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SimpMed variational method for I'-wave electron-hydrogen scattering
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The simplified Kohn-Feshbach variational method is used to study the phase shifts for the P-wave
electron-hydrogen system. Unlike-earlier calculations where the curve fitting is used to calculate the
width and the shift for a resonance state, we obtained these quantities by direct integration. This
permits us to study the variation of I (E) and A(E) in the resonance region and a well-defined
resonance energy position can be found. In the elastic region we obtained two resonances each for
tnplet and singlet states. These resonance positions compare favorably with previous accurate
calculations.

I. INTRODUCTION

The study of electron-hydrogen low-energy scat-
tering has been of special interest in the past be-
cause it is one of the simplest three-body prob-
lems for which a comparison between theoretical
and experimental results can be made. Among
many theoretical methods proposed to solve such
a problem, the variational approach has received
much attention. The variational method developed
by Kohn' has been used to compute accurate S-
and P-wave phase shifts" for electron-hydrogen
elastic scattering. However, these calculations
encountered some difficulties, for example, the
occurrence of spurious singularities in the com-
putation. Although Schwartz' has shown that these
singularities can be controlled and that accurate
results can still be obtained, the presence of this
feature is basically undesirable. It is also very
difficult to use Kohn's method to obtain convergent
results in the closed-channel resonance region.
To account for these difficulties, other variational
procedures have been developed, for example, by
Harris and by Nesbet. ' More recently a variation-
al method based on the Feshbach formulatione was
proposed. 7' In its application it was found that the
difficulties encountered in Kohn's method did not
appear. Furthermore, the quasiminimum nature
of the Kohn-Feshbach method, i.e., the calculated
phase shift gives a lower bound to the true phase
shift, is suggested by Hahn7 and numerically in-
vestigated by Truhlar and Smith and Chung and
Chen. ' However, in the variational method the
evaluation of continuum-continuum matrix ele-
ments can become very difficult for higher partial
waves. In the earlier paper, we have shown that
these difficult integrals can be completely avoided
without compromising in the accuracy of the re-
sults, thus further reducing the computational ef-
fort of the Kohn-Feshbach method. Some prelim-
inary results have been presented. In this work
we extend the application of this method to the cal-

culation of widths and shifts for closed-channel
resonances.

II. FESHBACH EQUATIONS AND CLOSED-CHANNEL

RESONANCES

In the Feshbach formalism, the Schrodinger
equation becomes

(PHP —E)P%' = —PHD%',

(QHQ -&)Q+ = —QH~,
(&)

(2)

+ &P+IPHQI Q@&,

where 4pt is an appropriate term of the variational
principle. ' For elastic scattering it takes the
form 2k tan&, where & represents the linear mo-
mentum and 8 is the phase shift. These functionals
are obtained by introducing trial functions for PC
and QC with sets of linear parameters. A set of
equations is obtained by optimizing the functionals.
Some of these equations 'involve continuum-con-
tinuum integrals which are most difficult to eval-
uate. The essence of the simplified variational
method is that these integrals can be avoided with-
out affecting the accuracy of the result. This pro-
cedure is discussed in Ref. 9.

Feshbach has shown that the closed-channel res-
onances are associated with the occurrence, of the
eigenvalues of the QHQ operator. Therefore, to
treat the resonance which corresponds to a particular
&„, we define a new set of projection operators

where P and Q are the open-channel and closed-
channel projection operators, respectively. The
variation functional constructed from these equa-
tions is

[~~] =~~)-&~l PHP-&I P+&-&P~IPHQI Q@&

-(Q4 I QHPI P4&, (3)

Pq]= &Q+I QHQ- &I Q+&+(I+I QHPI ~&
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I"=1-Q', (6)

and

(E —e„)Q'4 = Q'HP'4 (7)

(E —P 'HP ')P '4 =P 'HQ'4

This pair of equations can be solved to give"

Q'q =A„Q„,
where

A„= (Q„l Hl P'4'&/(E —e„),
and

(8)

(9)

where Q„ is the eigenfunction of QHQ. Using this
pair of projection operators the Schrlinger equa-
tion leads to

can be calculated explicitly. In Eq. (18}I'„has
been assumed to be a constant, with respect to the
energy, whereas it is actually energy dependent
as clearly indicated in the Feshbach formalism.
Thus, the investigation of the variation of I'„(E)
in the resonance region becomes a point of inter-
est.

