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Terms up to order (I'/k~T) in the high-temperature expansion of the orientational' specific
heat of ortho-para alloys of solid H2 or D2 are evaluated. Good agreement is obtained between
theory and experiment using a Pads approximant and effective values of the quadrupolar coupling
constant, I'eff/10=0. 88 for D2 and I'eff/I'0=0. 80 for Ht, where I'0 is the value for s. rigid lat-
tice. These values agree with other determinations of I'eff, whereas the T approximation
for the specific heat yields anomalously sma11 values of I'eff.

I. INTRODUCTION

The interactions between molecules in solid hy-
drogen' have been a subject of widespread interest
recently. Nakamura' was the first to establish
the general nature of these interactions as arising
from the electric quadrupole-quadrupole (EQQ)
interactions between molecules. He also at-
tempted to explain quantitatively the orientational
specific heat of solid H2 at temperatures above
4 K in terms of an estimate of the EQQ coupling
parameter I". More recently, Grenier and White'
have carried out a similar analysis of their spe-
cific-heat data for solid D, at high (T &6 K) tem-
peratures. In both cases the specific heat was
fitted to a T ' law corresponding to the effective
values I eff —0.52 cm ' and I eff —0.41 cm ' for
D, and H„respectively.

However, these values of the EQQ coupling con-
stant are much smaller than one would expect.
According to the most recent theoretical calcula-
tions, '" the quadrupole moments of the H, and D,
molecules are' Q=0.4883a,' and Q=0.4783a,', re-
spectively, where a, is the Bohr radius. These
values of Q, together with the observed lattice
constant' ' R, enable one to calculate the EQQ
interaction constant" I",= 6e'Q'/25R' as I",= 0.839
cm ' for D, and I",=0.698 cm ' for H, . The dis-
crepancy between these values and those obtained
experimentally is rather serious in that to remove
the discrepancy would require attributing more
than a 100 /o error to the observed orientational
specific heat. The object of the present work was
to study further terms in the high-temperature ex-
pansion of the specific heat to see if they could
provide an explanation for this anomaly in the spe-
cific-heat data.

Before describing the calculations, we should
point out that one can expect departures from the
rigid lattice values of I', quoted above. Such de-
partures have been calculated" ~' as arising from
(i) dielectric screening, (ii) static phonon re-
normalization, and (iii) dynamic phonon renormal-

ization. The physical picture of these mecha-
nisms is discussed fully in Refs. 11 and 12. The
results of such calculations show that at high
temperatures, i. e. , for &AT» I'0, I"0 should be
replaced by I'ef f with I'eff/I"0 =0.88 for both H2
and D2. Even using these reduced values of I'eff
one finds a specific heat in the T ' approximation
about twice as large as that actually observed.
As our analysis will show, this discrepancy is
simply the result of not keeping enough terms in
the high-temperature expansion for the specific
heat.

This paper is organized as follows: In Sec. II,
we outline the diagrammatic formalism needed for
a calculation of the high-temperature specific-
heat series. In Sec. III, we give detailed numeri-
cal results for each diagram introduced in the cal-
culation. In Sec. IV, we compare the various
forms of our results with the experimental data.
We find that quite reasonable agreement between
theory and experiment is obtained with a Pade ap-
proximant, using the values jeff =0.70 cm '

0.&3 ro for D2 and reff=056 cm '=0.80 I'0 for
H, . These values are comparable with those pre-
dicted, taking account of the renormalizations dis-
cussed above. Furthermore, from the behavior
of the first four terms in the high-temperature ex-
pansion, we infer that high-temperature behavior
does not obtain below about &IfT/I'= 10 for, say,
50 /o concentration of molecules with J = 1. This
finding probably explains why the two-term high-
temperature expansion used to analyze the second
moment of the NMR spectrum of solid H, " ' in
the temperature range 4 K& T&10 K is only qual-
itatively successful. "

