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The importance of quasibound resonances is emphasized, with special reference to alkali-
noble-gas systems. A modified WKB method for calculating the distribution and properties of
quasibound resonances as well as of bound states is reviewed and applied to calculations of
KAr and RbAr ground states. The calculated distribution of states in a Lennard-Jones 6-10
potential agrees precisely with the exact results of Mahan and Lapp. Inclusion of quasibound
resonances is found to increase the total number of states by about 3. Tunneling lifetimes
much larger than typical collisional destruction times are found for most resonances.

INTRODUCTION

Mahan and Lapp' have recently calculated the
number of vibrational levels as a function of the
rotational quantum number E for ground states of
diatomic molecules composed of an alkali atom
and a noble-gas atom. Their method is based on
an exact solution of the Schrodinger equation valid
only for a 6-10 Lennard- Jones potential when the
total energy E = 0. Consequently, it is useful only
in calculating the number of bound states (E & 0) of
potential wells which can be adequately approxi-
mated by a 6-10 potential; energies of the states
are not calculated. As Mahan and Lapp noted, their
numbers are lower bounds on the numbers of effec-
tively bound levels because quasibound resonances
have not been included.

For many situations, quasibound resonances are
as important as bound states. Such resonances,
which have E ~ 0, may be contained by the "cen-
trifugal barrier, "O'K(K+1)/2pR', where 2m K is
Planck's constant, K is the rotational quantum
number, p. is the reduced mass of the diatomic
system, and B is the internuclear separation.
Lifetimes as large as or larger than the collision-
al destruction time of the molecule are typical for

alkali-noble-gas systems. Thus, for example,
we expect resonances to be nearly as important as
bound states in the elucidation of the satellitebands
in line-broadened alkali spectra, the problem re-
ferred to by Mahan and Lapp. ' Quasibound reso-
nances are apparently also important in processes
such as relaxation of optically oriented alkalis'
and collisional-narrowing effects in alkali hyper-
fine transitions. ' Indeed, whenever knowledge
of the equilibrium density or the rate of formation
of weakly bound molecules is of interest, it is a
mistake to ignore quasibound resonances. 4

An additional, possibly important property of
quasibound resonances is that, in contrast to bound
states, they can be formed during two-body colli-
sions. The phenomenon is just that of long-lived
"orbiting collisions, "which have become of inter-
est in recent years. ' There are evidently some
cases in which orbiting effects are observable even
in thermally averaged total cross sections. '

There are various well-known methods for cal-
culating bound-state energies for any potential—
highly accurate numerical routines' for solving the
radial Schrodinger equation as well as rapid, sim-
ple WEB methods. ' Quasibound resonances have
been treated by a modified WEB method in several
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papers on semiclassical scattering theory'; reso-
nances may of course also be treated by more ex-
act numerical methods. Because of its simplic-
ity and the unified treatment available for both
bound states and quasibound resonances, we use
the WKB technique. In the following, we briefly
review the method and then apply it to calculations
of KAr and RbAr. Mahan and I app's results for
KAr are used as a check on accuracy.

METHOD

The application of WKB" techniques to the study
of bound' and quasibound states' is well known.
Far below the top of the barrier, the unmodified
WKB approximation is satisfactory; near the top,
modifications —and, in particular, new "connec-
tion formulas" —are obtained by assuming thebar-
rier there to be parabolic and by then solving the
resulting Schrodinger equation exactly. ' We shall
now briefly review the germane equations thus ob-
tained.

A diatomic system of reduced mass p interacting
via the internuclear potential V(R) obeys the fol-
lowing radial equation:

h' d'
, v U (R) —E)R (R)=O,

where E is the total energy, E the rotational quan-
tum number, +~ the radial wave function, and

Uff(R) the effective potential:

(2)

We further define the phase integrals:

P(E) =- J' 'dRk
Jo

Now KdP/dz is precisely tTR, the classical one-
way transit time for a particle in the well, and 8(E)
=-expy is a measure of the barrier opacity at ener-
gy E.

