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In an earlier paper, the generalized Langevin approach of Mori and Zwanzig has been applied
to generate an exact kinetic equation describing the time correlation of fluctuations in the
microscopic phase density for a classical many-body system. In the present work, this kinetic
equation is modeled using a single-relaxation-time form for the damping kernel, and the solu-
tion of this equation is then studied for large and small values of k and cd. The modeled kinetic
equation is used to calculate transverse and longitudinal current-current correlations in simple
classical liquids, and the results are compared with the molecular-dynamics calculations of
Rahman for argonlike systems.

I. INTRODUCTION

In a recent paper' (hereafter referred to as I),
the projection operator techniques of Zwanzig'
and Mori' were used to derive an exact kinetic
equation for B(x,p;x!,p', t), the time correlation
of fluctuations in the microscopic phase density.
That is, g (x, p;x', p', t) represents the probability
that, given a particle at (x, p) at time t= 0, there
will be a particle at (x', p') at a later time t. This
function plays an important role in the study of
many-body systems, since most time correlation
functions of interest can be generated by taking
suitable moments of 8 in momentum p. The pur-
pose of this paper is to use this kinetic-equation
description of g to calculate transverse and longi-
tudinal current-current correlations in simple
classical fluids. In particular, these calculations
will be compared with the molecular-dynamics
calculations of Rahman, 4 as well as with other con-

temporary theories of time correlation functions
in liquids. ' '

To allow a detailed investigation of the solution
to the kinetic equation, we will introduce an ap-
proximation by modeling the damping or memory
term in this equation by a "single-relaxation-time"
collision operator in analogy to the work of
others. '~ Of course, one could introduce alterna-
tive approximations to this term (several alterna-
tive approximations were suggested in I). How-
ever, the modeling approximation adopted here
yields results which are in good agreement with
the computer experiments of Rahman, and, in
fact, represents a considerable improvement over
existing kinetic descriptions of time correlation
functions in simple liquids. '&'

In this paper, we will also compare the kinetic-
equation description of time correlation functions
(i. e. , that description based upon the procedure
of first solving a kinetic equation for Q (x,p;x', p', t)
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and then taking the approyriate moments in mo-
mentum to generate the time correlation function
of interest) with the more direct calculation of
these quantities via a "generalized hydrodynamic
equation" level of description. This latter ap-
proach, which has been developed by Martin, Yip,
et al. '~" and also by Akcasu and Daniels, ' seeks
to obtain hydrodynamiclike equations which directly
describe the time correlation functions of interest.
Of course, one might expect the kinetic description
to yield better results for large k and ~, whereas
the hydrodynamic description would be more suit-
able for small k and ~. However, we will attempt
a more thorough comparison of these approaches,
and in particular will demonstrate that, under suit-
able approximations, these descriptions yield sim-
ilar results over an overlapping region of k and e.

II. MODELED KINETIC EQUATION
FOR/(k, gg', P', t)

Consider a vector a whose components a& are
dynamical variables of the phase (x, . .. , xN,
p, . . . , pN) of a many-body system. By utilizing
projection operators, Mori' has obtained an exact
equation for the correlation matrix I'(t) =(a(t)a~(0))
x(a(0)a*(0)) ' which assumes the form

t

—,r(t)-zg F(t)+ dry(r). 1(t ~)=0. (1)
0

In I, this equation was applied to the study of cor-
relations in fluctuations in the microscopic phase
density 5g(x, p, t), or equivalently, its Fourier
transform in space 5g(k, p, t). That is, a(t) was
chosen to be a "vector" whose "components"
a -a(p, t) are indexed by acontinuousparameter p
and defined by

a(p, t) -=5g(k, p, t)

N . o.
= Q e' '"

5[p-pp(t)] -n5(k)M(p), (2)
Q=].

where it has been noted that (g(f, p, t))=n5(k)M(p),
n being the equilibrium number density, and

M(p) =- (p/2')' 'exp(- pp'/2m), .