II. FORMALISM

Since the EQQ interactions are dominant, ' it is
reasonable to describe the molecular rotations
in solid hydrogen by the following simple model
Ham iltonian:
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K = KKE +KE@

where the first term is the Hamiltonian for the
rotational kinetic energy,

K = BgZ. (Z. + 1)
KE . i i (2a)

and the second is the EQQ Hamiltonian, for which
we use the convenient form given by Gush and
Van Kranendonk, "

and that H" commutes with the Hpf, unless i or j
is equal to 0 or /. We now consider the free en-
ergy F, which we write as

—PE=in EQ (4)

where, for any operator 8, (8) denotes Tr&/TrI,
where I is the unit operator. We wish to write the
free energy as a power series of the form

=+p (70&)v2 P Q C(224;mn)
(i,j) m, n

(n.)F (n.)& (&..) . (2b)

Here, J~ is the angular momentum of the ith mol-
ecule associated with molecular rotation; the

Yi are spherical harmonics in the phase conven-
tion of Rose"; Qi =—(8i, pi) and Q. =-(8, p. ) specify
the orientation of the symmetry axes of lhe ith and
jth molecules, respectively, with respect to some
external coordinate system; A. —= (8i, pij) speci-
fies the orientation of the line joining the ith and
jth molecules with respect to this same coordi-
nate system; and C(224;m, n) is a Clebsch-Gordan
coefficient. " In Eq. (2b), (i, j)indicatesthatthe
sum is over pairs, with i and j nearest neighbors.
The lattice structure of solid hydrogen in the tem-
perature range of interest is hexagonal close-
packed (hcp). Note that B» I', which justifies our

treating J as a good quantum number. Further-
more, since transitions between even and odd
parity states are strongly forbidden, at low tem-
peratures the solid will be an alloy consisting
of a fraction x of (J'=1) molecules and a fraction
(1-x) of (J'=0) molecules. It is obvious that
within our approximations the interactions are
nonvanishing only between pairs of (J=1) mole-
cules. In writing Eq. (2b), we have neglected in-
teractions between other than nearest neighbors,
For terms in the specific heat of order x', direct
calculations show that this approximation intro-
duces errors of the order of 1/0. For terms of
higher order in x, such calculations are extreme-
ly cumbersome and have not been undertaken.
However, it would be surprising if the effects of
further neighbor interactions were more impor-
tant here than in the calculation of the molecular
field, where they lead to an 11 /0 correction. "'"

We begin the calculation by developing a general
expression for the specific heat, closely following
the treatment of Horowitz and Callen. " To do
this we note that KEQQ is a sum of pairwise in-
teractions

KQQ-Z If
(i,j)

—PE= Z P (nt) M(K ).
n=1

Following Ref. 20, it is convenient to introduce
the definitions

P{ )-P exp Q H o', p, = {Trf) ', (6)-
{,(i,j) "

(KEQQ){n)
= Tr(p{n)KEQQ)/Trp{ ), (7)

aD{)=Z, =Z D. . .i2,2

Then we can write

—PF = lim lnTr e p{.) o {))'
—PP= (im InTr exp( Z (n. . —9)X,(99)

{o,)-0 — (i,j)
—PE= lim exp(- PD{ )){n)-0

xln Tr exp n. .H. .
(i,j)

(9c)

DJ
where the operator e {o') is a translation op-
erator of several variables which transforms a
function of n" into a function of nij —P for all
pairs (i,j). Now we simply expand e PD{&) as
a power series in P and we find

—PE= Iim Z (nj) '
{o.)-0 n=1

&& —P P D .. ln Tr p{

Here we have taken note of the fact that the (n =0)
term is simply (lnl) =0.