Using the WKB connection formula, "one can ob-
tain the ratio of the particle amplitude inside the
well (r, & R & r, ) to that outside (R &r, ) T.he condi-
tion for a resonance is simply that this ratio be a
maximum. One thereby finds the semiclassical con-
dition for a bound or nearly bound state:

P(Z )=v(v+-,'), v=O, 1, 2, . .. ,

At energies near Eb, the top barrier, the WKB ap-
proximation relating wave-function amplitudes on
either side of the barrier becomes inaccurate. We
may however approximate the effective potential
near the top of the barrier by expanding U~(R) in a
Taylor series about R=B„ the position of the top
of the barrier, and retaining terms only through
(R —Ro)'. The resulting radial wave equation can
be solved exactly and the wave functions expressed
in terms of parabolic cylinder functions" of com-
plex index. Relating the asymptotic forms of the
wave function to the WKB solutions on either side
of the barrier allows us again to calculate the ratio
of the particle amplitude inside and outside the
well. The condition is then found to be'

The potential V(R) is assumed strongly repulsive
(V»E}near the origin, vanishingly small at large
R, and attractive (V& 0) over some intermediate
range of R. Within the WKB approximation, we
can calculate the bound states and quasibound res-
onances for virtually any such smoothly varying
potential V. In the following, we restrict our at-
tention to potentials V(R) with only one minimum,
though it is not difficult to extend the treatment to
potentials with several minima. '

Equation (1) represents a particle of mass ((J, and

energy E moving in a one-dimensional potential
UIf(R). For quasibound resonances there will be
three classical turning points x, & xy & x, . For bound

states, ~, -~. In the classically allowed regions
x, &R&r, andR &x„we put

hk = (2g[z —U (R)]-]'"

1
1 1 1 1 —2T —S

P(E )=r(v+-.) —,V--. vrvrvv
~( (E((, )),

(sa)

=m(&+ R) —R& —$(28) '+0(8 ') (sb)

T(Z) = (1+8')-'

where 0(8 ') means "terms of order 8 '."
In Eqs. (S), 6 =argI'( —,'+fy/m} —(y/m) In(ym/e), a

small non-negative phase angle which is zero when

y=0, has a maximum'of 0.15 rad at y=0. 18m, and

approaches zero again as 8 becomes large "; $

= )dy/dE([dP/dE+ R(d5/dy)(dy/dz)] ', and 8[(1—T)/
(1+)RTR/4)]'~R, where T is the barrier transmis-
sion coefficient given by the WKB method (the ex-
pression is exact for the case of a parabolic bar-
rier "):

and in the forbidden regions 8 & x, and x, & A & f'2,
The corresponding semiclassical tunneling lifetime
for a particle in the well is simply

h~ —=(- 2p[E —U (R)]}'~' (4) ~=2f „/T (1o}
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In summary, the method is as follows: The num-
ber of bound or quasibound vibrational states of en-
ergy &E&Eg for a given rotational number E is the
largest integer Ng satisfying

TABLE II. Bound states and quasibound resonances
for the X Z state of HbAr. The potential is given nu-
merically (see Ref. 19); it has a well depth a=43.524 K

and an equilibrium separation Re = 9.889 bohrs.

1 P(E) 6
N ~ —+ +

E. (Eb, ~)

1

+
2w I/k + $&(1 —,' T')—

The approximation of setting the arctan and 6/2v
terms equal to zero is in most cases a good one;
only when E =Eh and NK+ 1& P(E)/w+ —, could the
short-lived resonance thus be neglected. The en-
ergy of the NKth vibrational level is obtained by
solving Eq. (11)for the energy E for which the
equality holds. The transmission coefficient is
given by Eq. (9), the lifetime, by Eq. (10).

RESULTS

(0)
total
2S+1

43
39
36
32
28

24
20
16
12

7

8423

57
52
46
41
36
31
26
20
15

7

The method described above is of course approx-
imate, and even though the underlying WKB ap-
proximation has proved its value in a large variety
of applications, "it is nevertheless valuable to have
the exact calculations of Mahan and Lapp' with
which to check it.

From a list of the number of vibrational levels
NK(E) of energy «E for each K, it is trivial to de-
termine Kmax(E, U), the maximum rotational quan-
tum number for a given vibrational number v. In
Table I, Kmax(E, v) is given for the 6-10 potential

TABLE I. Bound states and quasibound resonances
in a Lennard-Jones 6-10 potential with well depth
E=50.345 K (= 10 ergs) and equilibrium position R~
=8.126 bohrs for a diatomic system of reduced mass
@=19.760 amu (C ) which is the reduced mass for KAr,

(E )
total b

2S+ 1

used by Mahan and Lapp' for the KAr system.
Values of K max(0, v), which include only bound
states, agree exactly with those of Mahan and Lapp.
The values of Kmax(Eb, v), which include also qua-
sibound resonances, are about 3 larger.

