , 1 2 1 1 g (o)

1 2 12

(2.1)

When X=O, the equation is separable and may be
solved exactly to yield
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In the asymptotic region under consideration,
where x, ~&r„ the difference

1 1

+1 +12
(2 6)

is of order y, ', and should be negligible. Conse-
quently, the right member of Eq. (2.5) collapses
to zero, since for the hydrogenic 1s orbital X

(2.7)

Thus Eq. (2.5) reduces to a differential equation
for y alone:

dinger equation (2.1), and rearranging, one obtains Since the hydride anion (A. = 1) lies lower in en-
ergy than the continuum, we know that ~, &1.
Therefore X —1 in differential equation (2.8), and in
definition (2.9) for g, can be taken to be positive.
The exponential decay constant g appearing in the
asymptotic expression (2.12) for y(r, ) vanishes as
~ increases to X„and that fact alone would be con-
sistent with a diverging mean distance fox the out-
er electron. But at the same time the positivity
of A, —1 requires

(2.14)

so that in spite of loss of the exponential factor in
Eq. (2.12), q&(r, ) still rapidly approaches zero with
increasing y„even when A, = h,

%e are therefore forced to admit that the outer
electron does not develop an infinite mean distance
from its partner and the nucleus. Also we must
ha,ve

(
1 2 A. —1——v, + —hf ps, =0, (2.8)

e~"' z} (2.15)

y(r, ) =(I(],~'e "'&U(a, 2, 2~r, ),
g = (-2am) ~', a = 1+(x —1)/](,

(2.9)

where U is the confluent hypergeometric function
which approaches zero at infinity, "

((( 5 z)=[('(a]] 'f e (((+()'"'' 'd'(

(2.10)

and where y, is a suitable constant. From the as-
ymptotic behavior of U as z-~, '

U(a, b, z)-z (2.11)

one can infer that (I(](r,) behaves thus at large r, :
(2.12)

If the vanishing of he as A. -~, is accompanied
by a weakening tendency for the outer electron to
remain locally bound to the atom, then y(r) should
become more and more extended in space. Indeed
in the limit A, =~„y2 should then not be integrable.
An obvious corollary is that the expectation value
of y, 2' should ayyroach zero in this limit. Since

s~"'(&) &]) Iri' I ])])

sx Q I(I)

one would be forced to conclude that the energy
function 0'(X) is tangent to the continuum edge at
—;,when X=~,.

which according to the conventional view being pur-
posely followed should determine the "fringe re-
gion" electron density.

Equation (2.8) is a standard form, and has the
following solution:

(]]. —1)/r, . (2.16)

It is a property of such an attractive Coulomb po-
tential that it permits an infinite set of bound Ryd-
berg states, including the specific excited state of
interest. Hence X, cannot be less than 1; it must
be identically 1.

The task then reduces to finding a consistent be-
havio~ &or Ee, a, a, and {]I(Ir»' I]I]) as functions of
A. near 1. %'e remark that the only possibility en-
tails quadratic behavior for ~e,

These conclusions undermine logical consistency
of the the initial asymptotic factorization (2.4), for
in order that it be relevant to the problem at hand,
it is necessary that the electrons be sufficiently
fa,r from one another in the mean that explicit an-
gular correlation not arise. Our countera, rgument
therefore consists in showing thai. existence of
binding for the anion leads inevitably to a compact
]I] at ]]., and hence to an important role for electron
spatial correlation; it thus invalidates any attempt
to invoke a single-particle description for the ex-
act wave function.

In order to complete the picture, we should also
adapt this line of reasoning to states for which the
hydride anion is not bound. An example would be
the (1s)(2s)'S excited state for two electrons, for
which --,' again serves as the energy of the continu-
um edge.

