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The problem considered is that of two identical two-level atoms a fixed distance r apart,
one of which is excited at t=0. A simple improvement on the usual on-shell approximation
(which in the single-atom case is part of the Weisskopf-Wigner approximation) yields new
solutions for the various probability amplitudes in the form of infinite series involving all
the retardation times nr/c. The truncated solutions involving only the single retardation
time r/c are compared with previously published results both when all photon modes are al-
lowed and when only photons propagating along the interatomic axis are allowed. %hen the
retardation times are neglected, the series are su~ed to give the well-known resuIts of
Stephen and others.

I. INTRODUCTION

One of the classic problems in the quantum theory
of radiation is to show that the mutual influence
of two systems interacting through the electro-
magnetic radiation field yroyagates with the veloc-
ity of light. The problem is usually formulated
in terms of two atoms a fixed distance r apart,
atom 1 in the first excited state, atom 2 in the
ground state, and the electromagnetic field in the
vacuum state. Using the solution of Weisskoyf
and Wigner' for the spontaneous emission from
atom 1, several authors' showed that atom 2 has
vanishing probability of being excited until time
r/c. The problem was reexamined following a
suggestion by Ferretti and Peierls' that quantum
electrodynamics may not provide a correct solu-
tion. Hamilton4 and Heitler and Ma' answered
this objection and again showed that atom 2 has
nonvanishing probability of being excited only
after time f =v'/c. The problem is now textbook
material. 6

In a different context, the two-atom system with
one excitation is again of fundamental importance.
Lord Rayleigh' first suggested that resonance
broadening due to identical atoms is of greater
magnitude than the broadening due to the presence
of foreign atoms. Dicke' was the first to empha-
size the cooperative nature of the spontaneous
emission from a system of identical sources. As
an example, he considered the two-atom ease with
one atom excited, the atoms being located within
a transition wavelength of each other. He pointed
out that there are bvo equally likely possibilities:
the system will either decay at twice the single-
atom rate, or it will be nonradiative. Steyheno
and others' further studied this simplest example

of cooperative decay and expressed the cooperative
linewidth and line shift as a function of interatomic
separation. The problem continues to be of in-
terest, especially in the light of increasing efforts
to study "super radiance" experimentally. "

It appears to us that the second aspect of the
two-atom problem is now better understood than
the first. The causal aspect of the problem de-
serves more careful study, especially in view of
its fundamental importance. The solutions yre-
sented by several authors' for the various proba-
bility amplitudes are discontinuous in time, ex-
hibiting a step-function behavior at t =r/c; the
same departure from the continuity demanded
by the Schrodinger equation is reproduced in a
popular textbook. ' Furthermore, even. the con-
tinuous solution given by Hamilton4 is only valid
for times less than 2r/c; it does not demonstrate
the possibility of atom I absorbing its emitted
photon after it was absorbed and thea emitted by
atom 2. It would be desirable to have a solution
that is not only continuous, but shows how all the
retardation times Nr/c enter. When all the retar-
dation times are neglected, it should reduce to the
results of Stephen' for cooperative decay.

Such a solution has been briefly reported re-
cently. The results of th3t work are derived
here in detail and extended. The solution unifies
the two traditionally separate aspects of the two-
atom problem discussed above. Ia Sec. II we
introduce our notation aad briefly review the re-
sults of Stephen. In See. III we show how the ap-
proach may be modified to show the dependence
upon the retardation times nr/c The soiution.
reduces to Hamilton's when the higher order pro-
cesses depending upon nr/c, n~2, are omitted.
In Sec. IV we consider the problem treated by
Arecehi aad Courtens, "in which only photons
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propagating along the interatomic axis are allowed.
Some concluding remarks are made in Sec. V.

H. RESONANT INTERACTION IN FREE SPACE

Consider two identical one-electron atoms sep-
arated by a distance s in the free-space vacuum.
Suppose that at t =0, atom 1 is in the first ex-
cited state and atom 2 is in the ground state (we

shall not be concerned with how such a system was
initially excited}. The ground state is taken to be
a nondegenerate s state from which no real spon-
taneous transitions are possible, while the first
excited state is a triply degenerate P state. Since
we are not interested in single-atom radiative
frequency shifts here, we may use the two-level
model of the atom as a reasonable approximation. '4

While this assumption ignores spatial degeneracy,
no real difficulty is introduced, since the three
transition possibilities Anz =0, ~i may be treated
separately. Thus, the "excited state" at this point
need not carry a specific value of m.

The Hamiltonian for this system is

may be complex. As usual, I-&, and I+&, are, re-
spectively, the ground- and excited-state vectors
of atom /. The operators o,' are defined by

l l+ ~ +l +11
%'e may write the state vector for the system in

the Schrodinger picture as

(s)

where the I P„& are eigenstates of the unperturbed
system

Then the Schrodinger equation becomes (upon

using orthonormality)

With the given initial conditions, an approximate
complete set of states is given by'

(10a)

H=H +H„+H,

where H„and H~ are, respectively, the atomic
aqd field Hamiltonians, and H,NY is the interaction
Hamiltonian" (see Appendix A)

INY t i (Xl) —p. 2
' E(x2)' (2)

Here, p. , is the transition dipole moment operator

P, =- ex, for atom /, and E(x,) is the electric field
operator evaluated at the position x, of atom /";

where V is the quantization volume; e(kq) is a
polarization unit vector, k ~ e(kq) =0, &=1,2;
and a(kz) and at(k&) are, respectively, the photon
annihilation and creation operators for mode (kq).