Mori's equation (1) for the corresponding "correla-
tion matrix"

8 (p, p", t) -=(5g(k, p, t) 5g*(R, p", 0))

then becomes a linear kinetic equation

gg tk'p
g (~ ~pg t)

k yap

'" PM(Z "&") "d-S(- --t)
1+nh(u) ) P uP P

d7 p'py p, 7' g p', p", t —7 . 4

Here, g(r) is the static pair correlation function,
and h(r) = g(r) —1. The "damping kernel" y(p, p~, v)
can be calculated' as

q(p, p', r)=[nM(p)] '

x ((1 —P) o (p ') exp[i& (1 —P)L] (1 —P) o(p)), (5)

where we define the dynamical variable o'(p) by

&(p) -=Z e F ~ 5(p —p ).
Q=$ Bp

Here, L is the Liouville operator L = i (H, .j, and
P is a projection operator defined by its action on
an arbitrary dynamical variable G(p) as

PG(p) —= f dp ' f dp "(G(p) 6g (R, p ', 0))

x y-'(p', p")5g(k, p", 0),

with
5(p' —P') a(u)
nM( ') 1+na(u) '

[For details concerning the derivation of Eq. (4),
refer to l. ]

Equation (4) is an exact kinetic equation for 9~.
Hence, before we can attempt to solve it, we must
first introduce approximations to reduce the damp-
ing term to a more tractible form. Of course, the
most direct approximation would be to simply ne-
glect the damping term. In this approximation,
Eq. (4) reduces to the Vlasov-like equation studied

by Zwanzig, "Nelkin and Ranganathan, and-Chi-

hara. " Unfortunately, as noted by these authors,
this approximate kinetic equation yields satisfac-
tory results only for very large k and v, and hence
is closely related to a "short time" or "collision-
less" approximation.

Alternative approximations of the damping term
as suggested in I were based either upon a pertur-
bation calculation of y(p, p', 7) or upon a multi-
component kinetic description closely related to
Mori's continued fraction representation of time
correlation functions. " Both of these approaches
yield integrodifferential kinetic equations which,
while very suggestive in appearance, are in fact
rather difficult to solve. To circumvent these
difficulties, we will adopt a "modeled" description
of the damping term as follows: Assume that the
time behavior of the damping kernel p(p, p', v') is
exponential'4 such that
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p(p, p ', r ) = y(p, p', 0) exp[- o.'(k) r], (9) III. CALCULATION OF TRANSVERSE
CURRENT CORRELATIONS

where the exact form for p(p, p', 0) will be used,
while o(k) will be determined at a later stage of
the calculation. This "single-relaxation-time"
approximation is very similar to that introduced
earlier by Berne, Boon, and Rice' in the calcula-
tion of the momentum autocorrelation function of
a test particle in a liquid —except that we allow
a k-dependent relaxation constant n(k). Such an
approximation can be motivated by considering a
two-component kinetic description (see I) and
recognizing that one expects the damping kernel
to be a rapidly decaying function of time [at least
on the time scale of Bk(t)]. However, we will re-
gard (9) as merely a model and, as such, justified
only by agreement with experimental data.

It is a straightforward task to evaluate p(p, p, 0)
from equation (5) (see Appendix A for details).
Such a calculation yields

P'P(P, P', o) ~k(P', P", t}

8 s p 8=-D(o) =-. + — .p & (p, p", t)
p ~p m ~p

If we define the microscopic current density
J(k, o) by

J (k, o) —= Z (p /m)exp(zk x ),
Q=$

(14)

then the transverse current- current correlation
function

8 (k, t) —= (JI+(k, o)JI(k, t))(J*(k,o)J (k, o)) ' (15)

can be written in terms of Bk(p, p", t) as

8 (k, t) = (P/mn)f dpplf dp"P'Pk(p, p", t),

where we choose our coordinate system (p„P„P,)
such that p, is parallel to k. Hence, to calculate
8i(k, t), we need only compute a moment of bk.