First, note that whenever A. is less than 1, how-
ever small the negative difference A. —1, the nu-
cleus plus core electron 2 present a net positive
charge for the outer electron 1, which therefore
essentially moves in the potential
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we= -a(1 -X)'+O((I -X)'), (2.17) In particular,

where A is a positive constant. This in turn re-
quires (( „f)= ((r,.= 0) ()-) qr„)+))(el*) (3 2)

~ = (2A) ~'(1 —x) + O((1 —x)') (2.18) The strict cusp condition requires" "
-ne/(I+a) =-,'X, (3.3)

a=i —(2A) ' '+O((1 —x)") . (2.19)

Unlike the preceding case for which the anion mas
bound, g does not diverge as A. -A.„but instead it
remains bounded. In fact it is clear that at A.„

+ /ri-(ax) '
(2.20)

'1

so that y' is not integrable. But this is precisely
what is re(luired by E(I. (2.17), since now the ei-
genvalue derivative

((l)v Irx2 I ())()

Q. l ().)
(2.21)

III. BONHAM-KOHL %PAVE FUNCTION

The major defect from which the Hylleraas-Ee-
kart Cha-ndrasekhar wave function (1.7) suffers is
its total lack of angular correlation. In order to
rectify that weakness it is possible to incorporate
an explicit function of r» as a correlation factor
multiplying the function shown in E(I. (1.7}. The
specific correlated trial function with which we

have worked is the following:

())(r„r,) = (e "i e"2+e 8"~ "'2)(1+i,e '"»). (3.1)

All four parameters a, P, k, and g were treated
as variables with respect to which the energy
should be optimized. This variational function was
one of several that were examined by Bonham and
Kohl" for S=1,2, and 3 (A, =1, —,', and —,', respec-
tively).

The correlation factor appearing in expression
(3.1}permits (t) to develop a cusp at r» = 0, as one
knoms to be the case for the exact eigenfunction. ""

must vanish at A, = A,, = 1.
This second case therefore does admit the con-

sistency of asymptotic wave-function factorization,
as shown in E(I. (2.4). It is thus clear that a di-
chotomy exists in the behavior of discrete eigen-
values as increased electron coupling forces them
upward to the continuum.

It should be noted in passing tha, t the quadratic
energy behavior displayed in Eq. (2.17) for X = 1
conforms to Lekner's analysis of potentials that
lead to weakly bound states. "

These considerations emphasize that general
specification of the asymptotic electron density far
from an atom or molecule remains a deep and un-
solved problem.

though variationally determined parameters k and

c may fail to satisfy this condition. The extent to
which e(luaiity is approached in E(I. (3.3) provides
one convenient way of assessing the quality of trial
function (3.1}.

It may be worth pointing out that wave function
(3.1}is capable of giving an exact description of
the two-electron ground state inde asymptotic
limit that X approaches -~. Ig this limit the two
electrons bind together tightly to form a compact
"dielectron, "' with

c - —,)x[, a, P-2, k +'o,

~"'- --,'x' —4.
(3 4)

By contrast, the simpler wave function (1.7) cannot
describe an orbiting "dielectron" structure, and
would predict a relatively inaccurate eigenvalue in
this limit.

Since all distance coordinates in (3.1) appear in
combination with multiplying variational parame-
ters, the optimized wave function mill satisfy the
quantum-mechanical virial theorem. "

IV. HULTHCN ORSITALS

u(r, a, p)=(e "-e '")/(a-p)r. (4 1)

They can be combined to provide an imyroved ver-
sion of function (1.7), namely

q(r„r, ) =u(r„a, p}u(r„y, 5)

+u(r„y, 5)u(r„a, p).

On aeeount of the fact that

lim u(r, a, P) = e (4.3)

E(I. (4.2) may be regarded as including E(I. (1.7) as
a special case for which p- a, 5-y. However, the
general capacity for all four nonlinear parameters
a, p, y, 5 to be unequal has been the subject of
prior analysis, ' and yroves to be important.

Once again, all distances are multiplied by

A secondary defect in the Hylleraas-Eckardt-
Chandrasekhar function (1.7) is its orbital inflexi-
bility. In place of the simple exponential factors,
it is desirable to use orbitals which can separately
adjust their shayes near the nucleus, and at large
distance from the nucleus. We have chosen to em-
ploy Hulthen orbitals:
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variational parameters, so that the fully optimized
result should obey the virial relation. " A*(BK) = 1.1517,

X*(HO) = 1.0589,
(5.3}

V. NUMERICAL PROCEDURE AND RESULTS

The variational energy

and at these binding limits the energies are equal
to

A. /dr, dr, q'dr, dr, , (5.1)
(BK,x*}= -0.483 969,

(HO, X*)= -0.498 092 .
(5.4)

for both trial functions (3.1) and (4.2), contains
only terms that may be generated from the basic
integral

!(,dc)=f,(e "lr,)e(e" I'r, .l(e "*/r, )d, de„

(b —a')(c —a') (a' —b )(c' —b )

C

(e* —c')(d* —c')) (5.2)

by applying suitable differentiations and limits. As
a result, e.„ is a rational combination of A. , and
the variational parameters contained in g.