Thus, comparing this result with Eq. (5) we have
the nth cumulant
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100% (J= 1) molecules, this dia-
r 6N times, where N is the total

number of molecules, since the coordination num-
ber of the hcp lattice is z =12. However, when
the concentration of (J= 1) molecules is x, this
diagram will occur 6Nx' times, assuming a ran-
dom alloy. " Thus, to lowest order

Xln Trp~ l .

We may expand the sum over (i, j)usingthe multi-
nomial theorem

A. BER LINSEY AND A. HARR IS

M (3C )= lim —P Z D. .
'{n

If the solid were

( j-0 ( (,j) gram would occu

Pj
(-PD,,)

'
p'2j

where g(i j) pij = n. Then if we define
~ ~

MJ{P..] = II D. ln Trp, .,
'Eg

(
. .

)
2$ $Q I

we may rewrite the free energy as

(12a)

(12b)

(13)

Ii = —3px'N(H. .$ .
2j

i =all
diagrams

s.
xa.x Mfp

i (i), (i),
1 'p2

Similarly, for each diagram the sum over jP")2j
is replaced by the number of times the same
shaped diagram occurs in the lattice multiplied
by a factor xs, where s is the number of lattice
sites in the diagram.

Accordingly, our final expression for the free
energy is

where the sum over e is performed by removing
the restriction on the sum of the P". This result
is most easily understood in terms of a diagram-
matic representation. Let each of the M(pij) cor-
respond to a diagram with pij links joining the ith
and jth lattice sites. It is a well-known result
that only connected diagrams will have a nonzero
value.

The sum over P" can be converted into a sum
over all possible connected diagrams. For our
Hamiltonian the value of a diagram is strongly
dependent on its shape; so we have to sum over
all differently shaped diagrams, not merely over
all topologically distinct ones. This process is
considerably simplified by the fact that we are
only consider ing nearest-neighbor interactions.
Another simplification results from the fact that
all diagrams which have a free end are equal to
zero, because in this case the term will contain
a factor Tr Y, , which is zero. For example, the
lowest-order diagram is a single link between i
and j:

BE
C = —T (18)

which yields

i =all
diagrams

n. (n. —1)
2 2

&&(P !P ! . . . ) a.x D.(-Pr), (19)
(i) (i), -1 i

where D. = MjP )/r ~

2
(2o)

III. RESULTS FOR DIAGRAMS

where Na. is the number of times the ith diagram
occurs in the lattice, n. is the number of bonds in
the diagram, and P, ~, P, ~, . . . , etc. , are the
nonzero multiplicities of bonds 1, 2, . . . , of the
ith diagram. To obtain the specific heat, weuse

M(P, j=(JI..) =o, (14a)

with
kl ik jl ' (14b)

where 5 is the Kronecker delta. The lowest-
order nonzero term is when pal =2&+i&jl
this case,

M(p, j= (e..') -(H. .)'=(a. .') . (15)

In this section, we will give explicit results for
all diagrams required for the calculations of the
terms in the specific heat up to order (Pr)'. The
difficult part of these computations was the cal-
culation of the D2. In general, these involve mul-
tiple sums of products of Clebsch-Gordan coeffi-
cients and fourth-rank spherical harmonics. How-
ever, for the special case of two sites, i.e. , s. =2,
the value of D2 for arbitrary values of ~ can be

2
computed very simply from the known' energy
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levels of an isolated pair of (J= 1) molecules.
Nontrivial terms, i.e. , those involving more than
two sites, rapidly become more complicated as
e. increases. For the lowest-order nontrivial term

z
(n; =3), we verified the result given by Nakamura. '
For the cases nz =4 and 5, these summations were
carried out numerically on an electronic computer.
The results, along with the various combinatorial
factors, are listed in Tables I and II. The dia-
grams are labeled (ni; pl(~), p2(i), . . . ) with addition-
al subscripts giving shape parameters and, where
necessary, superscripts T, Q, and P denoting
triangle, quadrilateral, and pentagon, respectively,
as is illustrated in Figs. 1 and 2. In Secs. B and
C of Table II, we specify the shapes of the diagrams
by giving spherical polar angles for each bond.
These specifications are not unique, since the
shape of the diagram is invariant under rigid rota-
tions. The values are simply one possible set of
arguments for the spherical harmonics which ap-
pear in the expressions for these diagrams. Final-
ly, the complete coefficients of x~(Pr)" in the
specific-heat expansion for n & 5 are given in Table
III.

