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Using close-coupling calculations of Burke and Moores for the scattering of electrons by
Mg ions in the 3 S~/2 and 3 Pf/2 3/2 states, Baranger s expression for the impact approxi-+- 2 2

mation width of an isolated line is implemented for the components of the resonance doublet.
These widths are extrapolated to below inelastic thresholds and averaged over elastic reso-
nances according to theoretical threshold laws. In the experimental energy range, results
compare reasonably with semiclassical approximations and with a semiempirical method in-
volving effective Gaunt factors extrapolated to zero electron energy.

I. INTRODUCTION

%hile semiclassical calculations'y ' of the broad-
ening of atomic lines by electron impacts are gen-
erally in satisfactory agreement with measure-
ments' (to about+20% in terms of widths), ion
lines were found to be wider than calculated (assum-
ing straight perturber paths) by factors ~ 2 in num-
erous experiments. Homever, measured widths
were shown in a preceding paper' to fit (by factors- 1.5 on the average) a semiempirical formula
containing effective Gaunt factors, which are only
functions of kT/&E, i.e. , the ratio of perturber
(thermal} energy and splitting between levels con-
nected by allowed dipole transitions. These ef-
fective Gaunt factors are analogous to those used
to estimate inelastic cross sections, ' but had to be

extrapolated4 below threshold energies to obtain
"optical" cross sections in satisfactory agreement
with experiment. Presumably this accounted for
elastic collisions which would then dominate for
kT/&E ~ 1, a common situation for isolated (not
hydrogenic) ion lines. (For atomic lines, the op-
posite situation kT/&E & 1, tends to prevail. )

The importance of elastic contributions had been
realized before, '& but their estimations using
either a second-order impact parameter methodey '
(which is, therefore, only first order in the phase
shifts, while at least quadratic terms are needed
for line widths) or an adiabatic classical-path ap-
proximation7 (which had to be supplemented by
semiquantitative criteria to separate inelastic col-
lisions) were almost as ad koc as the effective Gaunt
factor method and were much more involved. More-
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over, it seemed doubtful whether any semiclassical
approximation would be useful for kT/&E ~ 1 and
small relative angular momentum quantum numbers
of the perturbing electrons (X

~ 5 in typical cases). 4

One of the obvious shortcomings of these approxi-
mations is the appearance of discontinuities at in-
elastic thresholds, which were, for example,
avoided in Alekseev and Yukov's work' by simply
integrating the inelastic terms over all perturber
velocities, including the below-threshold range.

When the discrepancy with (straight) classical-
path calculations was first pointed out, ' an obvious
remedy was the replacement of straight by hyper-
bolic classical paths which, as emphasized before, "
leads to a considerable increase in the inelastic
cross sections near threshold. And indeed, some
hyperbolic classical- path calculations "~"carried
to second order in the iterated solution of the time-
dependent Schrbdinger equation (which, therefore,
could account explicitly only for inelastic collisions)
agreed reasonably well with experiments. However,
one of these calculations" included terms that would
be absent in the case of weakly interacting sys-
tems4&" and are difficult to evaluate quantitatively.
The other calculation" involved the use of second-
order perturbation theory also for some so-called
strong collisions, thus violating unitarity. ' Re-
placement of straight by hyperbolic perturber or-
bits in the classical-path (impact-parameter meth-
od) theory, ' therefore, may not be sufficient to re-
move all the disagreements with mea, sured widths
of isolated ion lines.

Inclusion" &" of higher (quadrupole) terms in the

multipole expansion for the interaction Hamiltonian
does not affect the widths very much in most prac-
tical (i. e. , kT «Ry = 13.6 eV) cases, nor do super-
elastic collisions seem to be very important.
Finally, while it is known'~ that a properly sym-
metrized impact-parameter (classical-path) meth-
od" yields inelastic cross sections for optically
allowed (dipole) transititions in fair agreement
with quantum-mechanical calculations, and that
the (symmetrized) impact-parameter method is
essentially equivalent to the semiclassical Coulomb
excitation theory" used in one" of the earlier cal-
culations not allowing explicitly for elastic col-
lisions, this procedure still leads to discontinuities
at inelastic thresholds. It is thus subject to sim-
ilar doubts as the other versions of the semiclas-