For each value of ~ selected, e„„was minimized
directly in a multidimensional parameter space by
a pattern-search computer program. " Experience
has shown' that simultaneous local minima often
occur at different locations in the parameter
space. However, we have had no difficulty in iden-
tifying that minimum which corresponds to the
physical solution of interest, since the wave func-
tion reduction in the A. =0 limit is known.

In order to improve the convergence rate for
the minimization in the case of the Bonham-Kohl
wave function, a was treated as a common scale
factor which could easily be removed from the
computation so as to assure compliance with the
virial theorem. " Furthermore, it was possible
to minimize ~„with respect to k by solving a
quartic polynomial" in this parameter by standard
formulas. " Consequently the pattern-search oper-
ation for the Bonham-Kohl wave function was car-
ried out only on the two-dimensional space of the
reduced parameters p/n and c/cd, though with
running evaluation of k. By contrast, the full four-
dimensional space of parameters e, P, y, and 5
was pattern-searched for the Hulthen orbital (HO) g.

Table I provides some energies computed for the
two wave functions, for selected values of A. In
both cases the hydride ion is stable against ioniza-
tion, and further increase carries the energy up
into the continuum. The relevant local energy
minimum ceases to exist beyond a critical value of
the coupling constant A. , which we find to be larger
for the Bonham-Kohl (BK) wave function. Our es-
timates of the critical binding values for A. are the
following:

The respective coupling-constant values at the
crossings into the continuum were found to be

A., (BK) = 1.087 602,

A., (HO) = 1.049 789 .
(5.5)

TABLE I. Ground-state energy for the two-electron
system, with variable coupling constant ~. The results
refer to the Bonham-Kohl (BK) wave function in Eq. (3.1),
and the Hulthen-orbital (HO) wave function in Eq. (4.2).

~'aj pro&

0.20
0.40
0.60
0.80
1.00
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.10
1.11
1.12
1.13
1.14
1.15

-0.881 163071
-0.774 413359
-0.679 490 048
-0.596 410 064
-0.526 001995
-0.522 860 069
-0.519 759432
-0.516 701 307
-0.513 687 105
-0.510 718447
-0.507 V97 207
-0.'504 925 612
-0.502 106310
-0.499 342 550
-0.496 638 406
-0.493 999155
-0.491432 015
-0.488 947 613
-0.486 563 913
-0.484 323 976

-0.882 222 042
-0.7.65 090 652
-0.66V V18 644
-0.583 516226
-0.513374 025
-0.510453 742
-0.507 630 251
-0.504 918 990
-0.502 344 275
-0.499 952 049

The computed energy curves versus A, are shown
in Fig. 1, for the region around A, =1. For compar-
ison, the corresponding curve for the Hylleraas-
Eckart-Chandrasekhar (HEC) function (1.7), taken
from Ref. 7, has been included in Fig. 1. The
curve labeled "exact" is a plot of the function (1.5)
as specified in Ref. 5.

Presuming that the "exact" curve lives up to its
name, we see that the elaborations of simple wave
function (1.7) which are respectively represented
by BK and by HO produce opposing errors in ~*
and e'(A. *). Evidently the inclusicn of explicit spa-
tial correlation in BK, by permitting the electrons
to avoid each other more effectively, reduces the
influence of the electron repulsion which eventually
must destroy the stable localized state. On the
other hand, extra orbital flexibility brought to the
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problem by Hulthen functions makes it easier to
develop an extended tail on the electron density
far from the nucleus, which is likely a necessary
precursor to the critical binding state at X*. It
seems probable that a wave function combining
Hulthen orbitals with the Bonham-Kohl correlation
factor would give an excellent approximation to the
A.

* for the exact problem, thought to be about
1.1184. In any further elaborate calculation of the
critical binding phenomenon, it is obvious that
care must be exercised to include a balance be-
tween spatial correlation and orbital flexibility.

Table II lists the variational parameters calcu-
lated for the Bonham-Kohl wave function. These
results indicate that the rate of hange with A, of
each of the parameters becomes infinite as A. ap-
proaches X*(BK), though the parameters them-
selves remain bounded.