The total number of states Ntotal(E) with ener-
gies «E is readily obtained from the Kma (E, y).
Recalling that each state has a rotational degener-
acy of 2%+1 and a spin degeneracy 2$+1, we find

max
N (E)= (2$+ 1)Q Q (2K+ 1)total

E (0, v)' ~ma (0 ' b E, (Eb, ~)
= (2S+1)+[K (E, v)+1]3

max (12)

(0)
total
2S+ 1

(E )
total b

28+ 1

31
27
23
19
15
11

7
3

31
27
23
19
15
11

7
3

3264

41
35
29
24
19
14

9
4

5335

We see that in Tables I and II, Ntotai(Et)) exceeds
Ntotal(0) by about 3.

Note that if one is only interested in Ntotal(0), a
very simple way to obtain it with an accuracy ap-
proaching that of the above-described WKB method
when Ntotal is large is to sum over phase-space
cells:

(0) = (28+ 1)fd3R f d'k(23) )
'

(2S+1}J( dRR' (-, )(R)) (12)

Calculation of Mahan and Lapp (Ref. 1).
bPresent calculations.

For a Lennard-Jones (m, n) potential of well depth
& and equilibrium separation Ae, namely,
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v(R) =
m( )

—n( )

Ntotal(0) [Eq. (13)] reduces to"

, (i4)
30

20—

IO—

RbAr

x X

QUASIBOUND RESONANCES

(0)= (2$+1)(2g&R /5')' 'C(m g), (]5)

where 4'(m, n) is a number given by

n (1 —m/n) (n, /m) B(q, 2)
2 -1 -5 2 (is)

B( )
"

d q-1(1 )3/2 1 (q)1'(—', ) (17)

with q=3(~m —1)/(n —m). Here, B(q, —', ) is the P
function"

(0 0—
UJ
V)

~ -IO—

2OK
bC

-30—

-40—

I I I-50

4=3

l
1

K=3O I
1

I
'l I

I
"K=O

I I I

IO I2
R IN

W

~e

rr

BOUND STATES

I I I I I I I I I

I4 I6 18 20 22
BOHRS

One finds, for example, that

C'(6, 8) =
3 ( 4)6 = 0. 102202

(isa)

FIG. 1. Effective interatomic potential U~(R) [= V(R)
+8 &(&+1)/2' ] of the X Z state of RbAr for K=30.
Energies of the vibrational bound and quasibound states
are shown. The dashed curve is the interatomic potential
V(R) (Ref. 19).

C'(6, 9) = 0. 09451 (isb)

4 (6, 10) = —
6

—0.08858
2 5

(1Sc)

4(6, 11)= 0. 08378

4 (6, 12)= 0. 07970

C(6, 13)=0.07605

C'(6, 14)= 0. 07271

(lsd)

(18e)

(1st)

(isg)

30
30
30
30
30
30
40
40
40
40

—19.506
—12.942
—7.235
—2.479

1.213
3.621

—5.144
0.497
5.070
8.314

0

0

0
1.14 x 10
6.46 x 10

0
&10"

5.48 x 10
4.67 x 10

v (sec)

bound

bound

bound

bound

9.40 x 10
3.25 x 10

bound
&10"

1.53 x 10
3.01 x 10

aFor comparison, the barrier maximum is 3.951 K
when X=30 and 8.930 K when X=40.

TABLE III. Energies E of the bound and quasibound
states of the X Z state of RbAr and barrier transmission
coefficients T and tunneling lifetimes v of the quasi-
bound resonances. The interatomic potential used is the
numerical calculation of Ref. 19.

For the 6-10 KAr potential mentioned above,
Ntotal(0) as calculated by Eqs. (15) and (18c) is
3193(28+1), in reasonable agreement with values
obtained by summing over K values and given in
Table I.

As emphasized above, an important feature of the
WKB method described is that it can be used with a
large variety of potential shapes. In Table II, we
give values of Zmax(0, v) and %max(E5, v) for a po-
tential given only numerically. The potential is
one calculated previously" by the author for the
X'Z (ground) state of RbAr; its well depth is e
=43. 524 K; its equilibrium position is Bq= 9.889
bohrs; and it contains more phase spa, ce than the
6-10 potential of the same & and Re.