sical approximation.
In view of the uncertainties of semiclassical cal-

culations and because of the absence of any ab
initio calculations for the elastic contributions, we
undertook the present, fully quantum-mechanical
calculations, using results of the close-coupling
method. " A disadvantage of this method is the
restriction to a small number of interacting states
(3S, P, and D in our case) because of the compu-
tational effort. This restriction, while limiting
the estimated accuracy of the results presented
here to - + 20%, should not seriously impair com-
parisons with the various semiclassical or semi-
empirical methods, if they are also restricted to
the same set of interacting states. However, in
the case of Ca+, where 4S, SD, and 4P are allowed
for in the close-coupling calculations, "omission,
especially of 4D, would seem to lead to large er-
rorsin the width of the resonance line (4S-4P), thus
invalidating even such relative comparisons. (A

similar situation prevails for heliumlike and lith-
iumlike ions. ) The Mg+ resonance doublet com-
ponents thus appear to be the only isolated ion lines
for which reasonably accurate quantum-mechanical
electron broadening calculations are now possible.

Before describing our calculations, we should
emphasize that some of the introductory remarks
must be modified when line shifts are discussed
rather than widths. Here there is no inelastic con-
tribution, and second-order perturbation theory
does give an explicit contribution by elastic col-
lisions, making some of the semiclassical cal-
culations'~ ' of the elastic contribution more reli-
able (not necessarily the other, essentially adia-
batic, calculation' ). Rather good agreement with
quantum-mechanical calculations would, therefore,
be expected in this case, but neither of these
shift calculations could be compared directly with
measurements —because of shifts induced by col-
lisions with other ions and because of the addition-
al (and comparable4) plasma polarization shift"
caused by the average negative spa.ce charge sur-
rounding a positive ion immersed in a plasma.
(While this dielectric monopole effect certainly
exists, as evidenced by the predominance of blue
shifts for Stark-broadened ion lines in contrast
to the usual red shifts of atomic lines, its quan-
titative understanding is still lacking. )

II. THEORY

According to Baranger" "and Kolb and Griem, "widths w (from peak to half-intensity points of the
Lorentz profiles) and shifts d of impact-broadened "isolated" spectral lines can be expressed in terms of
S matrices describing the elastr'c scattering of single electrons on initial (i) and final (f) states of the line.
The basic formula is

~+id=~I««M')«M')I~«(f'~'). 6'~') ll-s*s I&~) (im)» I«.~.)« ~ )»~i i f f i f f i i f i i f f av
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where v is the frequency of collisions with an electron in a definite quantum state characterized by total
angular momentum quantum number j and magnetic quantum number rn. For electron wave functions nor-
malized over all space, we have

v = (m/2v) (h/m)' N (2)

in terms of electron density N and velocity v. (We assume monoenergetic electrons for the time being. )I I
The average is over ("atomic") magnetic quantum numbers M;, Mf, and M;, Mf before and after the collision,
and can be expressed, as shown by Baranger, "in terms of Clebsch-Gordan coefficients or, equivalently,

..in terms of Wigner's" 3-j symbols as

M +M'+u /J 1J )p J ')I

M. M.'M M'n=-1, 0, 1 ~M'n -M.) ~Mf

The sum in Eq. (1) is over all initial (j, m); j arid. final (j,m ); J electron states (being operated on by
Si or Sf only), and the * sign denotes the complex conjugate of the matrix elements

Introducing the transition matrix through

T=1 —S

and summing over Mf, Mf and Mi, M. in the terms involving only Ti or Tf with the help of the orthogo-
2

nality relations for products of 3-j symbols summed ov'er magnetic quantum numbers, the above relations
lead to

m I'
2

1 1~+id= —,
—» 2J I ~ «M. f'mlT I& M.~m&+22v m, , 24. +1

M i i i i i 2J +1 'M f f f fjmj' m' z M.
2

M. +M'. +2J fZ 1 J. )(J 1 j'. }
nM. M', M M' (M' n-M) (M n-M.)

(J M'j'm' ~T" ~J Mjm)(J, M'. j'm' ~T, ~J,Mjm)) . (5)