The Hamiltonian (1) may be written, using the
two-level approximation, as

H =Hg+Hp —N Q Q [gg(kg)ag +gg {kg)o'g 1
l=ly2

& [a(k9 —at(k~)],

g (k )—=g '(2wha) /V)'i2 [p, , e(ky)]e'"'"&. (5)

We have taken a real polarization basis, but the
transition moments

u i
=- ~(-I exil+&i = v v i

E(k») =K(&o, +~,). (10d)

The sta«s I Q, & and lp, & have one atom excited
and the radiation field in the vacuum state, while

I P(k»)& has both atoms in the ground state and one
photon in mode (kq). The state

I p(k»)& has both
atoms excited and one photon in mode (kq};
I P(%»)) would be omitted in the rotating-wave
approximation (RWA), or resonant approxima-
tion" of replacing Eq. (4) with

b, (t) =-Q g,*(%„)b„{t)-Q g (k )b-„(t),
]), ]

(12a)

-g, (%~)ai at(%g)].

(11)

This approximation admits only processes corre-
sponding to the emission of a, photon and the simul-
taneous lowering of an atomic state, and vice
versa. The rotating-wave approximation is dis-
cussed further in Appendix A.

With the states (10), the Schrodinger equation
takes the form
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b-„(t)=-i(~, —~,) b-„(t)

+g, (k.)b, (t)+g.(&.) b.(t), (12c)

b~ (t)=-i((u~+(o )0bk (t)

+g.*(&x)b, (t)+g,'(kx) b.(t), (12d)

with initial conditions b, (0}=1, b, (0) =b-„(0)
=b-„(0)=0. To solve this set of coupled equa-ls
tions, we Laplace transform the set (12) using
these initial conditions to obtain

~,(t)= —gg,*(k )b- (t) —Z g(& )b- (t),
ky kg

(12b)

dispersion effects we are concerned with. Hence,
we may equate the level shift derived from B(s)
with the frequency shift of the transition of the
coupled system.

The r-independent self-energy of the two-ground-
state atoms involves two equal terms in , +„
and represents the effects of wholly virtual transi-
tions from the ground state of each atom. One of
these terms will cancel the ground-state nonreso-
nant term in the shift of ~P, ), the other will enter
with the correct sign to give the shift in the transi-
tion frequency of atom 1. Symbolically,

~a —~o + ~a+ ~o — ~„+~o + ~a+ ~o

b, (s) =[s+A(s)] /([s+A(s)]' B'(s)/-,

b, (s) =-B(s)/([s+A(s)]' —B'(s)], (14)

with

b(s}—= dte "b(t),
0

and whereas

A(s) = g, (%g) ' . +
1 1

(s i(w, —ra, ) s ~ '(w, +w, ))'
k~

(15)

is the single-atom frequency shift. Thus, asr-- [B(s)-0] in the all-mode case, the shift in
the central resonance frequency from a system in
initial state ~P, ) is independent of the presence
of the remote ground-state atom, as it should be.
As long as we are not interested in single-atom
frequency shifts (for which the two-level approxi-
mation is a poor representation anyway), the level
.shift which results from B(s) can.be regarded as
a frequency shift, since all other contributions
are either irrelevant or negligible.

It will prove useful to define

1
+

s+i(&d~+(uo)
(is)

C, (s) =1/[s+A(s) +B(s)],
so that

(17)

The function B(s}given by Eq. (16) will lead to
the r-dependent complex cooperative self-energy
describing the coupling between the atoms. The
function A(s) given by Eq. (15) will lead to the
x-independent single-atom self-energies; it de-
scribes the self-energy of the excited state of
atom 1 and the self-energy of the ground state of
atom 2. Despite superficial resemblances, it does
not lead to the shift in the transition frequency of
atom 1; the antiresonant term involving , +(do
represents the level shift of the ground state of
atom 2, not the shift in the ground-state energy
level of atom 1. Thus, A(s) together with B(s)
yields the energy-level-shift parameter of the
initial state

~ P,). To obtain the frequency-shift
parameter involved in the decay, we must sub-
tract from this the level shift of the state with
two ground-state atoms and no photons. The r-
dependent shift produced by the coupling of two
ground-state atoms is the van der Waals energy,
and is negligible compared with the first-order

b, (t) =-,'[c,(t)+c (t)] (is)

b, (t) =-,'[c,(t) —c (t)],
where

)oo+g ~st
C, (t)= . ds

2vi ~,„„s+A(s)+B(s) '

(19)

(20)

1 " e'"dz
2vi „z—tA(iz+z)+iB(iz+z) '

(21)

If we now consider all modes of the radiation
field available for spontaneous emission (we shall
later restrict the number of modes in Sec. IV}
and go to the free-space continuum limit

The path of integration is parallel to the imaginary
axis, and e is a small positive number. Using
e «1, we may write Eq. (20) as
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Z -;,1'd*a 2
k~

we obtain from Eqs. (15) and (16) (using the rela-
tive dipole approximation"},

A(. )
2ijl R d(0
377SC 0 & —0+Z —SE'

for our purposes.
If we use the same approximation in the inter-

atomic term B(iz +e), we have

f( / )
glc3 0 co —co —jg0

f( r'(dd
)r+

CO+ (a)0 —Z E

(o3 dM
+

+ 0+Z —SE
(22) ig' "" v'f (&or/c) der

f(x) p sinx/x+q(sinx/x' —cosx/x'),

where

(24)

