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as the expectation value of the exact Hamiltonian
with the wave function constructed from the approx-
imate exchange potential. Examples of both types
of computation exist. Tong and Sham' followed the
first procedure of using Eq. (2), whereas Cowan
et al. "followed the second procedure. For ex-
ample, Tong and Sham's value for the total energy
of Ar is -1049.027 Ry, whereas the value given by
Cowan et a/. is -1053.569 Ry, which is closer to

the Hartree-Fock value of -1053.613 Ry. The sec-
ond procedure gives a better value for the total en-
ergy since it amounts to using the exact expression
for E~[n] even though the wave function is deter-
mined by using the exchange potential derived
from an approximate expression for E~[n]. It is
precisely this inconsistency in the use of approxi-
mations which spoils the virial theorem.

Supported in part by the National Science Foundation,
Grant No, GP-14912.

M. Berrondo and O. Goscinski, Phys. Bev. 184, 10
(1969).

M. Ross, Phys. Rev. 179, 612 (1969).
J. C. Slater, Phys, Bev. 81, 385 (1951).
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133

(1965).
R. Gaspar, Acta Phys. Hung. 3, 263 (1954).

6P. A M; Dirac, Proc. Cambridge Phil. Soc. 26, 376
(1930).

P. Hohenberg and W. Kohn, Phys. Bev. 136, B864
(1964).

W. E. Budge, Phys. Bev. 181, 1033 (1969).
8B. Y. Tong and L. J. Sham, Phys. Bev. 144, 1 (1966).

10B. D. Cowan, A. Larson, D. Liberman, J. B. Mann,
and J. Waber, Phys. Bev, 144, 5 (1966).

PHYSICAL REVIEW A VOLUME 1, NUMBER 3 MARCH 1970

Rotational Correlation Functions and Neutron Scattering
by Symmetric Moleculese

Ashok K. Agrawal+
Argonne NationaL I aboratory, Argonne, ILLinois 60439

and

Sidney Yip
Massachusetts Institute of Technology, CanzbH dge, Massachusetts 02139

(Received 29 October 1969)

Classical rotational correlation functions for symmetric molecules are derived from quantum-
mechanical results in neutron scattering. The analysis differs from an earlier calculation in
that all values of the projection quantum number are considered. The results agree with those
obtained by St. Pierre and Steele using classical statistical mechanics. Numerical results
for ammonia and water are presented.

Recently, we discussed a method of studying slow-neutron scattering by molecular gases in terms of
classical rotational correlation functions Ef(f). ' It was later pointed out by St. Pierre and Steele' that the
symmetric rotor expression given in this work is not generally valid because the analysis considered only
small values of the projection quantum number K. In this paper, we rederive E, (t) and E, (t) for symmetric
molecules and obtain results which agree with those obtained by St. Pierre and Steele, who used a different
approach. We also present numerical results for ammonia gas and water vapor which are in satisfactory
agreement with experiment.

In dealing with neutron scattering from hydrogenous systems, the intermediate scattering function of a
rigid rotor is'

where b(t) is the position vector of the rotor at time t, ~ is the momentum transfer variable, and (~ ~ ~ ) de-
notes a quantum-mechanical thermal average. Evaluation of Eq (1) proce.eds from the expansion
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q (~, t)= g (2I+1)j,'(~f)f, (t),
l=o

where jt(x) is the tth-order spherical Bessel function of argument x. For symmetric rotors, quantum-
mechanical calculations give' ~4

I-2
ff(t)= Z (2J+1)P K(T) Q'e, ' P (cosy). . . (2)

JK J'K' (I —!K-K'!)! l K- K'
I J I J'

JK JlKI

JK
where P (T}= e (2J'+1) e

JIKI
and

~2 ~3

SZ1 Pl'2 Pl3
(4)

denote the usual Clebsch-Gordan coefficient. ' The rotor energies are denoted by EJK, and p is the angle
between b(t) and the symmetry axis.