Phases in the first two terms are always even for M~ =Mi, Mf =Mf. Also, j 'm' ,= j, m follows in these
cases from the orthogonality of the 3-j symbols in the atomic magnetic quantum numbers and from the con-
servation of total angular momentum yi f = Ji f +] and its Z component pi J =Mi f +m. To reduce the
number of independent T matrix elements, it is advantageous to make use of these conservation laws by
transforming to the ZM jm, y p, representation. (Note that the T matrix is then not only diagonal in y and p,

but is also independent of p, because of the rotational invariance of the total Hamiltonian. ) The transform-
ation coefficients again involve 3-j symbols, e.g. ,

Y

(JMjm lyg) =(-)l "(2y+))
M )

The first two terms in Eq. (5) transform with the help of the orthogonality relations mentioned above and
using the independence of the new T matrix on p, to an entirely expected form, while the last term can be
written in terms of 6-j symbols2' after performing the sum over all magnetic quantum numbers (see the
Appendix), The resulting expression'4 is

2
w+id= — N Q Q (2y. +1)T . + Q (2y .+1)(T.. )2v m, 24+I i jj 2Z +1 f jjjj y. 'Y

j'+j 'Y yf 1 'Y 'Yf 1 yj 'Y.
+(-1) Z (2y. +1)(2y +1) '

. ,
'

. (T, )*T, '

2
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where we introduced a more compact notation for the T matrix elements in the new representation. (Be-
cause all T's here are for elastic collisions, we could set J' =J'. )

In most line-broadening applications, spin-dependent forces may be neglected. Then total orbital angular
momentum X and spin o' are conserved separately, and it is easier to work in the I.S-,' l, AoÃ&M~ representa-
tion; L,, S, and l, —,

' being the corresponding quantum numbers for atom and electron. The corresponding
transformation involves the 9-j symbols, "e.g. ,

L /'A (L /k
T, = E (2j'+1)' '(2j+1)'~'(2J+1)(2X+1)(2o+1) S —,

' o )S —,
' o T,

Xo.l'l
2 2 lgl (6)

Also, in this case, orthogonality relations lead to considerable simplifications in the linear terms (initial
and final electrons being in the same state), and the resulting expression is

(2~.+1)(2o.+1) ~.o. (2~+1)(2o+1)
2o m, (2L.+1)(2S.+1) ll (2I +1) (28 +1) llll' Xo. i i

1

+g( 1) (p,j,J ,J., y , y. ., X , X. ., o., o..) q

x S. —, o. S

L lf f X o Xo)
1 i i

Sf g 8 (Tl q/
) Tl ~/ J

f f

where g fj',j, ...) stands for the weighted sum with statistical weights (2j'+1) (2j+1)x. .., summed over
all arguments of 1 ~ ~ ~ } except Zi and Jf.

Some simplifications of this general formula (which is the basis of our present calculations) are possible
for particular transitions, e. g. , for the lines considered here (Si=Sf= —,', Li=1, If =0, Xy=/=/', Ji= —,', —,',
and Jf = —,') the "final" 9-j coefficients are proportional to 6-j coefficients, "namely,

(- &)

I
f (10)

When the T matrices are independent of oi f = 0, 1, we can, accordingly, for our transitions first sum
over of, using Eq. (10), which results in j =j on account of the orthogonality of the 6-j symbols, and then
over yf, thus removing the 6-j symbols occurring in Eq. (9). Finally, we sum over oi and yi, utilizing
the orthogonality relation' for the initial 9-j symbols, and j= l+ —,, obtaining

2
~+id = —' ~Z — Z (». +1)T '+ Z (»+1)(T )*

l 3X //~l i ll
X l f //

x. =l l~1i

(u. . +1)(T
-l Tll 0

This simple result might have been anticipated, because, in this approximation, the spin could have been
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ignored from the outset. Then the lower level would have been single, and the rotational average would
have amounted to an average over magnetic quantum numbers (Ml = 0, a 1) of the upper level, correspond-
ing to —,

'
g~. in Eq. (11)because of the transformation to the I.Sls, XoM&M~ representation.