That the correlation-factor exponential decay
constant c is small, and declining with A. , con-
firms the earlier argument that correlation is ex-
tremely important. Evidently the spatial range of
angular correlation is very large, for even when
one electron is moderately far from the nucleus
it still polarizes the inner-core electron.

The last column in Table II checks the extent to
which electron-electron cusp condition (3.3) is
satisfied. Ideally the entries should be all precise-
ly —,'. Since they are smaller than —,

' it is clear that
greater correlation-factor flexibility could be used
to good advantage in a more elaborate calculation.

Table III contains the HO parameters. Once
again they display diverging rates of change as A,

increases to the relevant X*(HO), while remaining

—480
—482—
—484—
—486
—488—
—490—

C9 —492—
Ulz 494

—496—

TABLE II. Variationally determined parameters for
the Bonham-Kohl wave function, Eq. (3.1). The last
column gives the electron-electron cusp magnitude,
whose exact value is ~.

-kc
(1+k) A,

0.20
0.40
0,60
0.80
1.00
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.10
1.11
1.12
1.13
1.14
1.15
1.151
1.1516

1.08914
1.102 59
1.10165
1.091 58
1.072 08
1.070 72
1.069 32
1.067 84
1.066 30
1.064 68
1.062 98
1.061 16
1.059 23
1.057 15
1.05489
1.052 39
1.049 57
1.046 27
1.042 09
1.03510
1.033 62
1.032 01

0.83942
0.748 61
0.663 99
0.575 12
0.466 29
0.459 60
0.452 71
0.445 57
0.438 16
0.430 44
0.422 37
0.41386
0.404 87
0.395 24
0.384 88
0.37,3 49
0.360 68
0.345 72
0.326 80
0.294 88
0.287 97
0.280 36

-0.302 25
-0.532 54
-0.699 77
-0.81162
-0.873 66
-0.87545
-0.877 19
-0.878 62
-0.879 98
-0.881 14
-0.882 12
-0.882 89
-0.883 54
-0.883 80
-0.884 08
-0.883 91
-0.883 31
-0.882 40
-0.880 99
-0.879 58
-0.880 18
-0.882 65

0.16848
0.128 51
0.094 69
0.068 49
0.051 96
0.051 41
0.050 86
0.050 41
0.049 94
0.049 52
0.049 12
0.048 75
0.048 34
0.048 01
0.047 51
0.047 04
0.046 47
0.045 58
0.044 01
0.039 50
0.037 92
0.035 38

0.365
0.366
0.368
0.369
0.359
0.358
0.356
0.354
0.352
0.350
0.347
0.343
0.340
0.335
0.329
0.323
0.314
0.303
0.286
0.251
0.242
0.231

y, 6= $+ig.

TABLE III. Variationally determined parameters for
the Hulthen-orbital wave function, Eq. (4.2).

bounded. The fact that y, the smallest of the or-
bital parameters, gets so close to zero at the crit-
ical binding limit provides evidence that the exact
wave function is likely not exponentially decaying
with increasing distance, when A, = A. *.

Our calculations show that y and 5 are distinct
real numbers only when A. exceeds 0.995. At this
point they become confluent, and in principle would
become complex conjugates upon further reduction
in A. :

—498—
—.500
—.502—
—.504—
—.506—

TINUUM

I

I-OO 1.02 1-04 1-06 1-08 1-10 1-12 1.14 116 I 18

FIG. 1. Energy curves for the two-electron ground
state. The "exact" result is a plot of Eq. (1.5), taken
from Ref. 5. Curve HEC refers to results from Ref. 7
for the Hylleraas-Eckart-Chandrasekhar function (1.7);
curve BK is the energy for wave function (3.1); curve
HO refers to wave function (4.2). The energy unit is
specified by Eq. (1.1).