B( )
iP ~ f (~r/c)d~
@AC 0

—4P0+Z -i e

+ . . (23)~ ~

~'f (~r/c) d~
(d + G00+Z —Z6

The function f (er/c) contains the interatomic
separation, and is given by

This integral may be evaluated to give

0 0 0

(28)

(29)

where

where k, =&,/c.
Thus, in the pole approximation, we obtain from

Eq. (21) [using the results (27) and (28)],

C, (t) =exp(-p[1+g(r)] t),

p =0, q =2 for 4m =0 transitions,

p =1, q =-1 for 4m =~1 transitions.
(25) 3 sink0r sink, r cosk,r

gi j
2 p kr 'q k3r3 q k2r2

0 0 0

1 1=izb(x-x, )+P
X —X —ZE'0 x —x0

we obtain

(26)

2p, (cp

A(iz+e)l, ,=," =p,38c3 (2'l)

The quantization axis has been taken to be the
interatomic axis. The details of the derivation of
Eqs. (24) and (25) are given in Appendix B.

The above has served to present our notation
and method of approach. At this point, the usual
analysis (when concerned with the cooperative
aspect of the two-atom system} proceeds by making
a pole, or "on-shell, " approximation in the spirit
of the Weisskopf-Wigner approach to single-atom
spontaneous emission. The pole approximation"
for single-atom emission consists of neglecting
the z dependence of A(iz + e), which may be gen-
eralized in our case to also neglecting the z de-
pendence of B(iz +z). Our new solution is a re-
sult of going outside the pole, or "on-she1.1," ap-
proximation, and keeping the leading z-dependent
effects.

For purposes of comparison, we shall derive the
on-shell results in this section. Using this ap-
proximation in Eq. (22), and making use of the
prescription

Si cosk r cosk r sink r
2 P kr 'q k3r3 'q k2r2

0 0 0

(30)

(33)I4, &=
~2 (14,&+ I y.&),

where l P, ,& are given by Eqs. (10a) and (10b).
Using the correlated states l P, &, it is easy to
show that C, (t) is the amplitude for remaining in
the initial state. Then the state amplitudes for
l &f&, & decay at a rate

P, = p[1+Reg(r)], (34)

Then from Eqs. (18) and (19), the state probability
amplitudes b, (t) and b, (t) are

b, (t) = z (e px(-P[1 g+(r)] t)+exp[-P[1 —g(r)] t)),

(31}

b, (t}=-,' (exp[-P [1 +g(r}]t) —exp{-P [1 —g(r)] t)).
(32}

The probability amplitudes b, (t}and b, (t) are
those appropriate for our initial conditions, when
we know for certain at t =0 which atom is excited.
When the atoms are sufficiently close together,
this initial condition is unrealistic. An alternative
initial state, which allows either atom 1 or atom 2
to be excited with equal probability at t =0, is

where P is one-half the Einstein A coefficient. In
obtaining Eq. (2't), we have neglected all single-
atom radiative level. shifts'; these are irrelevant

which in the limit k0r «1 becomes

V, =ti(1 ~ :t ~ 'e) =P(-1 *1)- (35)



1100 P. W. MILONNI AND P. L. KNIGHT 10

for either b, m =0 or for b, m = +1 transitions. In
the symmetric state

~ p, ) the rate of spontaneous
emission is doubled, whereas the antisymmetric
state

~ g } is nonradiative. This is exactly the
result of Dicke' for the special case of two atoms;
the generalization (34) for arbitrary kor is well
known from the work of Stephen' and others. "
The imaginary part of g(r) represents a radiative
level shift and is similarly well known. """

III. RETARDATION IN RESONANT INTERACTION

While the solutions in Sec. II are well known,
they possess some disagreeable features. The
main one is the absence of retardation times nr/c;

because of the approximations employed in solving
the equations of motion, we have neglected the
causal propagation time. Each atom is allowed to
influence the other instantaneously. The limita-
tions of this approximation have been stressed by
Arecchi and Courtens. " We now consider an
improvement over the pole approximation used in
Sec. II, and show how the retardation times appear
naturally from our approach. In this paper, we
are not concerned with the features of purely
single-atom spontaneous emission, "so we will
continue to make the pole approximation on the
single-atom self-energy term A(iz+e). We may
use the prescription (26) to decompose the inter-
atomic term B(iz+a) to

iC/ 'f( r/cldw "' f(rr/c)'d
}B(iz+e) =—, . +

7fac 0 (Itc}0 +Z lC 4 +0 Z +Sf

2 pOO

d~ ~'f (~r/c) [i zz6(~ —~, +z) P+(1/~ —(u, +z)]gSC', '0

'LP, ~0
d&o ra'f(~r/c) [ iv5(~ —-&u, -z)+P(1/&u —(o, -z)]. (36)

Rather than neglect the z dependence of B(iz+e)
entirely, "we shall assume ~z~« ~, in Eq. (36).
Then the third term on the right-hand side of Eq.
(36) may be neglected. Furthermore, we shall
replace the term P(1/(u —&u, —z) by P(1/(u —&uo+z)
(see Appendix C). Then

B(iz +e) =
z d(0 (dzf 5((o —(uo+z)IC g ~ C

x (ip/kor+ iq/k, 'r'+q/k', r'}. (40)

To facilitate comparison with earlier work, we
assume k,r»1 so that from Eq. (21)

Since the principal effect of retaining z will be in
the exponent, we shall neglect z everywhere except
in the exponential in f, (x),

B(iz+z}=-(—,'P)e" 0 ""'

ip,' " ~' ~~c
7TSC g & —0+z (37) C, (&) . I dz e'"[z —zP+(,'zP)e" 0 —""'

2 Pg' g czz

Since the integrals now run over a common range,
and the arguments of the principal part and delta
function are identical, Eq. (37) can be written as

&'f (~r/c) d~
wSC „„+—, +z -ic

Within the full on-shell or pole approximation
(z -0), the step from Eq. (36) to Eq. (37) is exact.
The "semi-pole" approximation involved in re-
placing Eq. (36) by Eq. (37) is discussed in more
detail in Appendix C.

