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Coupling between longitudinal and transverse waves is examined for an unbounded homogeneous
cold plasma in which the several plasma constituents are in relative drift with respect to one
another. For mutual relativistic streaming along the direction of a homogeneous dc magnetic
field B, a dispersion relation is derived. For the special case of two equal counterstreaming
electron beams, the extraordinary wave-dispersion law is compared with Lee's nonrelativistic
result. For B=0, the dispersion relation is analyzed in some detail, especially as regards
the polarization of the unstable eigenmode, and compared with results of Neufeld. We show,
both analytically and numerically, that radiation effects are relatively insignificant, except for
highly relativistic streaming velocity and for a beam-plasma frequency comparable to that of
the background plasma.

I, INTRODUCTION

Virtually all elementary plasma physics text-
books discuss the linear electrostatic stability of
cold uniform plasmas with mutual streaming be-
tween the several constituent particle species. '
Less frequently discussed is the electromagnetic
stability of such a system, but a sizeable literature
is accumulating. ' ' Until recently, interest in the
electromagnetic properties centered on attempts
to identify mechanisms responsible for strong
emissions of extraterrestrial radio noise, such as
type-III solar bursts' since, under conditions of
sizeable direct radiationfrom a two-stream insta-
bility, one would need not necessarily invoke non-
linear effects' or coupling at plasma inhomogenei-
ties' to explain the observations. More recently,
production of intense relativistic electron streams
has been reported, ' so that it may well be that a
starting point in understanding the emission mech-
anisms operating in these inhomogeneous, non-
linear plasmas could involve the present work.

The present paper presents a concise derivation

of the linearized dispersion relation for plane-
wave propagation in a uniform unbounded cold plas-
ma permeated by a uniform dc magnetic field.
The plasma is taken to support relativistic streams
moving along the direction of the dc magnetic fiel, d,
but the plasma carries no net current, to ensure
uniformity of the magnetic field. " Simi].arities
and differences between present and published re-
sults will be identified as we proceed. Numerical
results for the case of zero magnetic field are
presented.

II. DISPERSION RELATION

Description of the field and particle variations
is provided by Mmwell's equations and by particle
and momentum conservation laws. We seek a
perturbation solution in which the density Nc„
+n& exp[i(k r —vt)] and the velocity V~+ vz exp[i
x(k' r —~t)] are performing small harmonic varia-
tions about their mean vat.ues; i.e. , nz «Nz and
v~ «V&. The subscript n labels individual plasma
species in the system. The coupling between the
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electric field E(r, t) = E exp[i(k r —~t)] and the par-
ticle motions is provided by solving Maxwell's
equations for the current (MES units):

V V
d Q Q

V —(M )= —(M c')= qV E (3)Qdt Q c2 dt Q c2 Q

J=(ie,/~)[c'kx(kxE)+a E]

q (N v +n v'n)
Q Q Q Q Q

(V k)

The last step involving elimination of nQ was made
using the continuity equation. The particle veloc-
ities obey the linearized relativistic momentum
cons ervation

(B0) = —e (B )
O pv pvK OK

eliminating the perturbed magnetic field with
Maxwell's equations to give

iq M

(&u —k ~ V ) 0

iq/M — k ~ V kV V V

(+ —k V ) v e c'
Q

(4)

~ E

dM
M - +y ~ gv +VC 9t Q Q Q

=q (E+V xB+v xB0)
Q Q Q

Equation (5) may be solved for vn by multiplying
both sides by the inverse of the matrix on the left-
hand side. Substituting the result into Eq. (1) and
manipulating to obtain a result in the form

This may be simplified by writing D ((0, k) E = 0

yields

CO

T)((u, k)= (c'k' —(u ) I —c'kk+Q, , [ I ((u —k V )'+((u —k ~ V )(kV +V k)
n(&u —k V )' —~ ' n n n n

Q cQ

V V ~'(I —P ')u)
Q Q Q CQ+ y2 &I' —~p — - -, —i» +i(~ V )k]n n (~-k V )' cQ cQ QQ Q

(7)

where the following definitions have been made:

p '= V'/c', &u '=Ã q '/e M; M =(M ) /(1 —p ')'~'
Q Q

' pQ Q Q 0 Q' Q Q rest Q

(~ ).=(q /M )(B0)., (~ ).. =-e. .&(~ )&, ( k). .=-e..&(k)& .