Rather than attempting to solve the modeled ki-
netic equation (12) for Q'k(p, p~', s) directly, we
will instead first multiply it by p, and p", and then
integrate over p" and p, and p2 to find

+pM(p). &(k). dp'p'b (p', p",t},

where g (k) -=kk nc(k)/m' —P'/m' D(k),

(lo)

c
ikp D(0) d' P d

X(tel s) —
( ) z + —p dp- X(tel s)

D..(k) =(n/P)
Q2 px,-g(x)coskx 6
~X. 3 U' (P/m)D„(k}M(P) t

s+ o(k) J

D(O) =(n/P) dx, , g(x),

and c(k) =g(k)/[1+nh(k)] is the direct correlation
function, while V(r) is the interparticle potential.
Hence, the modeled kinetic equation we will con-
sider becomes, after a Laplace transform in time,

P g (p, p", s)+ PM(p)nc(k)

x f dp'g (p', p", )=~k(p, p", 0)

D(0) & s p 8 m o ll

= (mn/P)M(P),

where we have denoted P, - p and defined

(17)

X(p, s)= fdp f -dt P fdp"P" 8 (p, p", s}
(18)

Equation (17) is now an integrodifferential equation
in the single variable p.

Recognize that we need only compute the integral
of X(p, s) over all p to arrive at gl(k, s). With
this in mind, let us study Eq. (17}in two limiting
cases: In the limit of large s it is evident that we
can neglect the damping term in (17) to find

pM(p) K(k)
s+ o.(k)

dpi pl (j (pl pll s)

1/2 t. -p'P/2m
mp e

(k, s)= dp
QQ

(19)

where q (p, p", 0)=nM(p)5(p —p")

+ n'M(p)M(p" }h(k) .

Of more interest is the cosine transform of 81(k, t)
in time given by

8 (k, ~)=Re( lim Si(k, i~+e))e-0+ ~
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exp —
~

VE (2o)
m 2D(0)+D„(k) &, ) ik x&„x —n+
p ( )

—X' '

Of course, this is just the form of the transverse
current correlation one would have obtained for an
ideal gas —that is, a system in which there are no
particle interactions. This is the same result
which one obtains from the Vlasov kinetic equation
for a liquid, ' hence verifying that the total neglect
of the damping term is related to a large ~ or
short-time approximation.

Having verified that our modeled kinetic equation
yields the correct large v behavior, let us now ex-
amine the other extreme of small 0 and v. The
most convenient approach is to multiply Eq. (17)
by pr and integrate over p, hence obtaining a re-
cursion relation among the moments X( )(s):

(r) (. / )
(r+ 1) D(0)

' Now note

m
(" ""')= ~n (' oo" o )' ""

where C«(k) has been identified as one of the elas-
tic moduli'

Q2 p
Xg

Hence, from (24) and (25) we find

g (o )
o'c„(o) [( — /p)c)()]oI„

mn s+ n(k)

x [1+&& (k, s)], (3o)

x r r-1 ]X ——r+1 X =0, r odd 21
(r- 2) P (r) where we have defined

t&(k, s) = (p/m-n)(ik/m)X&'&(s) . (31)
(r) (. / )

(r+1) D(o)

x rr-1 X ——r+1X(r -2) P (r)

))„(o)(I)'
' '

[1x3x ~ ~ ~ x(r-1)]X&'&

2+ 1
m

p
n[lx3x x(r-1)] r even

(22)

Interestingly enough, tI.is form is very similar to
the exact expression derived via a generalized
hydrodynamic approach by Akcasu and Daniels':

g (k )
k'C44(k) 1

I)) s) o„(s)I (32)