In an elaborate calculation such as this, it is es-
sential to be able to check the validity of both the
analytic expressions and their numerical evaluation

by computer. The values of the various Nai, the
number of times each diagram occurs in the lat-
tice, are fairly obvious for single bonds and tri-
angles. For the somewhat more complicated
cases of quadrilaterals and pentagons, we were

s r'-=—,', g. y. '=3(H. .')+6(H. .H. H .) =42 09I'. ,
z i zj zj jk kz

(21a)

S r&-=—,', g. X'=3(H. .')+36&H. .2H. H .)

+18(H. .'H. ') = 1386.4r4, (21b)

s r'=- —,', Z. &.'=3(H. .')+60(H. .'H. a .)
z z zj ki

+90(H. .'H. 'H .) +60(H. .'H. ') =6664.81',
ij jk ki ij jk

(21c)

able to compare our count of the sum of individual
shapes to the results of Domb and Sykes" for the
total number of quadrilaterals and pentagons in the
hcp lattice. The values of the individual diagrams
D~, (except for the trivial ones) were checked for
rotational invariance. That is, for each of the fig-
ures the computation was performed with at least
two different sets of spherical angles specifying
the shape. This is a very delicate test, not only
of the programming, but also of the analytic ex-
pression, because in general even the introduction
of spurious phase factors (- 1) will destroy the ro-
tational invariance. In addition, one of us" had
calculated the eigenvalues for the EQQ interaction
between three (J= 1) molecules at the vertices of
an equilateral triangle. From those results, we
have

TABLE I. Factors for diagrams with less than five bonds.

Dlagl am

(2; 2)

(3; 3)

(3;1,1, 1)
(4 4)

(4;2, 1, 1)

(4; 2, 2)0

8=—13
8=-23
8=—12
8=1
8=1-2b
8=c

S. ai

6

6

8

6

24

24
18
12

3

3

&Hi~ )
&Hij )

&Hi~ H i' i&

&H;~'& -3 &H;~ '&'

&H ~ H~pHii&.2

. .2 ~
2

—&Hiq &&Hqi &

8

10
80%
f536

27
f8 545
i3 824

—19.663
—19.663
—22. 022
-7.901

—21.070
—13.542

(4; 1, 1, 1, 1)

8 1

e=$
8=—13
8-—1

8-—1
3

@=1
@=1
y=2b

y=1-2b

9
3
6

3
12

&Hi jH iHkl Hli)'
—1.923

6.778
0.782

-1.812
-0.666

aAll angles are quoted in multiples of m, b = m" arc tan(&2 v 2), and c= m- arc cos (-6 ).
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TABLE II. part (A): Factors for diagrams with five bonds. Part (B):Factors for (5; 2, 1, 1, 1) . part (C): Factorsa Q2

for pentagons, (5; 1, 1, 1, 1, 1)P.

Diagram

(5; 5)

(5;3, 1, 1)

(5;2, 2, 1)

(5;3, 2) 0

0=—13
0 ——2

3
0=—12
6=1
0=1 —2b

0=c

(5;2, 1, 1, 1)0

S.
2 ai

6

24
24

48
36
24

6

6

12

(A)

(Hi j ) —10(Hij') (Hzj')
(Hi j~HjkHki) ~ (Hij ) (HjkHkiHij &

. .2 . 2
(Hi j H k Hk )

. .3 2(H H.
k )

—(Hi &(Hk )