The method of obtaining classical correlation functions from Eq. (3) has been discussed previously. '~'
It was observed that one can make use of the condition 1/2I«T and consider the major contribution in
Eq. (3) to come from large J values. The classical functions are then given by the real part of ft(t) with
the J and K sums replaced by integrals:

F,(t)
I (I —!K-K'!}! IK-K'! J I

JZ JK ~J'K' (I+!K —K'
I )!JIKI

where = (i/2I) J'+ (c/2I)K'

and (I I )/IZ

An expression for Ft(t) can now be obtained from Eq. (5) when the limiting expressions of the Clebsch-
Gordan coefficients for large J are substituted. In the case of l = 1, the limiting expressions of various
Clebsch-Gordan coefficients are'

-2J1J+1
K 0 K

= —,'(i -x'),
K OK

2J 1 J+1 g(1 )PK1 K+1

Jl J.Z 1 K+1
=-,'(i —x'),

where the variable x=K/J. Carrying out the J integration we find

F, (t) = cos' P —,
' (1+c) '~ ' (Y, + Y, ) + sin' P-,' (1+ c)"2

(Y, + Y4),

where Y, = —2/cv'1 + c + 2/cv c 1n[f (1 + c}+Jc], if c&0

Y, = —2/cv'I+'c +1/cv'- c sin '(2[- c(1+c)]'~2}; if c« (10)

I;= J dx(1 —x')([I + cx' —7 ]/(I +cx')'~'] exp[- 7 /2(1+ cx')],-1

Y, = f,dx(1 —x'))[1+ex' —c'x'v]/(I+cx')"'] exp[- c'x'7 /2(1+ex')],

Y, = f, d(xl +x)'{[I+ cx' —(1+ex)'~']/(I +cx')'~') exp[- (1+ex)'r '/2(1+ ex') ],
(12)

with &= (T/I)'+t. This result was first obtained by St. Pierre and Steele using conditional distribution
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functions for orientations and angular momenta, and performing appropriate phase-space averages. Equa-
tion (9) should be compared with the earlier expression'

E, (t) = cos'Pg(t) + sin'P-, [l +g(t) ]exp [(-,c)(T/1)t2], (14)

where g(t) is the first-order correlation function for a linear molecule [Eq. (16)].
One can readily obtain corresponding expressions for linear and spherical rotors by taking appropriate

limits. The linear rotor result is obtained by setting Iz=0 and /=0. In the limit c -~, Eq. (9) reduces to

E, (t) = lim Q (- 1) — (1+c)n 7' " 1/2

~-- n=O
,dx(1 —x )

2 1

(1 2)n+ 3 2
(is)

The integral involved in the above equation is evaluated with the help of a recursion relation and, when the
limit &-~ is taken, we obtain

72 2-
E, (t)=M(- —,', —,', —,'~ )e (16)

where M(a, b, x) is the Krummer's confluent hypergeometric function. ' For spherical rotors, c=0, and we
obtain

72 2-
E, (t) = —,'+ —',(1- 7 ) e (17)

Note that Eq. (14) is at best very restrictive since it does not reduce properly in the c=0 limit. In Fig. 1,
we show the behavior of E, (t) for symmetric, linear, and spherical rotors. The symmetric molecule re-
sult is appropriate to the case of ammonia.

Following the same procedure, we have derived E, (t) for a symmetric rotor. The result is

E,(t) = [(3 cos'P —1)/2]' [8(1+c)'I'] (Z, +Z, +Z, ) + —,
' cos'P sin'P (1+c)'i'(Z, +Z, +Z, )

+~~ sin'y (1+c)"' (Z, + Z, +Z9),

Z, = [(2c'+21c +27)/c'(I+c)'i'] —[(12c+27)/c'v'c ]in[(1+c)'i'+ v'c)], if c&0

Z, = [(2c'+21c+27)/c'(1+c)"']—[(12c+27)/2c'v —c]sin 'j2[-c(1+c)j'i'j, if c &0

Z, =12f,dxx'(1 —x')[(1+ex'- 7')/(I cx+')"']exp[- r'/2(1+ex')],

Z =3f', dx(1 —x')'[(I+cx' —47')/(1+«')'i']exp[- 2&'/(I+«')]

(i9)

(20)

(2i)

I.O

0.8

0.6

0.4

0.2

FIG. 1. Classical rotational correlation functions
&~(v) for spherical (1), symmetric (2), and linear (3)
molecules, where dimensionless time v is (T/I) t.
Curve 2 is for ammonia (c= —0.365, Q = 68 ). The as-
ymptotic values of Fi(v)'s are shown by horizontal lines.
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ROT ATIONA L CORRE LA TION F UNC TIONS 973

Z, =3f,dxx'(1 —x')[(1+ex' —c'x' 7')/(1+ex')"']exp[- c'x'~'/2(1+ex')],

Z, = f, dx(1+x)'(1 —2x)'([(1+ex') —(1+ex) 7']/(1+ex')'~'] exp[- (1+ex)'v'/2(1+ ex')],