Evaluating B(iz +a} from Eq. (37) gives

x (ip/k, r+i q/k', r'+q/k, r')]
(41)

Since ~B(iz +e)/(z —i P)~& 1 for all z, the integrand
may be expanded into a,power series

00

C, (t) = . dz e'"
27ri

p q ~q w n"~ '(I'} k. 'k."-kr
nkor &- fnsr/c

X
(z —i P)""

B(zz+e) = (P'/Ic')(~,--z)'f [(~o-z)r/c]

where

f, (z) =e'" (ip/z+ iq/x'+q/x').

(36)

(39)

Actually, our method applies if only @or~ 3 for
either 4m =0 or 6m = +1 transitions. This means
that the atoms must be more than half of a transi-
tion wavelength apart. For separations less than
this (where retardation does not play an important
role), we can extend our method, but in this case
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it is necessary to include single-atom level shifts. Provided this restriction on r is satisfied

(42)

where U is the unit step function. From Eqs. (18) and (19) we obtain the probability amplitudes

(43)

b (t)- ——j + e(2Or p t U t e-8(t cr/c-)p q iq " nr " nr
(44)

b2(t) = (3i/2kc«) e(2()"p(t —«/c)

X U(t «/&) e 8(t r/c&-- (46)

For the probabilities, we have from Eqs. (45} and
(46),

Ib (t)I2=e-28' (47)

Equations (43) and (44) represent our new im-
proved solutions, and exhibit several interesting
features not contained in earlier treatments of
this problem. Since the results (31) and (32) were
obtained by neglecting retardation times, each
atom then feels the influence of the other instan-
taneously, and the system in this approximation
immediately decays in a cooperative fashion.
However, if k~r»1, retardation will play a sig-
riificant role; the way each atom begins to feel
the influence of the other is of interest and im-
portance.

If we neglect the terms which are nonvanishing
only after times t =2«/c, and retain only the leading
terms in (kc«) ', we have for b, m = +1 transitions

b, (t}=e (45)

previously, ' but in that case, the solution was
discontinuous. Our solution, in common with that
of Hamilton, 4 is continuous, but in contrast to
Hamilton's solution, it exhibits all the multiple
retardation times associated with successive ex-
changes of the photon.

To see how the effects of reabsorption (and the
subsequent higher-order retardation times) modify
these simple lowest-order results, it is interesting
to retain terms including the second retardation
time 2«/c, so that the reexcitation of atom 1 can
be described. We may again restrict ourselves
to kc«»1 and retain only the leading term P/kc«
in Eqs. (43) and (44) for the probability ampli-
tudes

( t) e(2()r1 Sip
, nt 2kr

P
.t U t e-8(t- /& 49

( t) Q e(2pr1 sip
n=z, 3.5... nt 2kor

I b, (t)I' = (3/2k, «)'U(t —«/c)

X[p(t «/C)]2e 28(c-r/c) (48)

nrx p t —s«U t —n«e -8(rc/ cc&(50)
C C

and for the probabilities
which are essentially the results of Hamilton, 4

explicitly keeping track of numerical constants.
Equation (43) predicts that at short times the

excited atom 1 decays exponentially as if isolated
in free space. But at time t =2«/c, it begins to
be aware of atom 2; clearly this represents the
possibility of the excitation being first emitted
by atom 1, being absorbed and then re-emitted
by atom 2, and finally reabsorbed by atom 1. The
other terms have an analogous interpretation.
Similarly, Eq. (44} predicts that the "signal" from
atom 1 does not arrive at atom 2 until t =«/cr
This specific feature has, of course, been derived

I b, ( t)I' = e '8' —(3p/2k, «)' [P(t —2«/c)] '
x U(t —2«/c) e '8" " "cos(2kc«)+ ~ ~ ~

(51)

I b, (t)I' = (3t /2k. «)' [ti(t —«/c)] '

x U(t «/c} e-28 (t r/c) +... - (52}

Consider Eq. (49}. The first term on the right-
hand side corresponds to the spontaneous emis-
sion from atom 1. The second term corresponds
to the possibility of a photon being emitted from
atom 1, absorbed and emitted by atom 2, and then
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reabsorbed by atom 1. The second term in Eq.
(51) for the probability is an interference between
these two terms. Hamilton' obtains essentially
Eq. (52) for Ib, (t)I'; it is identical to Eq. (48) ob-
tained including only a single retardation time
(for i&,m = al transitions) for the obvious reason
that the higher-order terms modify b, (t) only
after time f =Sr/c, i.e., when the excitation has
had time to get back to atom 2. Hamilton has also
noted that the r ' dependence of Ib, (t)I' contained
in Eq. (52) agrees with the classical notion that
atom 2 absorbs proportionately to the intensity
of the light incident upon it.