12VO

9
—21.660

11.178

—40.65
-40.65
-51.76

5.185
-47.08
—15.75

0=—13
0=—12
0=—13
6=—13
0=—13

cp= 1
+=1
y= 2b

y =4b
y=1 —2b

36
12
24

12
48

. .2(Hi j HjkHklHli)

-4.880
11.616
0.221

—1.767
-1.254

(5; 1, 1, 1, 1, 1)6
Q

0=—13
0=—13
0=—13
0=—13

Op=1

@=2b

y =4b
y=1 —2b

9
12
3

12

(Hi H.kHk HklHl. )

-4.092
0.118

-2,910
1.477

(5 2, 2, 1)Q 2 2
( zj Hj kHkl —26.04

(B) c

i M~ i' ~ &Hi j HikHki li& & ij & &HikHklHli&

1 n 1&ik» 6kl & &kl 1~ vli & &li

0ik="1

1
2
1
2

1
2
1
2
1
2
1
2
1
2

b

b

1 —b

1 —b

0kl=1- b

0

6
1

6

0l ——b

2
3
1
3
0

3

3

6

6
3
2

6
3
2

a.

12
12
12
12
12

a.
2

12
12
12
12
12
12
12
12
12
12

D
2

2.9990
-8.8689
—0.3617

3.5943
—0.3617

3.5943
—0.3617

2.9990
3.5943

—0.3617
—5.5275

3.7031
—4.4072
—8.8689
—0.3617
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0k=b g7 ik
8..
v
1
2
1
2
1
2

1 —b

1 —b

1-b

ki= 2 &k)=

1
1
3

0

3
1
2

6
1

6

a.

12
12
12

6

6

6

6

D

—0.3617
—8.8689
—0.3617

3.5943
1.5054
6.5816
1.5054

s=5 M(P.)= (H. H. 8 H. H )i ij jk k/ lm mi

(81, y1) (0,, y2) (03, y3) (04, y4) (0,, y5) a.

(-,', 0)

(b, +)

(y, 0)

(b, 2)

(b, 2)

(1-b, &)

(b, ~6)

(b, —.)

(b, —.')

(1-b, +6)

(1-b, —.)

(b, —.')
(b,'—.

)

(b, ~)

(-.', 0)

(b, ~)
(1-b, ~6)

(-,', 0)
(~2 0)
(1-b, ~e)

(1-b, ~6)

(1-b, ~6)

(1-b, ~6)

(1-b,'—.
)

(-,', 0)

(b, ~)
(, —.

')

(1-b, —.')
(1

(1-b, 6)
(&, ~)
(1-b, +6)

(-.~3)

(1-b, ~6)

12
6

18
24

36
12

6

12
36

6

1.4771
—0.3900

2.8103
2.8103

—1.4775
—0.5543
—3.4845

1.5822
—1.4775

2.6395

a
All angles are quoted in multiples of x, and b and c

are as in Table I.
For this type of diagram, D~ is the sum over a11

orientations of the two end bonds keeping the central
bond fixed. Thus, ai= 6 for this collection of diagrams.

In this section, O~n and y~n are the polar and azi-
muthal angles, with respect to the crystal axis, of the

bond corresponding to H~n.
In this section, 6i and yi are the polar and azimuthal

angles with respect to the crystal axes of succeeding
bonds in the pentagons.

(5;5) (5;Z, I, I) (5; 2,2, I)'

(2;2 ) (S;I, I, I)

(5;&,2)0

III 11

(5; 2,1, 1, I )0' 5; I, I,I,I, I

(O;2, I, I) (4; 2, 2)0 , I, I, I, I )0 y
4ILIII

FIG. 1. Diagrams which contribute to terms up to
order (PI") in the orientational specific heat. For the
quadrilateral, 0 is the vertex angle, and y is the dihedral
angle as shown. The parameters are of the form (n~,.
p, (i) p, (i) )

(5;2,2, I)' (5;2,I, I,I) R (5; I, I, I, I, I )