0.20
0.40
0.60
0.80
1.00
1.01
1.02
1.03
1.04
1.05
1.058
1.0588

0.91503
0.844 53
0.803 63
0.794 74
0.843 48
0.847 27
0.851 70
0.856 92
0.863 44
0.872 41
0.886 54
0.891 25

1.29698
1.412 53
1.459 86
1.432 93
1.284 80
1.272 75
1.259 31
1.244 08
1.225 91
1.202 05
1.166 71
1.155 54

0.786 83
0.661 15
0.545 28
0.427 64
0.246 36
0.209 79
0.180 99
0.154 24
0.127 18
0.096 77
0.059 95
0.0518

0.786 83
0.661 15
0.545 28
0.427 64
0.329 67
0.358 77
0.380 96
0.402 55
0.427 07
0.461 28
0.522 87
0.546 34
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The corresponding Hulthen orbital would then ef-
fectively become

"" =0 (&=o, . . . , n},
Ba,.

(6.2)

e ~" sin(fr)/fr. (5.7) while the matrix of second derivatives

VI. DISCUSSION

(i) The results reported in this paper strongly
support the hypothesis that the exact eigenvalue
e" (X} penetrates the continuum. Presuming that
this has been established for the two-electron
ground state, it seems hard to avoid similar oc-
currences in some excited states, and in atomic
and molecular system's with more than two elec-
trons. Some years ago von Neumann and Wigner
constructed an example of a potential which for a
single particle led to a bound normalizable state
in the continuum. " At first sight, the connection
between their synthetic example and atomic phys-
ics might seem remote. However, it now appears
that a widespread and general phenomenon may be
involved, so a motivation exists to generalize the
von Neumann-Wigner method to the widest possible
scope.

(ii} The singularity at x* for the Hylleraas-
Eckart-Chandrasekhar approximation arises from
the confluence of the minimum in e„„with a neigh-
boring maximum. It is easy to show that this sim-
ple event causes the variational parameters to be-
have (in leading order) as (Z*-X)'~' near X*, there-
by.explaining their divergent rates of change with

At the same time eo~(A.) in that approximation
exhibits a singularity of the type (X*—a)'~'. Our
present studies show that these same singular be-
haviors obtain for the more accurate BK and HO
wave functions, taking due account of the greater
dimensionality of the underlying parameter space.

To extend that former analysis to cover the pres-
ent more general context, let g„~ ~ ~, g„denote the
full. set of variational parameters included in a
given trial wave function. The variational mini-
mum in the corresponding energy function

e„(a„~,a„;X), (6.1)

is a point in the (n +1)-dimensional parameter
space at which

The HO results listed in Tables I and III for X

&0.995, however, were calculated under the re-
straint that y and 5 be real, i.e. , g=0. We believe
that the effect of this artificial restraint on the cal-
culated energy is very small, and so its removal
would be pointless in the present context. One
should note though that in the unrestrained situa-.
tion, the inherent permutation symmetry of y and

, 5 will not permit the confluence and drift off the
real axis to generate a singularity in e'(X, HO) at
z = 0.995.

82
(M) ea. aaj k

(6.3)

is positive definite. Thus ~„„increases quadrat-
ically in leading order along any ray in the space
leading away from the position of the minimum.

It is characteristic of the critical binding phe-
nomenon that as A, increases toward ~* one of the
eigenv, ".lues of M declines to zero. The-principal
direction for M corresponding to this vanishing
eigenvalue is one for which the local quadratic na-
ture of c„degenerates at A. = ~* to cubic behavior.
In other words, e„becomes anomalously flat
along the distinguished direction.

Let g,*, . . . , g„* represent the limit as A, -A.* of
the set of parameter values which minimize &„.
An orthogonal transformation T, which diagonal-
izes M at A. =A. *, introduces new coordinates
b„.. . , b„ in the parameter space:

n

b =Q Ty~(Q~. —Q~ ) .
k=o

(6.4)

n

+B,b', +P A, b,'.
j= 1

(6.5),

with suppression of higher-order terms in the b's.
Here I3, and the A,. are suitable nonvanishing coef-
ficients. Expression (6.5) represents the leading
portion of a multiple Taylor series which for other
purposes might have to include more terms.