On the basis of such classical notions, we might
have expected the inverse square dependence of the
intensity of the light from atom 2, times the in-
verse square dependence of the probability of atom
2 to be excited, to lead to an r ' dependence for
the probability of reabsorption of the first atom's
emitted photon after it has been absorbed and
then emitted by atom 2. As Eq. (51) shows, this
is not the case. The first two terms in Eq. (49)
interfere with each other and lead to an ~ ' de-
pendence for reabsorption.

The oscillatory factor cos(2h, r) in the second
term of Ib, (t)I' has an obvious classical interpre-
tation. Suppose the interatomic distance is large
enough for the first two terms on the right-hand
side of Eq. (51) to be a good approximation of
Ib, (t)I'. If the atoms are an odd integral number
of quarter-wavelengths apart, Ib, (t)I' is a maxi-
mum, whereas if the atoms are separated by an
integral number of half-wavelengths, Ib, (t)I' is
a minimum. This is the same type of behavior
exhibited by a classical oscillating dipole in the
presence of an initially unexcited dipole of the
same resonant frequency. The field from the
first dipole drives the second dipole, whose field
then acts upon the first dipole. If the dipoles are
separated by an odd integral number of quarter-
wavelengths, the field seen initially by the first
dipole from the second dipole is m out of phase
with its oscillation and tends to decrease its
emitted power. This is analogous in the two-atom
problem to a decxease in the probability of photon
emission from atom 1, i.e., a maximum Ib, (t)I'.

If we neglect all retardation times, we should
recover the standard results of Sec. II. For times
much longer than all but the largest retardation
times

Thus, we have recovered the results of Stephen'
discussed in Sec. II. The result of Stephen is seen
in this light as the consequence of infinitely many
photon exchanges between the atoms concerned,
and is valid provided that we may neglect retar-
dation times.

IV. RESTRICTION TO PHOTONS PROPAGATING

ALONG INTERATOMIC AXIS

In Sec. III, the photon could be emitted into any
of the free-space modes. However, for the pur-
pose of discussing super-radiance, it is some-
times convenient to restrict the number of avail-
able modes. We may anticipate that for a long
pencil-shaped system of atoms, super-radiant
emission will be overwhelmingly into the axial
modes of the system; indeed the approximation
of allowing super-radiant emission only into this
"end-fire" mode forms the basis of a thorough
discussion'4 of super-radiance. Arecchi and
Gourtens" have discussed the effects of retarda-
tion for such a system, and in particular for a
two-atom system. In this section, we show how
multiple retardation times play a role ln such a
system, and how the result of Arecehi and Cour-
tens may be regarded as a truncated version of
the full solution in a way analogous to Hamilton's
solution for the free-space problem.

Up until now, we have assumed an initial condi-
tion of atom 1 excited an'd atom 2 in its ground
state. lf we allow the states I+& I-&21[0j&=IP&&
and I -&, I+&. I(0]&=14.& «have «5i««y (consis-
tent with orthonormality) amplitudes b, (0) and
b, (0) at t =0, then the amplitudes at the time t are

5, (f) =-,' [5,(0)+b, (0)]C, (f)
+-', [b, (0) -b, (0)]C (f), (54)

b, (t) =-,' [b, (0)+b, (0)]C, (t)
--,'[5,(0) -h, (0)]C (f),

where C, (t) are given by Eq. (20). Arecchi and
Gourtens consider the initial state

I 8,& = (1/~2)(c'""/'
I 4, &+ c '""'

I 4,&}, (56a)

and require the amplitude a, (t) and a, (t) for the
system to be in the states I 8, & and

I
8 ) (1/~2)(&4ko. r/2

I 4 ) &-4@0.r/2
I 4 )) (55b)

~- SPATE(&)l&

gQ
+ivor ( Pi)n c- 8 t

k2x ~
0

c,(i)=Z —, +-. z „+„, ,
n=O + — 0 0

(52)

respectively, at time t. Here k, = $0I =~,/c. As
the interatomic distance r-0, or if k, =0, I 8,)
and

I 8,) correspond to the symmetric and anti-
symmetric states discussed previously. The state
I 8, & corresponds to an initial plane-wave excita-
tion by an incident field of wave vector R, parallel
to r.
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The amplitudes a, (t) and a, (t) can be related to
b, (t) and b, (t) by writing

b, (t)14,&+b.(t) I 4 2& =a, (t) I ~,&+a.(t) I s2&,

so that

A(iz+e}= d~C'—
WC J0 C

which gives

a, (t) =b, (O)b, (t)+b, (O)b, (t) (57)

1 1x +
+Z —Zf &++ +Z -Z&0 0

(65)

for

am(t) =b2(0)b, (t) —b, (0)b2(t)

b, (o) = (I/~2)(e'""')

b (0) - (Ig& )(e ~ko t2)

(58)

(59)

ZZ(iz ~ z)= J dsS'(—)sss( )
1 1x

~ ~ ~+
& —+0+Z -i& +++0+Z -iE

(66)

As in Sec. III, we find it convenient to work with
the functions c,(t). Using Eqs. (54), (55), and
(57)-(59), we have

If we again make the pole approximation on
A(iz +e), and neglect single-atom frequency shifts,
we have

a, (t) = —,'(1+coskor) c+(t)+—,'(1 —coskor)c (t),
A(iz+e)I, o=(L/c)C'(k, ) = zy, (67)

a, (t) = ,'i sink-, r-[c, (t) —c (t)].
For k0r-0

a, (t) =c,(t), a, (t) =0.

(60)

(61)

and

B(i z + e ) = (-,'y) exp [i (&, - z ) r/c], (68)

where y is the single-atom decay rate replacing
the Einstein A coefficient.