FIG. 2. Diagrams which contribute to the (PI') term
in the specific heat. For the quadrilaterals, the angles
0 and y are as in Fig. 1.
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TABLE III. A „in C/R= 2 „4 „x il'P)n.

mn

3
—60

3095
9

-3581.7
-68.51

1270

8886.7
3872.9
—686.15

as compared to the corresponding values obtained
using our numerical results for the Dz,

S, =42.09, (22a)

S, = 1386.5 (22b)

S, = 6665.2 (22c)

This comparison served as a check on the values
of all the triangular diagrams.

IV. COMPARISON WITH EXPERIMENT

Experimental determination of the orientational
specific heat of solid hydrogen requires that two
measurements be made of the total specific heat,
one at the concentration of interest and the other
at x=0. If we make the reasonable assumption that
the lattice specific heat is relatively insensitive
to the concentration of (2= 1) molecules, then the
orientational specific heat will be the difference of
the two measurements.

1+8,PI'

22 1+C,PI" +C,(PF)' (23)

where the lattice specific heat is larger and the ro-
tational specific heat smaller. As the temperature
increases still further, the experimental points be-
come meaningless.

The experimental measurements which we use
are not in fact measurements of Cy, the specific
heat at constant volume, but rather they are mea-
surements of CS, the specific heat at saturated
vapor pressure. We examined the difference Cy
—CS for the experimental conditions and found it
to be negligible compared to C& below 10 K and un-
important compared to the large experimental er-
ror in the orientational specific heat in the region
above 10 K.

When the power-series expansion of the specific
heat, using the coefficients of Table III and taking
I eff

——0.70 cm ' = 0.83I'0, is plotted along with the
experimental points, it is found that there is a
strong divergence from the experimental values be-
low about 10 K. This may be seen in Fig. 3, where
the power series for x = 0.594 is labeled "4 term. "
In the same figure there are two curves labeled
"[2,1] Pade" and "[1,2j Pads. " These curves are
two Pade approximants" to the above four-term
expansion. For instance, the [2, I 1 Pade approxi-
mant has the form

A. 0, 0.15—

For the case of x=0, weusethe measurements of
Hill and Lounasmaa" on D, with x = 0.015. For the
values of x of interest, we use the measurements
of Grenier and White, 4 who have studied the spe-
cific heat of solid D, from x=0.331 to 0.872. The
experimental data was plotted versus temperature,
and curves were drawn through the points. The
curve for x=0 gave the lattice specific heat which
was subtracted from each of the other curves to
give the orientational specific heat as a function of
temperature at each of the various concentrations.
The values so obtained agreed quite well with the
graphical presentation of the orientational specific
heat given in Ref. 4.

Error flags were drawn for the experimental
points under the assumption that the probable er-
ror in each of the specific-heat measurements was
about 3 /~. Since at high temperatures the relative-
ly small rotational specific heat results from sub-
tracting two large numbers, it is expected that its
probable error will be considerably larger than 3 /z.
This will be more noticeable at higher temperatures,

CI- 0.10—
U

005—

I

10

T(K)