Coulomb scattering can be separated by writing

(n, .n, )T (12)

with the Coulomb phase shifts

zt = argi'(1+1 —ze'/@v) .l

Substitution into Eq. (9) now shows that the latter, or Eq. (11), remains valid for the shift if one makes
the replacement

Xo'
(

2i'gf
)

'Xo'

ll ll

in the linear terms and uses the new T' elements in the product term. In regard to the width, one sees,
with the help of the optical theorem, namely,

I J
Re&„=Re[e""'(I+&„)~=-'~,. l&, , I2=-'~, . I&,.,+&,., I'=-'+Re&„+-'~, . I&,., I'

that the appropriate replacement is

(16)

in the linear terms when the cross term is again calculated with the new T' elements. (Note that the sum
over l' in this replacement impl-~s a summation over elastic and inelastic processes, while the cross
term still only involves elastic scattering contributions. ) The width is, thus, seen to be given by the
sum of total cross sections for initial and final states (ignoring pure Coulomb scattering) minus the cross
term in

'~z&a,„( '~y&f)*
ll ll

as was expected from Baranger's analysis. "y" As a matter of fact, his expression for the width is entirely
recovered, when the nonCoulomb elastic cross sections are combined with the cross term to form an ex-
pression proportional to

i i T f fI2
ll ll

ignoring the angular average for this comparison.
Finally, the actually tabulated" (real and symmetric) Ii matrices are related to T' by

r'= [-2m/(I-zR)j . (17)

III. CALCULATIONS

The close-coupling calculations" were performed
for some fixed energies of the total system re-
ferred to the ground state of the ion, whereas we
require T' matrices as a function of the system
energies relative to the 38 and 3P states, respec-
tively. Fortunately, there is by coincidence (for
initial electron energies of k' = 0.67 Ry) one such
set of T' or rather R matrices, because those

for SS at a total energy of 0. 6'7 Ry and those for
SP at 1 Ry almost correspond to the same relative
energy, the 38-3P interval being -0.32 Hy. For
an initial electron energy of -0. 67 Ry, Eq. (9),
with the various replacements discussed above,
could therefore be calculated dix ectly.

For all other initial energies, some interpolation
or extrapolation was necessary. This task was
greatly facilitated by the observation that the first
two terms in Eq. (9) essentially represent the
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FIG. 1. Effective Gaunt factors for the electron-
impact broadening of Mg resonance lines as functions
of initial electron energies.
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of the absolute values squared of the matrix ele-
ments of r (the atomic electron position operator)
for initial and final states, summed over all per-
turbing states (3S and 3D in case of 3P, and 3P in
case of 3S). This Gaunt factor, as obtained from
the present calculations, corresponds to the solid
curves on Fig. 1. (Note that the discontinuity at
k = 0. 32 Ry is not quantitatively significant, nor
are the changes in slopes at this energy and at
0' = 0. 64 Ry. ) Also indicated are the inelastic (and
superelastic) contributions which are almost negli-
gible below k'=0. 32 Ry, i.e. , in the most impor-
tant energy range in practice. (Mg+ is further
ionized at temperatures corresponding to higher
electron energies in all but extreme nonequilibrium
situations. ) Broadening due to elastic collisions,
therefore, usually dominates the electron-impact
broadening of these lines.

Also shown on Fig. 1 are the semiempirical
Gaunt factors as proposed by Van Regemorter'
but extrapolated to zero energy, 4 and representa-
tive of the simpler semiclassical approximations, '~"
a Gaunt factor calculated according to Roberts and
Davis. ' While an effective Gaunt factor g= 0. 20 is
clearly consistent with the present results below
the first threshold, the quasiclassical approxima-
tion falls short by a factor -1.5 for most energies
in this range. However, the near agreements at
zero energy and above the first threshold suggest
that a quasiclassical calculation' ignoring thresh-
olds will give more satisfactory results. Inclu-
sion of quadrupole interactions" ' &" further re-
duces the deficiency of the quasiclassical width in
the below threshold region, and -10% agreement
with the present results is reached. '

At larger perturber energies, the present results
exceed those of the two other methods4~' by a factor

IV. RESULTS AND DISCUSSION

R.ather than giving the linewidths, it is more in-
structive to represent the results in terms of ef-
fective Gaunt factors g, from which the (half)
half-width can be calculated according to

(16)w = (4v'/3v) (5/m)'Nx 19.6g .