(For more details on this result, refer to Appendix
B. ) We can now determine o.(k) by comparing (30)
and the exact hydrodynamic result (32) at s = 0 to
find

where x (s)=- j' dpp x(p, s) . (23) ( ) ( )
1 —n/PC44(k)

J. 1+t&(k, s) (33)

In particular, note that

Si (k, s) = (P/mn)X" &(s) . (24)

X Pl6 Zk ~(g)
P 'm

«),)( ) (
oo/ ))(o) )o „))

-1

s+ n(k) m

(25)

(26)

-1

(
op/)))D (0)
s+ o.'(k)

It is a straightforward task to compute the first
few moments to find

o/mf))(o) —D„(o))
)s+ o.'(k)

Since (d1(k) = C«(k)/&7i(k, 0)(see Appendix B), we
find that a(k) is related to a transport parameter,
the 4-dependent shear viscosity. Furthermore,
using the relation (d1(k) = p»(k, 0), we can obtain
an expression for o&(k) in terms of the projection
operator introduced in the hydrodynamic descrip-
tion.

The resemblance of the form of (30) to (32) is
very suggestive. Indeed, since the additional term
5(k, s) in (30) is due to the streaming of the par-
ticles, represented by (ikP/m)X(P, s) in (17), we
may therefore argue that for dense fluids and
small k, this term will be small compared to unity.
Furthermore, the factor [1—n/PC«(k)] in the de-
nominator of (30) is very close to unity for small
values of k. Hence for small k, the expressions
(30) and (32) are equivalent, with o. (k) also ap-
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proaching &u&(k) as seen from (33). Thus, the
modeled kinetic description (12) yields the correct
"hydrodynamic" results for small k with the choice
of n(k) given in (33). Of course we still do not
know u&l(k). However Akcasu and Daniels have
modeled this function by using its known behavior
for small and large k (see Appendix B). If we use
this modeled form for ~l(k) to compute n(k), we
can then calculate $&(k, ~) explicitly.

This calculation has been performed for argon
at T = 76'K, mn= 1.407 g/cm' using the modeled
hydrodynamic result (32) as well as the kinetic de-
scription retaining the first three moments and
taking &u&(k) as given by (B16). These calculations
are compared to the molecular-dynamics data of
Rahman4 in Fig. 1. Notice that the agreement
with Rahman's calculations is rather good in all
cases, As one expects, the higher moments in
the kinetic description are essentially negligible
for k & 1.5 A ', and the hydrodynamic description
yields satisfactory results. However for larger k,
the kinetic description yields somewhat better re-
sults due to its more detailed treatment of the
frequency dependence. Figure 2 gives a com-
parison of the frequency ~~ (k) for which 8l(k, &)
assumes a maximum for a given value of k for the
various theories, while Fig. 3 plots the magnitude
of this maximum.

7.0

6.0—

O
Ol
Ol

Al0

5.0—

4.0—

3.0—

2.0—

I.O—

~ ' '" 'X ~

r e ~ ~ gl ~ a
g ~

t

I

I.O
I

2.0

«[K- j

I

3.0 4.0

& (k, t) -=(J, (k, 0)Z, (k, t))(Z,*(k, 0)J,(k, 0)) '. (34)

Recognize that At~ (k, ~) is simply related to the
cosine transform, S(k, &u) of the density-density
correlation function

FIG. 2. Frequency ~m (k) at which Jg (k, co) assumes
a maximum for a given k. The points are the data of
Rahman, while the dashed and dotted curves are the re-
sults of one- and three-moment calculations, respectively.

IV. CALCULATION OF LONGITUDINAL
CURRENT-CURRENT CORRELATIONS

1"(k, t) =—„&p k(0)pk(t))

We now turn our attention to the calculation of
the longitudinal current-current correlation func-
tion

4.0—

=—'
~dpfdp «(p, p"", t),

by 8 (k, &)= (mP~'/2k')S(k, ~) .