To compute 4~ we note that the last term on the
right-hand side of Eq. (15) is simply the Nth eigen-
function of QHQ. The second term arises from
the interaction of tp„with the continuum as well as
all the other Qi's where j x&. This term is orthog-
onal to Q„. Therefore, if we can remove the Q„
component from the trial function for Q4, the so-
lution thus obtained will neither contain fII) „nor its
interaction term. To see this we write

(P'HP'-&)P "4=[(P+Q-Q')H(P+Q-Q') -&]

A. = (y. l
H I ~'&/(& ~. &.+--.fi'.), (12)

where

Here 4'z is the solution of (E —P 'H'P ')P '4'z = 0.
Substituting Eq. (11) into Eq. (10), we get

x(P+Q —Q')4'+=0 . (19)

This can be separated into

(PHP E)P4~—= —PH(Q —Q')4'g, (Ãa)

[(Q-Q'}H(Q-Q')-&](Q -Q')+ =-(Q -Q'}HPq'

(20b)

and

I'. =2sl(@.IH I
@'&I',

fsl(A. IH
I
s"&I' ~,

The total wave function can now be written as

(13)

(14)

(15)

Since the structure of Eqs. (20a) and (20b) are
the same as Eqs. (1}and (2), a pair of functionals
similar to those of Eqs. (3) and (4) can be con-
structed without much effort. Solution of these
functionals by variational method gives 4~, which
can be used to compute I'„(E}using Eq. (13). The
shift then follows from algebraic computation.
We know &at

x( &+'IHle. &)
' (16)

The appearance of the complex form in the last
equation is superficial since Eq. (15}can immedi-
ately be reduced to

S=e ' oosiio" ssioti p S', ' " de+0,
)

O', IH
(&- ~)

IA. I'= l(y. l +& I'=
H (21)

Since I'„and I(p„l 4'&
I

' can be explicitly calcu-
lated, the shift &„ in the resonance position can
be computed from Eq. (21) by simple algebra. A
more precise resonance position can thus be ob-
tained from

where E«s = n+ n( «s) . (22)

(17)

Excluding the trivial phase factor, expression (16)
is identical to that derived by Fano." As can be
found in the literature, "the width 1„ofa reso-
nance state is usually determined by making a non-
linear least-squares fit with'

b.„(E) is usually a slowly varying and monotonic
function in the resonance region and therefore,
E„, can easily be obtained by a graphic method.
This will be shown and discussed in Sec. III along
with other results. This method permits one to
locate the resonance position without actually look-
ing into the resonance phase shifts.

5 = a + bE + tan ~
[2 I'„/(E, —8)] (18) III. RESULTS AND DISCUSSION

where 5 is the total phase shift, and a and b are
the parameters to be determined from the curve-
fitting process. However, Eq. (13) suggests that
I'„can be calculated by direct integration if 4E P4' = e '~4(r, ) I 01'&s 1 2, (23a)

The trial wave function used fnr the open-chan-
nel segment in the present work is given by
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where J=1, M=O, and

4(r) = g d&r'e '"+(1—e '")'j,(kr)

—tan8 (1 —e ")'n, (kr), (23b)

0.8-

0.6-

L

Q4=Q P P C,»(r.,'r,' e "x'""2
l=o i, j

x Il l+1 JM}+1—2) (24a)

where 8 is the phase shift and j, and +, are the
regular and irregular spherical Bessel functions,
respectively; t is a nonlinear parameter which

only affects the speed of convergence and not the
converged result. For the closed-channel trial
wave function we assume'

0 4
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(b)

where

(24b}

-0.02-
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O. I 0.2
X
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TABLE I. Singlet P-wave phase shifts (in radians) for
electron-hydrogen scattering. The number in the paren-
theses indicates the uncertainty in the last figure quoted.