Here, 19.8 is the value (in atomic units) of the sum

total (nonCoulomb elastic plus inelastic) cross
sections of 3P and 3S respectively. These were
thus calculated for the set of total energies
used by Burke and Moores, "and the 3P cross
section replotted as a function of relative energy,
which for k' & 0.32 Ry mostly involved interpolation.
This caused no difficulty, because the total cross
section (averaged over resonances) is continuous"
at inelastic thresholds, i.e. , at k' = 0. 64 Ry (for
the 3$-3D transition) in this case. (Earlier work
on the threshold behavior is reviewed in Ref. 26. )

The lowest energy point available is k' = 0. 35 Ry,
and considerable extrapolation was therefore re-
quired below the 3S-3P and 3P-3D thresholds, both
at -0.32 Ry. Continuity of the total cross sections
is hardly sufficient for extrapolation to zero energy,
as there may well be a change in the derivative of
this cross section at inelastic thresholds. We,
therefore, extrapolated the F matrices (as defined
by Seaton'~ corresponding to Burke and Moores's
8 matrices), transformed back to R and T' and
thus evaluated the width by summing over partial
waves. Except at k' = 0. 67 Ry, this procedure
(now involving also interpolation) was used to cal-
culate the third (interference) term in Eq. (9) as
well. Two different fits for F were tried; one
quadratic in k', and another involving the ratio of
two linear forms (to account for poles). None of
these was entirely satisfactory, especially near
zero energy. However, errors in the total width
from these extrapolations and interpolations
should not exceed 10% for k ' & 0.32 Ry, although
they may be somewhat larger near zero energy.

The interference term, which is always negative,
is never more than 25%%uq of the sum of the first two
terms in Eq. (9) for 3'S,&,

- 3'S„„or30% for
3'

&S,
- 3'

P&, . (The total cross sections are the
same for both components. ) Furthermore, it is
also generally continuous" at thresholds (when
averaged over resonances below these energies).
Only below k'= 0. 32 Ry, corresponding to 3S-3P
and 3P-3D thresholds, where both T matrices are
oscillatory, the averaged T Tf matrix product is
not necessarily equal to its value just above thresh-
old. Using quantum-defect procedures as de-
scribed in Ref. 28, the product was, therefore,
evaluated and averaged numerically and found to
deviate from its value above threshold by & 20'%%uo.

corresponding to & 5% change in the linewidth.
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-2. This is evidently due to higher multipole inter-
actions, as the other two approximations become
exact at high energies (within the framework of the
dipole approximation). As a matter of fact, our
results for g —for k' & 0.4 Ry within a few per-
cent —can be fitted to

= 4. 7 x I p &~&(Ry/kT)zlz

x [0.165+0. 50(kT/Ry)], (2Oa)

bution and increasing the factor 19.8 in Eq. (18)
by - 10'%%up as

g=0. 165+0.50k',

g= 0. 155+0. 47k

(19a)

(19b)

= 4. 7 x Ip z9&(Ry/kT)z&z

x [0.155+0. 47(kT/Ry)], (2ob)

for 3 S& g2 3 P] )'2 and 3 'S, &, -3 'P3/2 p respectively;
and the second term indeed corresponds closely
in relative magnitude to quadrupole corrections as
used, e. g. , in calculations" for hydrogen lines.
(Note that lnp /pm „in Ref. 31 corresponds to
zzg/V 3 =1.8g. )

It still remains to discuss the influence of inter-
acting states not included in the close-coupling
calculations. " Most important of these is prob-
ably 4$, whose inclusion would result in an in-
crease in the factor 19.8 in Eq. (18) by -10/p.
While the corresponding increase in width is rel-
atively small, say -10/p, inclusion of 4S might
half the shift (judging from estimated quadratic
Stark effects). This shift, being perhaps only
-20'%%up of the (half) half-width, therefore, cannot
be calculated with any reliability from the present
close-coupling results. " (See also the discussion
of competing effects at the end of the Introduction. )

To facilitate applications and comparison with
(future) experiments, we finally state our results
for the (half) half-widths ( in angstroms) after aver-
aging over a Maxwellian electron velocity distri-

for the J = —,'- —,
' and —,'- 2 components. It is hoped

that these formulas are accurate to -+20%%up for
kT/Ry&0. 2, i.e. , for T&30000'K. (For higher
temperatures, the average should be performed
numerically, using the g values given on Fig. 1
with a + 10% correction to allow for other inter-
acting states. ) Equations (20a) and (20b) yield
widths that are larger by factors of 3-5 in the
experimental temperature range- than the original
(straight) classical-path predictions by one of us'
in which, moreover, perturbationsl of the ground
state had been neglected. However, the (quasi-
static) ion-broadening parameter n given in Ref. 2
remains almost unchanged, i.e. , small (o. =0. 02
at N= 10"cm '). Broadening by iona will, there-
fore, increase the width over that from electron-
impact broadening by less than -20'%%up for densities
N& 10" cm '. In cases where the impact approxi-
mation applies to ions as well, the correction for
ion broadening should be still smaller (-10'%%up). It
is finally worth noting that the widths of the two
multiplet components do not differ by more than
the estimated theoretical error.