(36)

(36)

5.0

2.0 2.0—

I.O

k*l.97K '
We shall apply Eq. (12) to the calculation of S(k, tu)
and hence, obtain g~~(k, ~) from (36). Following
the procedure of Sec. III, we first integrate (12)
over p",p„andp, to find

2.0—

1,0

0.5
I

I.O 1.5

k 1.30 A
'

3.0—

2.0—

I.O

I I I

0.5 I.O 1.5

k = 2.63K-'

6.0

50—

o 40—

~E
30—

0.5 1.0 0.5 1.0
~ lo sec

1.5 2.0—

1.0—

~ ee
0 &Q'~~'giggle(') O(PQ'0"0

FIG. 1. Transverse current-current correlation func-
tion 8~(k, co) versus cu and k for argon. The solid curves
represent the computer data of Rahman (Ref. 4), the
dashed curves represent a single-moment calculation of
this work, while the dotted curves represent a three-
moment kinetic description.

I

I.O 2.0
«[K'j

I

3.0

FIG. 3. Value of g~(k, co) at co=em (k) for various k.
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D(O) d' P d
sss(2) 02' ' I 022) (0's)

+
( ), ss(2)- —,D„(2))PM(P) k' P'

~
00

x dP'P'F(P', s) = nM(P) S(k), (37)

where again P, -P and

F(p, s) J—=dp J dp fdp" g (p, I&",s) . (38)

(s —ikp/m) Y(p, s)+»c(k)M(p) dp' Y(p', s)ikp

2 2 1
&& e dt + nck pate

0

z=—(-,'mp)21'. (4O)

This result, first obtained by Nelkin and
Banganathan, ' is something of an improvement
over the ideal gas result

1 2

S(k, (d) = —
k, exp(-z'),&& mP (41)

solution to (37) without the damping terms

1/2
&)'mP -z2 -Z2S (k, &u) = k,

— e +nc(k)2z eS k

Furthermore, M(p) =—(p/2»m)'&' exp(- pp'/2m).
Noting that

1
S(k, (d) =—Re( lim dp Y(p, i(2&+ e)'I, (39)

0+

we again find the large ~ behavior of S(k, &o) as the

since it does account for initial correlations.
However, it is only valid in a liquid for large (d.

In order to study S(k, (d) over a wider range of
k and ~, extending to the values of k and ~ en-
countered in neutron-scattering experiments, we
retain the modeled damping term in (37), multi-
plying by P~ and integrating to obtain a recursion
relation among the moments Y(&)(s):

sY ——Y(r) ik (r + 1) D(0) (r-2) P (r) m z/2x(r —1)Y ——r Y =nS(k) — (1;2;—,'r), x even,m s+n(k) m (42)

(r) s2 (r ~ 1) (2 I (rr(l/2 (0) D(0) (r-2l 0 (r))
m m P s+ n'(k) m

( / )(Y+ 1)/2 2
+ s+ n(k)

1 2 ,'(r+ I) ——nc(k)— D(k) Y'"=0-m' m' x odd, (43)

where (m;d; &2) =m(m+d)(m+2d) [m+d(v —1)j for v=1, 2, . . . , and (m;d;0) =1. More explicitly, the
first few moment relations are

s Y'" = (ik/m) F"& nS+(k), (44)

Y' — m Dp. —D„k + k2 m nck &k Y() —&~ Y()
s+n(k) (45)

2 m D 0 +
k

2D 0 (0) zk (3)
s+n(k) P s+n(k) m

(48)

One obtains a closed set of equations for the first
(n+I) moments by ignoring Y("+ ) in the expres-
sion for Y("). We obtain an approximate expres-
sion for Y'" from the above set by ignoring Y(": k' 2P D(0)

mP m s+n(k) (48)

„,C„(k) mac '(k—) 2n/P—
where Q(k, s) =s+

mn s+n(k

(p&( )
nS(k)Q(k, s)

sQ(k, s)+k'c '(k) (47) In obtaining (47) and (48), we have observed that
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—[D(0) —D„(k)j = C„(k)—
k' 3k'

