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Variational bounds on transition amplitudes*
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Upper and lower variational bounds on the transition amplitudes of the impact-parameter model for
ion-atom scattering were recently reported. A comparison of these bounds with those given by Spruch
leads to an improved 6rst-order variational bound on the second-order error term in the variational

principle recently given. In addition, the second-order variational bound obtained by Spruce from an

apparently different second;order error term also follows from this second-order error term. Finally, as

Spruch has suggested, the second-order bound is simply given as one-half the first-order bound squared
for those amplitudes corresponding to a rearrangement from state n of one arrangement channel to
state n of another arrangement channel.

Upper and lower variational bounds which brack-
et the exact transition amplitudes of the impact-
parameter model for ion-atom scattering were
given in a recent publication. ' Unfortunately, when

these results were reported, I was not aware that
other variational bounds had been previously given.
In fact, Aspinall and Percival' have given an upper
variational bound on the total probability for tran-
sitions out of the initial state, and Spruch' has de-
rived both upper and lower, nonstationary and sta-
tionary variational bounds on the transition ampli-
tudes in a general time-dependent problem.

A comparison of the bounds in Ref. 1 with those
given by Spruch' is not only interesting in itself,
but for the impact-parameter model leads to an
improved first-order bound on the second-order
exror term in the variational. principle of Ref. 1.
This variational principle can be written as fol-
lows:

A „=C~—iA(X~, X„)+in.(6$ „,5$„),

where 4 „ is the exact amplitude for the n-to-m
txansition, C is a first-order approximation to
A„„, and A(X~, X„) is a correction to the first-
order approximation C „, which is given by

x~ and x„are trial wave functions (x~ is a time-
reversed trial wave function), and H is the Hamil-
tonian for the impact-parameter model. ' The quan-
tity 6 in Eq. (1) is a second-order error term:

where 5g „and 5g„are the variations about g~
and iII)„represented by the trial wave functions X „
and X„.~ Equation (1) was derived under one re-
striction. : It was assumed that the system is in-
variant to a reversal of time. A real basis set

D dt, (5)

where II Dll is the norm of the deviation vector in
the time-dependent Schx Winger equation:

8 8
D = H —iS — X„—„= H —iS—

Spruch has given the following variational bounds
on the amplitudes'.

where b, is a first-order variational bound on a
first order error -term, and is given by
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(For convenience I have taken the liberty of modify-
ing Spruch's notation. } As previously discussed,
one can determine trial wave functions in a man-
ner that ensures that 8 = 0.' Therefore by compar-
ing Eqs. (4), (5), and (7), it is seen that b, ~ pro
vides an improved bound on the second-order error
term 4; i.e., in the special case where 8 =0, 4, is
a first-order variational bound on the second-or-
der error term 4. In addition, as previously dis-
cussed, the norm of the deviation vector D is a
measure of the error (per unit time) in the schro-
dinger equation. ' Therefoxe, 4, is a natural mea-
sure of the error in a calculation in which X„ is

was employed in the derivation only for conven-
ience. If other phase conventions are used for the
time-reversed basis vectors, ' then only the
phases of the quantities in Eq. (1}would be changed.

Upper and lower bounds follow from Eq. (1):

(4)

where 6' is some bound on the second-order error
term 4. The following first-order variational
bound on 4 was given in Ref. 1:
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the trial wave function.
Spruch has also derived a second-order variation-

al bound on a second-order error term in a varia-
tional principle which appears to be different from
Eq. (1).' It is interesting to note that thiS second-
order bound also follows from the second-order
error term in Eq. (1). For from Eq. (3):

I&'I-z f Ilgwu IIII&(x.&lid~

and

For a system invariant under a time reversal,
Spruch proved this result for the amplitudes cor-
responding to remaining in the initial state, and
suggested that it might be true for amplitudes cor-
responding to transition from state n of one ar-
rangement channel to state e of another arrange-
ment channel; i.e., a rearrangement reaction
from state n. This can be easily demonstrated;
one can choose trial wave functions such that'

X..a =&X.,(-f),
where K is an antiunitary time reversal operator, '
and so

where
dt D X„, dt' D Xn28

dt D Xnj dt D X

hence

which, under the restriction imposed by time-re-
versal invariance, is the second-order variational
bound given by Spruch. ' Stationary variati. onal
bounds on the transition amplitudes follow by using

b, in Eq. (4).
In general, it will be much more difficult to cal-

culate the second-order bound g than the first-
order bound ~„' one will have to solve two sets of
coupled equations to determine the two trial wave
functions X „and X„, and then perform the double
time integration indicated in Eq. (9). However,
for certain transition amplitudes the second-order
bound is simply given by

(10)

Equation (10) follows by considering the symmetry
of the double time integration.

It should be noted that implicit in the derivation
of the variational bounds in this work is the as-
sumption that the trial wave function belongs to
the class of functions that have the same asymp-
totic form as the exact wave function: i.e., time-
independent linear combinations of the dynamical
states of the system. ' lf this is not so, then Eq.
(1) cannot be obtained, and the bounds, if calcu-
lated, will be infinite, since the norm of the de-
viation vector will not vanish as l

t
l
-~. This re-

quirement therefore limits the usefulness of these
variational bounds to those systems for which the
exact ionic and atomic wave functions are avail-
able: one-electron systems such as H'-8 or He"-
H, or those multielectron systems that can be ap-
proximated by one-electron model systems. '
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