(a.u. ) Armstead SOC Gailitis ' P resent work

0.01
0.04
0.09
0.16
0.25
0.36
0.49
0.64
0.70
0.712
0.715
0.720
0.7396
0.748 04
0.748 05
0.748 06
0.748 09
0.749 96
0.749 97

0.006
0.0146
0.0163
0.0096

-0.0014
-0.010
-0.014
-0.005

0.006
0.0073
0.009
0.019

0.004

0.004

-0.028

-0.059
-0.058

0.0046
0.0142

0.0079
-0.0037

—0.0178
-0.0104

0.0017

0.005 782
0.014 45
0.015 50
0.008 46

-0.002 87
-0.013 029
—0.017 225
—0.009 544
—0.000 78
—0.001 882

0.002 616
0.003 924
0.010 573
0.040(1)
1.084
2.9799(5)
3.0607 (3)
6.168 18
6.170 68

~ Reference 3.
Reference 13.
Reference 14.

4goo is the ground -state wave function of the hy-
drogen atom. The nonlinear parameters e and P

have to be determined by optimizing the variation
functional.

The most accurate results for electron-hydrogen
elastic P-wave phase shifts are obtained by Arm-
stead who has used 56- to 84-term Hylleraas-type
wave functions and Kohn's variational method. In
the earlier paper, we have shown that the triplet
phase shifts given by a simple separable trial

-0.06-
k2 (o. u. )

FIG. 1. (a) Triplet P-wave and (b) singlet P-wave
phase shifts for electron-hydrogen elastic scattering.
(x), 1s-2s-2p close-coupling calculations, open circles
(0), Armstead's work, and closed circles (), present
work.

function such as the one in Eqs. (23) and (24)
agree excellently with Armstead's result. In the
singlet case, our phase shift differs from his re-
sult mainly in the third or fourth decimal place.
This indicates that the correlation effect is slight-
ly more important in the singlet state as compared
with that in the triplet state. However, a compari-
son with the results of Seiler" et al. who used the
variational method proposed by Harris and Nesbet
and 1s-2s-2P-type trial wave function shows that
the improvement of our result is generally over
90%. Our result is also better as compared with

that of Gailitis. '4 The result for the singlet phase
shifts and the comparison is given in Table I and

Fig. 1. From Table I it is clear that two reso-
nances are observed in spite of the fact that both
are quite narrow. Armstead's calculation failed
to obtain convergence in this energy region.

To determine the resonance positions for both
triplet and singlet states we used the method de-
scribed in Sec. II. We solved the eigenvalue prob-
lem variationally for QHQ to obtain Q„and &„.
Next, the Q„component was removed from the
total trial wave function to obtain Ce. I'(E) was
then explicitly calculated from Eq. (13) followed

by the computation of 4(E). Finally, to find E„,
from Eq. (22) we defined y =E and y =~„+e (E}and
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FIG. 2. Determination of
the resonance position and
the shift for the ~P (1) reso-
nance (in a.u.).
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FIG. 3. Energy dependence of the widths of 'P and 3P

resonances for elastic e-H scattering (in a.u. ).

looked for the intersection of these two lines. We
found this method considerably simpler as com-
pared to the one commonly used" especially for
relatively broad resonances. This graphic method

is shown in Fig. 2. It should be noted here that
Dirks and Hahn" also used a graphic method to
search for positron-hydrogen scattering reso-
nance, but their procedure is considerably differ-
ent than the one we have used here.

TABLE II. Resonance energies and width (in a.u. ) for
P -wave electron-hydrogen scattering. The superscript
indicates the power of 10 with which each number should
be multiplied.

Width Shift + res

iP
2

3P 1
2

-0.125 975 8
-0.125 023 4
-0.142 583 5
-0.125 361 7

0.1051
0.4981
0.2187
0.5401

0.316 -0.125 972 6
0.72 7 -0.1250233
0.4674 -0.142 1161
0.94 -0 ~ 125 352 3

Once E„, is determined, I'(E„,) can also be de-
termined. This is shown in Fig. 3. The results
are summarized in Table II. In these calculations
a 57- or 62-parameter Q4 is used. If more pa-
rameters are used, &„ can be lowered further.
For example, for 'P resonances we obtain
-0.125 998 and -0.125 029 a.u. using 76 parameters.
Among the earlier works available' ' the best &„

for the lowest 'P state is obtained by Bhatia and
Temkin" using a 56-parameter correlation func-
tion. It is lower than our result by 1.4x10 a.u.
On the other hand, the result of Bhatia et al. ,

'
who included correlations explicitly, is consider-
ably higher than our result. Reference 16 quotes
only the result for the lowest 'P resonance.