(49)
12

10—

k Pl c(k) kg 1
2(

mp mp L (5o)

where C»(k) is a component of the elastic modulus
tensor, "given by

Cl

Ol
O

Q
SC

E

3

s-
ps

4 ~

~ ~ ~
~O ~

0
~ 0 ~

~
Y

O'V 1 —c skX
ex32 I

1.0
I

2.0
I

3.0 4.0

in a coordinate system in which ktl(x, axis). The
term cf (k) in (48) and (50) is the isothermal speed
of sound" defined by

FIG. 5. Frequency ~~ (k) at which 4
~I

(k, co) assumesII

a maximum for a given k.

c '(k) = 1/mPS(k), (52)

k'c '(k)
Z, (k, (e)=Re(~'((a—

Cll(k) —mnc '(k) —2n/p

mn z&o + n (k)

I
k=0.5 A

4.0—

l =117K '

, l.O
CJ
4l

lO
'0

1.0

I

.4 .8 1.2 1.6 4 .8 1.2 1.6

4.0—

where S(k) is the structure factor, i.e. , S(k) = 1
+nb(k). Substituting (47) into (39) and using (36),
we obtain the longitudinal current-current cor-
relation function as

k' . 2p D(0)
mp

+
m i(o+n(k)

which again corresponds to the form obtained via
the generalized hydrodynamic description. '&'

Using the expression (53) we have computed the
longitudinal current-current correlation function
for argon at T = 76 'K, p, = mn = 1.407 g/cm' and

compared the results with Rahman' in Figs. 4 and

5. The quantities cI,(k), Cll(k), and D(0) were
computed from (52), (51), and (ll), respectively.
The relaxation frequency n(k) was taken to be the
same as that used in Sec. III when computing the
transverse current correlation. [It might be men-
tioned at this point that the kinetic approach we
have adopted here differs from the hydrodynamic
approach' in that only one relaxation parameter
n(k) is sufficient to yield both transverse and
longitudinal current-current correlations. In the
hydrodynamic description, ' two such relaxation
parameters &el(k) and ur ~~(k) were necessary. ]
Again the comparison of the moment calculations
with Rahman's data seems to be quite reasonable.

k= l.70 A

3.0—
k=3.0 A

V. CONCLUS1ONS

2.0 2.0—

I.O 1.0

I I I

.4 .8 1.2 1.6 .4 .8 1,2 1.6
l3 -I

l0 sec

FIG. 4. Longitudinal current-current correlation
function ~

~~
(k, ~). Again the solid curves are due to

Bahman (Ref. 4), whereas the dashed curves correspond
to the kinetic-equation description.

By adopting a single-relaxation-time model of
the damping kernel in the exact kinetic equation
developed in I, we have been able to explicitly
calculate current-current time correlation func-
tions in simple classical fluids. Our results
agree quite favorably with the data generated by
the computer experiments of Rahman and, in fact,
represent a considerable improvement over ex-
isting kinetic-equation descriptions of time cor-
relation functions in liquids.

It is proper at this point to compare such kinetic
descriptions of time correlation functions with al-
ternative descriptions based upon a generalization
of the conventional hydrodynamic equations. '~ ' Of
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course, the central idea behind all of these descrip-
tions is to formally obtain exact expressions for
time correlation functions in forms involving a
"damping" or "memory" term which can then be
easily modeled or approximated. The hydrody-
namic approach develops exact expressions for
the correlations among dynamical variables which
have macroscopic counterparts in configuration
space, e.g. , mass or momentum densities. Such
an approach possesses certain advantages for the
study of liquids, since it yields explicit expressions
for various physical quantities of interest (e.g. ,

viscosity or conductivity) in terms of time correla. -
tion functions. It seems particularly well suited
for the description of correlation functions in the
range of small k and co dependence. To extend
the modeled hydrodynamics description to higher
k and ~ usually requires considerably more elab-
orate modeling (either by utilizing higher-order
sum rules in the Martin-Yip' formalism, or by
consider ing a higher- dimensional description in
the Akcasu-Daniels' work).