Using the same approximations as we used in
Sec. III to evaluate B(iz+e), we obtain

We choose the situation appropriate to an ideal-
ized description of super-radiance in a pencil-
shaped cavity by considering only radiation modes
with wave vectors along the interatomic axis;
this corresponds to the directional emission along
the cavity axis. Following Arecchi and Courtens, "
we consider only a single polarization, and replace
Eq. (5) with

g (k) =(Ilk)(2'~ /I')' 'e""'"'
=C(k) e&H' ~ xl, (62)

where again

c,(t) = Q, e'"""[-',y(t -nr/c)]"(+ 1)"
0 Pl 1

x U(t —nr/c} exp [-—,'y(t —nr/c)) .
If we neglect all terms which are nonvanishing
only for t& 2r/c, we have from Eqs. (60}, (61},
and (69)

a, (t) =e "' ' —coskore"o" [(-,'y)(t-r/c)]
x U(t r/c) exp—[--,'y(t —r/c)],

and

(69)

(70)

A(s) = g C'(k)([s+ i(~, —~,)] '

+ S+ S ~+&0 (63)

B(s)=g Cm(k)coskr([s+ i(~~ —~ )]

+[s + i (+ + ~,}]-' j. (64)

For reflecting boundary conditions k =ns/L, fol-
lowing Arecchi and Courtens, "

I:-—'Jss,
7T

x, -x, =rr.

c,(t) is given by Eq. (21), where instead of
the free-space all-mode results (15) and (16), we
now have

a, (t) =i sinkor e"o"[(-,'y)(t —r/c)]
x U(t —r/c) exp[-zy(t —r/c)]. (71)

Equations (70) and (71) should be compared with
the corresponding results of Arecchi and Courtens:

a, (t}=e ' ' —(,'y)(t r/c)--
x U(t —r/c) exp[- —,'y(t —r/c)], (72)

a, (t) =-(—,'y)(t —r/c) U(t —r/c)exp[=~y(t —r/c)].
(73)

For k,r-o, a, (t) and a, (t) are, respectively, the
amplitudes for the symmetric and antisymmetric
states I Q, & and I P ). Equation (61) [or (71}] indi-
cates that, in this limit, the antisymmetric state
cannot be reached. This is certainly as it should
be, since in the limit @A-0, the Hamiltonian
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a, (t) = —,'(1+cosk,r) exp [=,'y(1 + cosk,r) t]

&& exp [-—,
' iyt sink, r] + —,'(1 —cosk,r)

x exp [-—,'y(l —cosk,r) t]

&&exp[-,'iyt sink r], (v4)

a2(t) = 2i si-nkor(exp[-~y(1 +coskor) t]

x exp(- —,
' iyt sinkor)

—exp [--,'y(1 —cosk,r) t]

x exp(—,
' iyt sink, r) ). (v5)

The fully retarded results indicate that there is
no cooperative decay until time r/c On th. e basis
of this result, Arecchi and Courtens" have intro-
duced a "cooperation length" cv„where v, is the
super-radiant lifetime. Atoms separated by more
than a cooperation length will decay approximately
independently. This argument is, of course, only
meaningful for the case of highly directional emis-
sion; if all propagation directions are allowed,
the Stephen interaction cuts off at distances much
shorter than those for which the causal retarda-
tion times play an important role. From Eq. (30),
it is seen that the cutoff length in this case is
approximately a transition wavelength. In a simi-
lar context, this result was discussed by Lord
Rayleigh. "

It should be emphasized, of course, that the
restriction to photons propagating along the inter-
atomic axis is unrealistic. We have discussed
this idealized model only to draw comparison
with the work of Arecchi and Courtens. " A more
realistic treatment of cooperative decay, including
emission into all available free-s'pace modes,
should predict the directional characteristics of
the emission. Such an analysis could proceed in
a manner similar to that presented in Sec. III.

becomes invariant under particle permutation,
and can only connect states of the same symmetry.
~Q ) has symmetry opposite to that of ~Q, ) under
particle permutation, and so its amplitude must
remain zero for all times. In Dicke's terminology, '
the cooperation number, initially equal to 1, must
be a constant of the motion for kor-0; the state
~ Q ) has cooperation number 0, and therefore
cannot be reached.

The Arecchi-Courtens" result (73) indicates
that the antisymmetric state has some nonvan-
ishing amplitude for t&0 in the limit r-0; this
disagreeable feature is not found in Eq. (71).

When all the retardation times are neglected,
the complete set of photon "exchanges" may be
summed to yield

It should also be borne in mind that a, (f}and

a, (t) refer to the correlated states
~ 8,) and

~ 8,)
and not to the product states associated with b, (i)
and b, (&). The product states ~p, ) and ~p, } are
useful for discussing the retardation aspect of the
problem where the emphasis is on excitation ex-
change. Any realistic excitation mechanism will
excite some superposition of correlated states
which is not necessarily a product state. For
example, for atoms located within a wavelength,
a plane-wave electric field can only excite a com-
pletely symmetric state.

V. DISCUSSION

g(r}=1—', iq(k r} ', - (v6)

~b, (t)~ =—'(1+e '+2e ~ 'cos2bt}

= cos'ht for Pt «2,
~ b, (t)) =—'(1 + e 8' —2 e ' cos26t)

=sin'b, t for Pt«2,
where

kn, = p,'q/r'.

(78)

(79)

This indicates that for Pt«1, the excitation oscil-
lates back and forth between atoms 1 and 2 with
frequency n (the dipole-dipole coupling). " This
should not be confused with Forster's resonance
energy transfer rate."