I

12
I

14

FIG. 3. Orientational specific heat of D2 at high tem-
peratures for x=0.594. The experimental points are
shown with their estimated errors. The curves labeled
Pade are the [1,2] Pade approximant (below) and the |2, 1]
Pade approximant (above). Also shown are curves for
the specific heat as obtained (i) by keeping only the
leading term of order (PP in Eq. (19) and (ii) by keeping
the first four terms in Eq. (19), i.e. , those of order at
most (pl") . In all cases the value I eff=0.70 cm =0.83I'0
was used.
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where the coefficients B„C„and C, are, of
course, functions of x. They are evaluated by ex-
panding the Pade approximant in a power series and
comparing it to the four-term expansion. We see
from Fig. 8 that use of the [1,2] Pads gives a
poorer fit to the data than the four-term expansion
and hence this Pade approximant will not be used
further. On the other hand, use of the [2, 1] Pade
approximant provides an expression which approxi-
mates the experimental data over a more extended
temperature range. However, from Figs. 3- 5
we see that even the [2, 1] Pade approximant be-
gins to diverge from the experimental curve below,
say, T= 8 K, i.e. , for AIN'T/I'= 8. Such behavior is
to be expected in view of the fact that this model
has a phase transition, "or at least almost a tran-
sition, "for kJ Tz/I'=8, 131. Thus, eventually the
ratio of successive terms in the specific-heat
series must be at least as big as Tc/T. On the
other hand, the experimental data is unreliable
above 12 K, where theprobable error becomes
very large. Thus, the region in which we can ex-
pect good agreement is rather limited.

The other curve in Fig. 3 is the T ' term in the
specific-heat expansion, again with I'eff = 0.70 cm
=0.83I",. It is clear from this figure that the T
term does not describe the data at all for T & 14 K.
Using the "bare" values of I0 instead of I ff would
make the discrepancy considerably larger. In or-
der to obtain a fit using only the T ' term, it
would be necessary to take I'ef f = 0.56 cm ' = 0.61I0.
This value falls well outside the range of values of
1 eff/I'p from other experiments, "such as the
Raman spectroscopy" or (Sp/ST) ~ measure-
ments'~ "which give I'eff/I'0 =0.81 for concentrated
(J'=1) D2in thefcc phase, and I'„ff/I"p=0. 88 for the
dilute (J = 1) solid.
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FIG. 4. Orientational specific heat of D2 at high tem-
peratures for three concentrations of (4=1) molecules.
The solid curves are the [2, 1] Pade approximants for
the concentrations indicated, with I'eff —0.70 cm =0.8310.
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FIG. 5. Orientational specific heat of D2 at high tem-
peratures for three concentrations of {4=1)molecules.
The solid curves are the [2, 1] Pads approximants for
the concentrations indicated, with I'eff =0.70 cm
= 0.83 r0.

Furthermore, we note that merely keeping terms
up to order (Pl)' also gives a very bad fit to the
data because of the large negative coefficient A3Q.
The situation improves with the inclusion of the
fifth-order terms, but it is only the Pade approxi-
mant which gives reasonable quantitative agree-
ment. From Figs. 3-5, we see that this agree-
ment is consistent for the various concentrations
and is certainly within the experimental error of
the data.

B. H2

For the case of x = 0, we used the measurements
of Hill and Lounasmaa' on solid H, with x=2 x10 '.
For the x values of interest, we obtained the spe-
cific heat from the graphical presentation of Hill
and Ricketson, ' who made measurements at x = 0.25,
x = 0.41, x = 0.56, and x = 0.74. Considering the un-
certainties in their method of determining the spe-
cific heat, it did not seem worthwhile to carry out
an error analysis like that performed for D, .

In Fig. 6, we compare the experimental values
of the orientational specific heat with the theoreti-
cal values using the [2, 1] Pade approximant. For
this calculation we used the coefficients of Table
III and took I'ef f —0.56 cm ' which corresponds to
I'eff/I'p = 0.80. As can be seen from the figure,
although the fit is not as good as for D„ it is still
satisfactory in view of the experimental uncertain-
ties. It should be mentioned that just as in the case
of D, the T ' approximation fails completely in
the temperature range of interest unless one uses
an extremely small value of I'eff. Thus, with the
same value of I'eff as for the Pade approximants
one obtains for x= 0.56 the dashed curve in Fig. 6
using the T ' approximation. The value of jeff
we have used is quite comparable to the values ob-
tained from other methods, 7such as NMR
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0.20—

O. I5—

"(xPI"i'
x = 0.56

+

neutron scattering, "~"Raman spectroscopy, "or
(&P/&T)y measurements. " These experiments
give I'eff/I"0= 0. 73 for the concentrated (J= 1)
solid in the fcc phase, I'eff/I'0= 0. 80 for the dilute
(J= 1) solid, and from the only high-temperature
determination, I'eff/I'0 0. 67 from NMR data.