Z, = f, dx(1+ x)'(1 —x')([(1+ex') —(2+ cx)'7']/(1+ cx')"'] exp [- (2+ cx)'7'/2(1+ cx')],

Z, = 3f dx(1 —x')'[(1+cx' —4c'x'v')/(1+ ex')'"]exp[- 2c'x'v'/1+ cx'],

(22)

(23)

(24)

(25)

Z, = 4f dx(1+x)'(1 —x') [(1+cx') —(1+2cx)'7'/(1+ex')'~']exp [- (1+2cx)'7'/2(1+ ex')],

Z~= 1 dx(1+x)([1+ex' —4(1+ex)'v']/(1+ex')'~'jexp[ —2(1+ex)'v'/1+ex']

(26)

(27)

This expression is also in agreement with the result given by St. Pierre and Steele.
The classical spectral density function SE(~) is defined as the Fourier transform of Ef(t),

S (u)) =(2m) f P (f) e dt =m J F (t) cos(utdt,
0

(2S)

since Ef(t) is an even function in t. We have obtained the following expression for S,(v) for a symmetric
rotor:
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FIG. 2. Time-of-flight spectra of neutrons scattered
by ammonia gas at T= 295 'K, experimental points
(Ref. 9) (solid circles), theoretical spectra using Eqs.
(9) and (14) (solid and dashed curves), and exact quantum-
mechanical calculations (Ref. 10) (open circles) . The
arrow indicates the incident neutron energy of 4.87 MeV,
and the spectra are all area normalized.

FIG. 3. Absolute time-of-flight cross section of water
vapor at T=593 'K for incident neutrons of 17.3 MeV,
experimental points of W. Glaser, (Ref. 12) present cal-
culations (solid curves), and results based on the Krieger-
Nelkin model (Ref. 14) (dashed curve).
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g, ((g) -cos2y(y, g((g) + —,'(I/2vT)'~'(1+ c)"'J dx(1 —x')(u +'exp- (1+cx')(-,' u) * )j

~ sin'y-,'(I/2~ T)'&'(1+ c)'~'jJ
'

dx[(1 —x')/
~
cx I

'](u*' exP 1—
2 [(1+ex')/(cx)'] (o"]

,f ' dx[(1+x)'/(1+ cx)']v *'exp( —r' [(1+ex )/(cx) ]&* )

with ~*= (I/T)' '~. The higher-order spectral
density functions can be obtained by substituting
the corresponding expression for the rotational
correlation function in Eq. (28). While the first-
and second-order spectral density functions have
been shown to be related to the appropriately nor-
malized infrared and Raman band shapes, ' the
physical interpretation of the higher-order func-
tions is not available.

We have applied Eq. (9) to the analysis of neutron-
scattering measurements on gaseous ammonia and
water vapor. The calculation is based ona Gaussian
representation of y, and the procedure has been
discussed in some detail in Ref. 1. In the case of
NH„ the time-of-flight distributions of neutrons
scattered at 20' and 90' are shown in Fig. 2 along
with the experimental points' and the earlier cal-
culation [Eq. (14)]. In addition, exact quantum-
mechanical results are available at 20 .' In the
case of H, O, the moments of inertia of the asym-
metric molecule are I~ = 1.0243, I& = 1.9207, and
I =2. 9470x10 "gcm', and the H-O-H angle is
104' 27'." Since rotational correlation functions
for an asymmetric rotor have not yet been derived,
we assume that H,O can be treated as a symmetric

molecule with moments of inertia I' =I& = —,'(I +I&),
Iz =I+, and p as half of the H-0-H angle. The com-
parison of absolute scattering intensities with ex-
perimental data" is shown in Fig. 3." For the 21'
scattering angle, we also include the spectrum
computed using the Krieger-Nelkin model (effective
mass 1.81).'~ The discrepancy in the vicinity of
400 p, sec/m could possibly arise from experimental
effects, such as multiple scattering or small
amounts of moisture in the sample.

In summary, we note that the two methods of de-
riving classical rotational corr elation functions,
the use of quantum-mechanical results for the
intermediate scattering function, and the use of
classical conditional distribution functions, give
identical results for freely rotating molecules.
Model calculations which incorporate intermolec-
ular torque effects are of interest, and for this
purpose the approach of St. Pierre and Steele
seems to be more appropriate.
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