For large 6 (small separation), it is clear that
the initial condition we originally specified (a

We have presented a solution to the retardation
problem which (i) is continuous; (ii) reduces to
previously reported continuous solutions when
higher-order retardation effects are omitted; and

(iii) reduces to the well-known results for the
resonant interaction for times much greater than
any of the retardation times (or neglecting all
retardation times). In addition, we show that both
the causal and cooperative aspects of the two-
atom problem are manifested within a single uni-
fied formalism. The full solution exhibits the
effects of multiple photon exchanges between the
two atoms; since very many exchanges occur
during a spontaneous emission lifetime for small
interatomic spacing (r-A), cooperation appears
quite naturally as a smoothed approximation to the
full solution. The calculation of Sec. IO can be ex-
tended to the case k,r&1.

The results we have obtained enable us to com-
ment upon the usefulness of the various basis
states employed. If we take the solutions neglecting
retardation times from Sec. III, in the limit k,r
«1, we have
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simple product state) is not very meaningful.
After a very short time the excitation is equally
likely to be on atom 1 or on atom 2, with the state
vector more precisely defined by ~ P,}, the sym-
metric and antisymmetric states. These states
provide a more natural basis for close separa-
tions; they are exactly analogous to the two normal
modes of the classical system of two coupled
harmonic oscillators. In fact, when radiation
damping is neglected, the states

~ P, ) are sta-
tionary states of the system. For this reason,
they are sometimes referred to as "quasi-sta-
tionary" states. The imaginary part of g(r) di-
rectly describes the energy shifts of these states
and not the product states

~ Q, ) and
~ P, ) .
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(A5)

The divergent (unrenormalized) energy shift term
represents the level shift of the upper state of our
excited two-level atom. Without the RWA we

have, using the "essential states, "'

3mhc' 0
—&0 0 &++0

The additional term represents (as explained in

the text) the level shift of the lower state of the
ground-state two-level atom. The total energy
shift is the energy shift of the initial state

~ P,}
= ~+), ~

-), ((0}). The RWA therefore gives the
correct decay rate but not the proper level shift.
Ground states are not shifted in the RWA. This
is not a severe limitation, since the two-level
atom model is inadequate to deal with real radia-
tive level shifts.

We do encounter a serious limitation of the RWA
when we consider the r-dependent term B in Eq.
(A4)

pP(o,', , i p,
' " (u'f (aw/c) d&

APPENDIX A: COMMENTS ON THE FORM

OF THE INTERACTION HAMILTONIAN
If we do not make the RWA, the level shift is

(A7)

(A1)

(A2)

Then Eqs. (22) and (23) become

2ip, ~ d~
3+BC 0

—0 —i E
(A3)

(A4)

in the pole approximation.
Using Eq. (26},

Throughout this paper, we have used the electric
dipole interaction Hamiltonian H,~ = -p E(r), and

taken into account energy nonconserving virtual
processes by removing the rotating-wave approxi-
mation (RWA). The RWA has been used quite
often in discussions of cooperative decay: in the
two-atom problem by Hamilton, 4 Hutchinson and

Hameka, ' Arecchi and Courtens, "and others.
In the RWA, the expressions (13) and (14) for

b, (s) and b, (s) remain formally the same, but

A(s) and B(s) from Eqs. (15}and (16}are replaced
by

i p2 "" (u'f ((ur/c) d(o

pSC~

which gives our previous results. Therefore,
treatments based upon the RWA cannot give the
correct (retarded first-order dispersion) dipole-
dipole level shift. However, it is clearly per-
missible to use the RWA to calculate A and B
if we adopt the Ansatz of extending the frequency
integrals to minus infinity.

Another problem encountered in spontaneous
emission processes is the choice of the inter-
action Hamiltonian. " We have chosen to use the
dipole form -p E(r), although this presents diffi-
culties in interpreting the level shift in a renor-
malized fashion. This form is well suited for de-
scribing the retarded dipole-dipole interaction.
Other authors have chosen to use the minimal sub-
stitution Hamiltonian -(e/mc)p A(r} (X is the
quantized vector potential), and to neglect the
(e'/2mc') A2 quadratic term. Without the RWA,
but using the pole approximation, we may repeat
the analysis of Sec. III using the p ~ A form to ob-
tain

B'(iz+a)(, , = ', Pf, (&u,r/c)+( iq3—/—k,'2r') P,

(AS}

where f, (ur, /cr) is given by Eq. (39). The first



1106 P. W. MILONNI AND P. L. KNIGHT

term is identical to that obtained using the form
-P E(r), but we now have another term, arising
from a pole at w =0, which is unretarded. This
must now be cancelled by including in the Hamil-
tonian the static dipole-dipole interaction, ' al-
though some authors not interested in the form of
the dipole-dipole level shift have not done this.
For our two-level atom, the static dipole-dipole
interaction is given for our purposes by

angular momentum. For example, if atom 1 makes
a hm = -1 transition (axis of quantization equals
the interatomic axis), atom 2, after absorbing
atom 1's emitted photon, will also emit via a
b, m = -1 transition.

The function f(kr) may be written

1f(kr}= g) dQg g [p e(kq)f'e'"'
4& &

+- +-V =-„„»(o, o, +o, o, ).
4Fcpr

(A9) dAg 1-- k'
" ' e'"' (B1)

Including this term, we obtain a term exactly can-
celling the second term of Eq. (A8),

B'(iz+e)~,=, = ', pf, (~,-r-/c),

in exact agreement with our earlier result, ob-
tained using the -p E form.

taking the unit vectors p. , and p., to be equal, and
making the relative dipole approximation.