When A. differs from ~*, the multiple Taylor se-
ries for e„„must be extended to include powers of

For the present it suffices to expand Eq.
(6.6) to the following form:

(b„.. . , b„; X) =—e„„(0,. . . , 0;X*)+K(A. —X~)

+ L(A—A*)b +B b0+op, 0.Ap),

(6.6)

where K and L are constan'ts. In order to restore
the existence of a stable minimum when ~ &~*,
X and L must have the same sign. By setting
ee„ /eb, equal to zero, one finds that expression
(6.6) is stationary at the two positions

For convenience we shall suppose that b, is the
coordinate along which e„(A. ) displays cubic vari-
ation, so that the local behavior of e„„may be rep-
resented i.n terms of the new coordinates thus:

e „„(b„.. . , b„; X*)-=e„„(0,. . . , 0; A. *)
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bo = a [L(X+ —X)/SBo] (6.7)

ng=n. +g ( )ya a
a=p

(6.S)

would have coefficients (T ')» differing from zero
except in accidental (and hence unlikely) circum-
stances. Therefore on account of the square-root
behavior cited for b, in Eq. (6.7), each of the orig-
inal variational parameters Qp Q would normal-

ly also include (X* —X)'t' contributions. This ex-
plains their diverging rates of change near A. *.

(iii} The characteristic para. meter and energy
fractional-power behaviors near X* just adduced
relate only to approximate variational calculations
in which a finite number of variational parameters
occur. However, an exact description of the quan-
tum-mechanical problem can be achieved only in

the limit that an infinite number of variational pa-
rameters be simultaneously considered. Equation
(1.5) raises the possibility that the —,'-power branch

point, which invariably arises for cia~(A. ) in a finite-
parameter basis, should undergo a shift to a some-
what different fractional power.

Such a shift could occur in several ways. One

possibility would be a clustering together of more
and more e„„extrema as the parameter space di-
mensionality increases. Another might be asso-
ciated with the existence at X* of zero as a limit
point for the eigenvalues of an infinite-order ma-
trix M. For the future, it would be very informa-
tive to carry out a systematic series of variational
calculations, with increasing numbers of parame-
ters, to investigate trends in the differential ge-
ometry of the respective e„„hypersurfaces near A. *.

b~=0 (j&0).
The upper sign corresponds to the stable minimum,
while the lower sign corresponds to a multidimen-
sional "saddle point. "

Upon inserting (6.7) into (6.6), we find that the
extremal values for the energy depend on A. in the

following way:

f(A. )= t. „(0,;,0; X *) + L(X —Z ")

y (2L t /sst2B~t2)(y+ g) t2+0((g+ g)2)

(s.s)
This explicitly demonstrates the branch-point
character of the energy at X*, and shows how it
arises from the confluence of extremal positions
on the variational energy hypersurface.

The coordinate transformatio. .averse to the one

exhibited in Eq. (6.4),

(iv) Associated with the e l branch point at X*

must be a branch cut, which conventionally would

run along the positive real axis. Analytic continu-
ation of e' around A,

* to the branch cut will lead
to complex energies:

e"'(X) =e„+te, (Z&Z*), (6.10)

where the sign of the imaginary part should be
positive or negative if the cut is approached re-
spectively from above or below. Since the time-
dependent wave function is

e(r„r„t) = g(r„r,)e " (6.11)

the complex energies (6.10) correspond to exponen-
tially growing or decaying states.

Consider the decaying case, for which the imag-
inary part of e' is negative. The two-electron
complex may be regarded as a "radioactive" enti-

ty, whose half-life requires and determines a di-
verging particle current. From this point of view,
one would expect the wave function g at large dis-
tance from the nucleus to show the outward current
flow explicitly. The specific asymptotic form for

g therefore should be

-k =~ +-.1 2 1
2 r 2' (6.13)

The logarithmic term in (6.12) represents the
standard wave distortion expected for a Coulomb
field, ' in this case due to the nucleus plus remain-
ing electron.

Changing the sign of e,. and k in Eq. (6.12) pro-
duces the exponentially growing case, with inward-
ly converging current.

The point of displaying Eq. (6.12} is to aid in se-
lection of variational functions for future detailed
investigation of the critical binding phenomenon.
It is desirable that they be able automatically to
yield radial current flow upon analytic continua-
tion past z*. Furthermore, Eq. (6.12) shows that
a self-consistency is required between the quanti-
ties c, and k which appear in the asymptotic part of

g, and the real and imaginary parts of the corres-
ponding variationally determined energy for that g.

e)y) . 1 —yr, 'e p' «' +i er, + . le(er, .) I.
j=1,2

(6.12)

In this expression k is the final momentum of the
ejected particle, which is determined by the
amount to which &„ exceeds the bottom of the con-
tinuum:
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