In this regard, the kinetic-equation description
is more suited for the description of the range
of large k and ~. We have seen that it not only
yields the proper large k and e limit of ideal gas
behavior, but can be used as well to describe low
k and v in the hydrodynamic regime, provided we
adopt a suitable model of the damping kernel. In
this sense, the modeled kinetic description pro-
vides a consistent means by which we can ex-
tend the hydrodynamic description to larger A

and v [by calculating higher moments of X(p, s)
or Y(P, s)]. Unfortunately, the kinetic approach
suffers from the complexities of modeling and ob-
taining a solution to the kinetic equation itself.
It is, of course, much easier to model a function
of k, as in the hydrodynamic description, than an

operator, as we must in the kinetic approach.
Moreover, there are very few "modeled collision
operators" which will permit us to extract suf-
ficient information about the behavior of Bi, (p, p",
f) to allow a praetieal calculation of time corre-
lation func tions.
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APPENDIX A

We wish to calculate the t=0 form of the damping
kernel

0(p, p, o) = In~(p )] '((l —&)o* (p )(l —&b(p)&

= [nM(p')]-'(&o" (p')o(p )&

(Al)

where p(p) =- M(p) l
—zk p ng(&)

.V ~», » Q

ap =- Z e —n5(k) .
Q=$

(A2)

First calculate

&o*(p )&p~& = n'g(&)~(p') . (As)

This work has benefited rather substantially from
numerous discussions with Professor Richard
Qsborn, Professor Noel Corngold, and Dr. Eugene
Daniels. The authors are particularly grateful to
Dr. Daniels for supplying the calculations of the
elastic moduli Cz& (k).

Next calculate

N N

&o*(p')o(p)& = ~
n=l P=l

»»Q—2k'x
F ~1 «n, zk'x P S i««P

6 p —p je F ' ~&p-p»Q pBp Bp

m sp
p--- |)(p' p)

—=-g(p' —p) M(p): Z &F F ) — - -I ' Z
Bp Bp BP BPQ= I n=l P=l

n4p

»Q—ik xP i'k x
e F e

(A4)

But if we note

E. ) =n5. .D(0),
2 2 6'

n p zlzz'x
e

2

(A5)

then it is a straightforward calculation to combine
(A3) and (A4), using (A5) and then integrating, to
find

f dp' V(p, p' ,0) -~ ~(p', .p", i)

=n(0) —' —'.——z
I

z ~% z", t)
Bp Bp vl Bp



CURRENT CORRELATIONS IN CLASSICAL FLUIDS

+pm(p) [kknc(k)/m'- (P'/m') D(k)]

J dp p &k(p', p", t) .

APPENDIX B

(al)

We shall summarize the derivation of an exact
expression for the transverse current-current
correlation function as given by Akcasu and
Daniels. Again utilizing the Mori- Zwanzig for-
malism, we choose the components of the state
vector a as components of the mass current den-
sity and the stress tensor

1V

a, =J,(k)= Z P, exp(zk x ),
a —1

a, = fl „(k)= Z (t y, /m) exp(z& x )
A=1

Now we see from (15) that

g (k, t) =(a,(t)a,*)(a,a,*)-'

k'C„(k)/mn
k) s s+

( )
(B&)

Ol (k, u&) =Ref[i~+k g (k, &u)/mn] 'j (B9)

where we define a k- and ~-dependent shear vis-
cosity by

zi (k, (u) = .—
C (k)

i(u+ jzz(k, i(u) (alO)