Equation (Bl) may be written
CO 21rf(kr}=,~, gi'(2l+1)'~'j, (kr) Jt dP

p

APPENDIX B: DERIVATION OF EQS. (23)-(25)
Jp

d8sin8(1 —~k p~') Y„(8,0), (B2)

Our assumption of parallel transition moments
and p, is actually required by conservation of

where the z axis joins the two atoms.
For nm =0 transitions, p=z and 1 —~k ~ p~'

= sin'8. Then

oo 'lf OO ~1f(kr)=, ~2 gi'(2l+1)'~'j, (kr) d8sin 8Y, (8, 0) = —gi'(21+1)j, (kr) d«(1-«')p30)(«)4v'", =, p E=p ~-I

2 ~.r. sinkr coskr= —
Z i'j, (kr}(6,g —6„=2 („), — (B2)

For &m = +1 transitions, we have g=+2 'i2(«+iy)
and (1 —~k g')=-,'(1+cos'8). In this case, it is
easily shown that

sinkr sinkr coskr
kr (kr)' (kr)'

Thus, for kpra 1, cooperative effects are gen-

erally more important for Lm = +1 transitions
where a transverse photon may be emitted along
the interatomic axis, than for b, m =0 transitions.
This discrimination of 4m = +1 from 6m =0 transi-
tions in the form of f(kr) has also been used by
Hutchinson and Hameka. "

APPENDIX C: DETAILS OF SEMIPOLE APPROXIMATION

For ~z ~«&u, we have already remarked that we may drop the third term on the right-hand side of Eq. (36).
Then

B( + )- z„z, zf z»'f( j z(tz —tz, +z) —
z .(z'Jf „„„dtz+z'Jl „,z )

co cor g
(Cl)

where we need not be concerned with a principal- part integration in the last integral for ~z(«ar, .
We require the integrals

P
~~" ~' sin(&ur/c) d~

co + (dp+z

"
m cos(&ur/c) d&u

(d +(dp gz

" sin(~r/c) d(o

+p+z
(c2)

Since the first two integrals are obtained from the third by differentiation with respect to r, we need
only consider the third integral
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t" sin(~r/c) d~
+ Wo+Z

which can be evaluated to give

X (z) = C-i(kor -zr/c) sin(kor -zr/c)
+si(kor —zr/c) cos(k,r -zr/c)
+ w cos (k,r —z r/c),

(C3)

(C4)

The replacement indicated by Eq. (C10) is, of
course, exact in the full pole approximation (z =0}.

The pole approximation can perhaps be best
appreciated by considering the case of single-
atom spontaneous emission. Suppose first that
there is only a single field mode interacting with
the atom. The amplitude for remaining in the
initially excited state with no photons in the field
is, in the RWA, the inverse Laplace transform of

X,(z) =Ci (k,r+zr/c) sin(k, r+zr/c)
—si (k,r+zr/c) cos(k,r+zr/c) . (C5)

From Eq. (C1}, it is seen that X, (z) are required
in the combination

b(s) =[s+A(s)]

where

A(s) =g'/(s+ i6.),

(C11)

(C12)

X (z)+X,(z) =Ci (k,r+zr/c) sin(k, r+zr/c)
—Ci (k,r —zr/c) sin(k, r —zr/c)

+si(k,r -zr/c) cos(k,r -zr/c)
—si(kor+zr/c) cos(k,r+zr/c)

+wcos(k, r -zr/c)
= wcos(kar -zr/c) (C6)

for ~z~«~, . In fact, in the limit k,r»1 we con-
sider in Sec. III, the asymptotic series

2f 4f
Ci (s) = siss ———'

+ —' —
)x x' x'

~b(t)~' =cos' ,'At (+5 /—A2'}sin','At, - (C13}

where A = (6'+4g')'~'. The pole approximation
is meaningless in this case. It would imply ~b(t)~'
=1.

Consider now the case of spontaneous emission
into the free-space vacuum. Now all field modes
are allowed, and in

and g is the coupling constant between the atom and
the single field mode, and 6 = w —&o, where ~ is
the circular frequency of the field mode. We ob-
tain from Eqs. (C11) and (C12) the probability"

1 3t 5!cos+ ~ ~ + ~ ~ ~ ~ ~x' x' x' (CT) A(, ) g lg(&~)l'
s+i(&o, —~ )

kg

(C14)

or

X (z)+X,(z)- wcos(kor —zr/c)

t" sin(&ar/c) d~, ""sin(err/c) d&u

0 (d —(do+Z ~ 0 Co+ (do+8

sin�(~r/c)

d~
J (d —(00 +z

(c9)

1 2! . 1 3tsi(s)=-cess ———~" —siss ———s ")x x' x' x'

(Cg)

indicates the validity of replacing X (z)+X+(z)
by wcos(k, r -zr/c), the semipole approximation,

we effectively encounter an infinite number of
poles (in the free-space limit where the field fre-
quencies form a continuous variable, these poles
become a branch cut). The essence of the pole
approximation is the assumption that, in the free-
space limit, rather than having the excitation ener-
gy oscillate back and forth between the atom and
field [as indicated. by Eq. (C13) for a single mode],
the number of field modes is so large that this
excitation energy never returns to the atom. Our
"semipole" approximation does not alter this ir-
reversibility; it merely represents an improve-
ment over the full pole approximation, to show how
retardation is accounted for in this case.
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