The resonance states for the P-wave electron-
hydrogen scattering have been studied by several
authors in the past. Burke and Schey" have made
a 1s-2s-2P close-coupling calculation. This is
further improved by introducing correlation terms
in the wave function. "Burke et al. also made a
pseudostate. computation for this system. ' More
recently, Seiler et al."have studied the reso-
nances using the variational method. The results
are presented in Table III. Because of the conver-
sion factor the quoted results of Refs. 13, 18, and
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TABLE III. Resonance energies and width (in eV) for electron-hydrogen scattering. For Refs. 13, 18, and 20 the
conversion factor is changed from 13.605 35 to '13.59747 eV. See Refs. 18 and 21.

References

Efes Present work

18

18
20

16

22

P resent work
13
18
18
20
16
22

10.1717

10.179

10.173

10.171

10.18+0.03

2.86x10 5

2.42x10 ~

2.26x10
4.50x10 5

10.1975

10.198

1.355x 10 8

2.06 x10 7

9.7326

9.762

9.762

9.734
9.753

9.733

9.71+0.03
9.76+ 0.03

5.948x10 3

7.98 x10 3

7.97 x 10
5.94 x10
5.71 x10 3

6.30 x 10 3

&0.009

10.1885

10.196

1.469x 10~
4.28 x10 5

Algebraic 1s-2s-2P close-
coupling calculation

1s-2s -2P close-coupling
approximation

1s-2s -2P +cor relation
1s-2s-2P +pseudostates
Hylleraas wave function +

polarized orbital
Experimental
Experimental b

These results are actually quoted in Ref. 18(b).
J. R. Risley, A. K. Edwards, and R. Geballe, Phys. Rev. A 9, 1115 (1974). A most complete compilation of experi-

mental and theoretical results for electron-hydrogen scattering resonances is included in this reference.

20 have been changed. Neglecting the relativistic
effect we use 13.59747 eV as the ionization energy
of the hydrogen. 2' For the lowest 'P state, our
result agrees excellently with the correlation
wave-function calculation and the agreement with

experiment is slightly improved. In Ref. 16, the

width is also obtained by integrating Eq. (13) in
which C~ is replaced by the result of a polarized
orbital approximation. They obtained 9.733 eV for
the resonance position in close agreement with
this work and Ref. 19, but their resonance width
is slightly larger. It appears that the width ob-

O. l 0-

No
0

0.09-
X

0.0 8-

FIG. 4. S- and P-wave
contribution to the total
calculated cross section in
the closed-channel reso-
nance region viewed from
8=90', 2 0=90', and 64

150

0.0 7
8.7 9.0 9.5

ELECTRON ENERGY (eV)
-I 0.0
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tained in the experiment is somewhat larger than
the more accurate computations.

The lowest 'P resonance position calculated in
this work agrees closely with the correlation cal-
culation of Burke and Taylor" but the width lies
between that of Ref. 19 and Seller et al. (see Table
III). The second resonances of the triplet and

singlet states was studied by Seiler et al." Their
result is somewhat different from ours. For these
cases, the resonance positions- and widths com-
puted in the present work can be considered more
reliable. This is because more radial correlation
is included in the Q4 of Eq. (24a) than the 2s and

2P target states used in the wave function of Ref.
13. These resonances are not reported in the
numerically integrated close-coupling calculations,
perhaps because they are too narrow to be easily
determined.

It is'perhaps worthwhile to mention that the
shift &(E) is very sensitive to the trial function
used for Q4. For example, if we use a less flex-
ible trial function for QC so that &„ is somewhat
higher, we obtain a slightly larger &(E). This
feature is also seen in some of the earlier work. '
Figure 4 shows the S- and P-wave contributions
to the total scattering cross section.
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