Hence, by multiplying the set (B6) by a,*, ensemble
averaging, and then Laplace transforming in time,
we can solve for

where

E N
+ Z Z P„exp(zk x ),

n=l P=1
nWP

As it stands, (B9) is still an exact expression for
g &(k, ur). But the actual calculation of p»(k, i~) is
as difficult as that involved in calculating g & (k, ur)

directly; hence, Akcasu and Daniels chose to in-
troduce a Markovian approximation by replacing
p» by its v -0 limit:

nP ~ ~nP
P.. =x.nP nP &V exp(- zk. x ) —1

B2
zj =i n .- -nP~X. ik ~ x lim y (k, i(o) =—(u (k)

0
22 (all)

Then a straightforward calculation' yields the fre-
quency matrix

0 1
C„(k)/mn O

Furthermore, since (1 —P) a, = ik(1 —P) a, =o, we
find

0 0
g(t) =

0 (t)

for small frequencies v. Hence, g (k, ~) becomes

~, (k) kz C (k)/mn

J. ' a7 &u (k)+[k C 4(k)/mn —iu ]z

However, even ~&(k) as given by (Bll) is extremely
difficult to calculate. Hence, instead of calculating
&ul (k) directly, an attempt was made to model its
k dependence as follows: For small k, zl~ (k, 0), as
defined in (Blo), reduces to the usual shear viscos-
ity g~. Hence,

where p„(t)=-((1-P) a,* lim (o (k) = C (O)/zi
0

(B13)

xexp[zt(1 —P)L] (1 —P)a,) (a,a,*) ' . (B5)

;z -zka, (t)=O,

Hence the generalized Langevin equation (1) for the
set (81) becomes

Furthermore, for large k one expects to obtain the
dispersion relation vm (k) characteristic of an ideal
gas" (here, mm (k) is that frequency at which g &(k, &u)

assumes a, maximum value for a given k). Noting
that for an ideal gas

1/2
g (k, e) = —

2
'

exp ——
z —,(B14)

7f Pm (0 mP
L

da ikC44(k) ( )dt mn

+ f d~q' (7.)az, (t- ~) =fz(t)

(B5) and hence &em~ (k) = 0 for all k, Akcasu and Daniels
required &u ml (k), as calculated from (812), to
approach zero as k- ~. This leads to the require-
ment
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~ '(~)-2u'C (u)/mn as u- -.I 44
(B15)

For intermediate k, a simple interpolation formula
was Used:

2(„) 2k 2C~4(k)

(o 2(0) —2k' [C (k)-n/ j/mn

1 u/'
where the interpolation parameter was taken as
40=1.5 A
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Osmotic Pressure of Dilute Solutions of He3 in He4~
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The osmotic pressure of dilute solutions of He in liquid He has been measured at 0.32, 0.65,
and 1.16 'K for concentrations up to 2%. "The technique does not require values of the He

fountain pressure and is substantially more precise than previous methods. The results are
analyzed in terms of the effective-interaction model of Bardeen, Baym, and Pines as extended

to nonzero temperatures by Ebner. The results do not agree well with the theory.

I. INTRODUCTION

Dilute solutions of He' in He4 have been the sub-
ject of a great deal of experimental and theoretical
effort in the past few years. ' Bardeen, Baym, and
Pines (BBP)' have successfully extended the Landau-
Pomeranchuk' model of solutions to finite concen-
trations and low temperatures by means of an ef-
fective He' quasiparticle interaction V~. Baym
and Ebner4 have calculated a V& to fit the trans-

port properties (spin diffusion' and thermal con-
ductivities') at low temperatures (T«T~, where

Tp is the Fermi temperature of the He' component
of the solution). This V~ is in excellent agree-
ment with that calculated from recently measured
low-temperature static properties (heat of mixing, '
phase separation curve, ' and osmotic pressure').
Ebner has recently calculated a new V~ based upon
exact solutions to the transport equations. " This
Vy gives only fair agreement with the low tempera-