APPENDIX

According to Eqs. (1), (3), and (4) we require

[((zf I I - S*S.Izf))]-
M.M.'M M'n=p, +I

Z

jnV
'm'

M. +M'. +2@ (Z 1 Z )(Z.
( 1 )

Z Z Z Z

q ™-M)& ™)
x ((J .M t jm I T . I J M.j m )5.

Z 2 g Z

+ (J M'jmlT*I J M jm) 5

2

—(& M.'j 'm'
I T *IJ M j m) (J M' j'm' IT IJ.M j. m.)), . .f i f f f i i i i i

(A1)

using the ortho gonality of the various wave functions in the linear terms. With the orthogonality relations

for 3-j symbols, e. g. ,

~)(~ 1 ~) ~~ M'M

M n I M — M.') (M —M.)
(A2)

the first two terms reduce to the average over magnetic quantum numbers Mz and Mf, respectively, in
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Eq. (5). [The phase factors here are always+1, because 2(M, +Jf)=2(M;+J;)+2, 0 is always even, and
because Mf'+ Mz is equal to Mf' +Mf + 2, 0 due to Mf' = Mf~ —n, Mf = Mf —n, n = 0, a 1.]

In the JMj m, yg representation the linear terms then become, with Eq. (6),

1 (J
(JMj m I T I JMj m ) = Q (2y+ 1)'"'

Mj '"'Mj yp nl

)2
«jyl ITI&iyl &

using the analog of Eq. (A2) summed over M and m and finally the fact that ( Jjyp I T I Jjyp & -=Tjj is indepen-
dent of p. The phases combine to 2(j —J- p) in this case. Either J or p are half-integer, as is j, making

j—J—p always integer, and thus the combined phase factor +1.
The cross term is in the new representation from Eqs. (A1) and (6):

(((ffIT*T,.Ie »)-
M. M.'M M'n

jj'mm'y. y p. g

M'. +M. +2J fJ 1 J. ) (J 1 J. )
n-M) IM n

j'+j 2J -2' (J j' y I (J j y )x(-1) (2y +1)I
EM' m'-g j kM m -g j

j'+j- 2J.—2p. . J.
x (-1) ' '(2y. + 1) (T, f)'T, . (A4)

' -p. j (M.

[Actually, the phases can be combined to M;+M;+2(j +j)-2J;, because 2p, ,+2' is always even. ] With
the help of the symmetry relations for 3-j symbols, Eq. (A4) may be rearranged to allow the double appli-
cation of Eq. (2. 20) in Ref. 23. Alternatively, the latter" can be manipulated into a form resembling,
e.g. , the product of "unprimed" factors in Eq. (A4), namely,

"™™i.. i(" ~

n J' J'. j M. M m -p. . M. m -M p, -m M -M. n

2J +2J'. +j+1+M +M. -m (J'. j
Z (- 1)

M.M m (M. m

y. J j y J 1 J.
!

M rg -p, M n -M.
. (A5)

The terms 2' +2Jf can of course be omitted in the phase. The phase resulting from multiplying Eq. (A5)

by its "primed" equivalent is, therefore, j'+ j+Mf +Mf +M~ +Mf —m' —m, which differs from the phase
in Eq. (A4) by j '+j —2J —2'+ 2(m'+m). Since 2(m'+m} and 2(J'f + pf) are always even or odd, re-
spectively, the difference in phases can be written as j'+j+ 1, and Eq. (A4) therefore can be written as

(((ffl T "T.
I zf»}- —g (2 y. + 1) (2f i, ijj ny yfI If

2.1) ' f ( 1)'"
(p, . I n)
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(A6)

This finally reduces to the corresponding terms in Eq. (7) on account of the normalization of 3-j symbols
when summed over p, and pf, yielding g'(:::)'=—'„and then over n=0, +1, resulting in/('. '. .')'=1.
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