V. CONCLUSIONS

O. I 0

0.05—
&& x — 0.56
~ x = 0.41

0
4

I

IO

FIG. 6. Orientational specific heat of H2 at high
temperatures for three concentrations of (4 =1) mole-
cules. The solid curves are the [2, 1] Pads approximants
for the concentrations indicated, with I'eff =0.56 cm
= 0.8070. The dashed curve is the T" approximation
for the specific heat for &=0.56 using the same value of
jeff

The conclusions which we may draw from our
theoretical calculations and from a comparison of
these with the experimental values are as follows.
Firstly, the high-temperature expansion for the
orientational specific heat converges very slowly
even at, say, AIN'T/I'=10. Secondly, it is not pos-
sible to fit the specific-heat data with a T expres-
sion using a reasonable value of jeff. Thirdly, in
the temperature range of interest it is found that a
Pade approximant based on an expansion of the form
Zg~nx~ (pI')" up to order m =n = 6 fits the data
rather well and gives a reasonable value of jeff.
Thus, we have attained a quantitative understanding
of the orientational specific heat of solid hydrogen
at high temperatures.
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The dependence of the recombination coefficient o, of He2 ions and electrons on electron den-
sity and gas pressure is measured in helium afterglow plasmas where electron and gas tem-
peratures are equal to 300 'K, gas pressure ranges from 10 to 100 Torr, and electron density
from 10 to 5 && 10 cm . Electron density decay measured by microwave interferometry is
compared with computer solutions of a continuity equation for electrons which takes into account
ambipolar diffusion and recombination effects. One finds a = o.2+k n +kHen~e, where ns
and nHe are the electron and neutral densities, resPectively, and 0'2-5 && 10 cm sec
&e= (2 +0.7) && 10 cm sec, kHe= (2 +0.5) && 10 cm sec . These values compare satis-
factorily with results of theoretical computations for a collisional-radiative recombination
mechanism including both collisions with electrons and neutrals. The effect of neutrals is
particularly noteworthy as far as future experimental work on weakly ionizedgases is concerned.

I. INT-RODUCTION

A large amount of experimental work has been
devoted to the study of electron-ion recombination
processes in ionized helium.

When the gas pressure is low (p ~ 1 Torr), it is
recognized that the three-body process He++8 +8

He*+e is the main recombination mechanism if
the electron density is not too low or the electron
temperature too high.

When the gas pressure is higher Q& 5 Torr) and
He2+ is the dominant ion, the recombination pro-
cess seems more complex. A summary of the
work made before 1963 can be found in a paper by
Oskam. ' Most of the experimental results were
presented or interpreted in terms of a two-body
dissociative mechanism. It is suggested by Fergu-
son et al. ' that a three-body process similar to
that existing at fow pressure He2++ e + e -He,*+e

could more satisfactorily explain recombination
rates measured in helium afterglows, the dissocia-
tive mechanism being very improbable under the
experimental conditions considered. Connor and
Biondi, ' the same year, referring to the conclu-
sions of Ferguson et al. , pointed out that other
processes must also be present to explain some of
the experimental observations. Recently Born'
found that for P- 10-20 Torr, ne- 10"-10"cm ',
and Te- 1000-2000 K recombination is a three-
body process involving two electrons.

Bates and Khare' made some estimates for
helium of the recombination coefficient associated
with a three-body neutral stabilized mechanism,
He++ e+ He -He*+ He. ' According to these
authors, for a weakly ionized helium gas (i.e. , for
conditions often met in previous afterglow studies),
the neutral stabilized mechanism may be compet-
itive with the electron stabilized process. It is