In Table III, energies of the RbAr bound states
and quasibound resonances and tunneling lifetimes
of the resonances are given for K= 30 and K= 40.
The effective potential Ug(R) and the bound and
quasibound vibrational states are shown in Fig. 1
for K=30. Because ground-state well depths of
alkali-noble-gas diatomics are small compared
with normal thermal energies (for example, the
binding energy of RbAr is about 5 of room-temper-
ature thermal energies), "we expect the cross
section for collisional dissociation, i. e. , for the
process

RbAr+ Ar Rb+ 2Ar

to be large, say, o-10 "cm'. Collisional-disso-
ciation lifetimes &~ will be correspondingly short.
At noble- gas pressures of 100 Torr and room temper-
ature, v~ will be roughly the same as the shortest
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tunneling lifetimes listed in Table III, namely,
about 3 &&10 ' sec. Consequently, even the highest
of the quasibound resonances may in some situa-
tions be as important as the bound states. "

One property of quasibound resonances mentioned
in the Introduction is that they can be formed during
two-body collisions. The probability for such long-
lived "orbiting collisions" is greatest for high-
lying resonances, which have relatively large
widths l" =5/& as well as relatively large barrier

transmission coefficients T. For the highest levels
listed in Table III, if the collision energy lies with-
in —,'I" of the resonance energy at the given K, the
probability is about 5% that an orbiting collision
will occur.
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The Brueckner-Goldstone many-body perturbation theory has been applied in a calculation of
2hyperfine structure (hfs) of sodium in the ground ( S~~2) state. Our result for A (as in AI J)

is 857.8001+6 Mc/sec, in good agreement with the experimental result of 885.8131+0.0001
Mc/sec. The major contributions beyond the restricted Hartree-Pock result of 622.6430
Mc/sec arise from diagrams describing the exchange core-polarization effect. This contrib-
utes 139.6665 Mc/sec, in agreement with the existing unrestricted Hartree-Pock (UHF) and

moment-perturbation (MP) results. All diagrams involving two orders of correlation inter-
actions and associated ladders were calculated and were found to contribute 95.49 Mc/sec.
Higher-order diagrams involving three or more orders of correlation interaction were investi-
gated and found to be of minor importance in affecting the hfs constant of soidum.

I. INTRODUCTION

The Brueckner-Goldstone (BG) many-bodylinked-
cluster perturbation theory'~' has been applied
successfully' ' in the past to the study of hyper-
fine properties of a number of atomic systems.
This method is especially suitable for the hyper-
fine-structure (hfs) problem for three main rea-
sons. First, it allows various types of correlation
effects, which are usually neglected in conventional
one-electron theory, to be treated systematically
by a perturbation procedure utilizing a suitably
chosen orthonormal basis set. Secondly, the use
of diagra, mmatic techniques in this method enables
one to gain considerable physical insight and as-
sess the relative importance of the contributions
to hfs from different physical processes, such as
exchange core-polarization (ECP), inter- and in-
tra-shell correlations, self-consistency, and mu-
tual polarization of orbitals. Thirdly, being aper-
turbation theory, it handles small quantities rather
than the differences of large up- and down-spin
densities as in the unrestricted Hartree-Fock
(UHF) theory. " The most remarkable example
where these techniques have been demonstrated to
be particularly successful is the phosphorus atom, '
where the BG many-body procedure has not only
provided good agreement in magnitude with experi-
ment but has also removed the discrepancy in sign
that was found with the UHF theory. "

The purpose of the present paper is to report the
results of our calculation on the hfs constant A (in
the spin-Hamiltonian term AI ~ J) for atomic sodium

in its ground state ('S). Accurate experimental
data are available for A in this atom, "but no cal-
culations for A. incorporating many-body effects
are available in the literature. However, one-
electron calculations are available for the direct
and core-polarization effects in this atom, the lat-
ter through UHF as well as perturbation pro-
cedures"~ ' based on a differential equation ap-
proach. It is interesting to inquire into how these
results compare with those from the one-electron
BG diagrams and the nature of many-body effects
as well as the comparison with experiment of the
total result by the BG procedure.

In Sec. II, we present very briefly the pertinent
features of BG theory as applied here to hfs cal-
culations. Section III involves a description of all
the important diagrams and our results for the so-
dium atom. Section IV contains the discussion and
comparison of our results with earlier one-elec-
tron results and experiments.

II. THEORY

A. Resume of BG Theory

The total nonrelativistic Hamiltonian for an atom-
ic system of N electrons is

N
se= Q T'. + Q v. .

1&g v

where Tz represents the sum of the kinetic energy