The quantity (d Q' is constant since both KQ and
Mn are divide by (1-Pn')"'.

The nonrelativistic form of the dyadic D can be
obtained by setting pn = 0, but leaving c' and Vn
as they appear. One immediate conclusion is that
a nonrelativistic dispersion relation may cause
important error unless &'«k'c'; i.e. , unless
only very slow waves are being examined, even if
the actual streaming velocities are nonrelativis-
tic.

One example of this is for the case of two equal

electron streams with plasma frequencies &
'

counterstreaming with velocities + V. Neutra iza-
tion by infinitely massive ions is assumed. For
this case Eq. (7) yields a dispersion relation for
the extraordinary wave propagating at right angles
to 5, which is not dependent upon the streaming.
The corresponding ordinary wave-dispersion re-
lation, however, is (k ~ B = 0)

v' —k'c' —w '(1- P')+kmV'+ '/(v ' —&') =0
p p c

(8)
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which predicts instability (co' & 0) for any nonzero
k. The result published by Kai Fong Lee' from a
nonrelativistic theory gives the same result with
P set equal to zero. Omission of the P' is partic-
ularly significant for (uc ——0 and P' -1.

We now specialize the general result given in
Eqs. (6) and (7) to the situation of a neutralized
plasma beam streaming through a stationary neu-

tralized plasma. For the moving stream we have

w~z = ~ and V = V, and for the stationary plasma,
cop&

——~p, Vz = 0. The frequencies of interest will
be too high for the heavy ions of either component
to participate. The external magnetic field is as-
sumed zero. The adoption of a coordinate system
such that k=(0, 0, k) and V=(Vsin8, 0, Vcos8)
yields the dyadic relation

11 13 1

0= 0 D„O ~ E,
D31 o D33 E3

(9)

where D =uP —(+ '++ '+k'c') —[~& '/(w —kVcos8)'](k'V' —~u'P')sin'811 p b b

=D = [ —~ '/(&u —kV cos8)'](»V —&'P'cos8) sin813 31 b

D =(d —((d +h) +k c )22 p b t

(10)

and D =~' —~ ' —~'~ '(1 —P'cos'8)/(~ —kVcos8)'33 p b

An immediate result is that E2 is decoupled from both E, and E,. The dispersion relation (from D» ——0)
is &u' = k'c2+ &up'+ ~b'. This wave is purely transverse and is manifestly stable.

The other terms in Eq. (9) yield the dispersion relation D„D»—D» = 0, for a wave in which E, (trans-
verse to k ) and E, (along k ) are coupled. This coupling can be measured in terms of a polarization ratio
P defined as P=E,/Es= —D»/D». '

(k V —vP ' cos8) ~u~u ' sin8
P= b

[u)2 —(w 2+&@ 2+k2c')](v —kVcos8) —e 'sin 8(k V —P uP)p b b

For a given root of the dispersion relation ~(k),
]P ) «1 implies a longitudinal wave, and I

I' I-1
implies a hybrid or partly transverse wave.

The relation D11D33 D13 0 leads to a polyno-
mial of sixth degree in cu and fourth degree in k.
Analysis of the structure of the polynomial led
Neufeld' to conclude that the associated instabil-
ities are convective. For our purposes, the prop-
erties of the dispersion relation are most easily
seen by casting it into the form

2 ~ 2(1 p2)
p b

[&d +(db +k c —(d ] 2 +( —kV o 8)2

xa~'(e-kVcos8)'+~ '+ 'k'V sin'8=0 . (12)
p b

Due to the aforementioned mixed origins of the c's
in these equations, it is not possible to obtain a
nonrelativistic dispersion relation by merely set-
ting P=0 in Eq. (12). Comparison of Eq. (12) with
Neufeld's dispersion relation, which can be cast

in a similar form, shows that the latter omits the
~b' term in square brackets, since he specializes
to the case of a weak beam.

Equation (12) shows that the stable transverse
wave, given by co'=k'c +cop'+&b', is coupled to
the unstable longitudinal wave, given by

1=~ '/&u'+~ '(1 —P')/(&u —kVcos8)' . (13)
p b

The coupling is weak if R =&ub't a'n8(/kc +&up
+nb') is much smaller than unity, as can be seen
by comparing the term not involving in the first
term of Eq. (12) with the last term. For R «1,
the longitudinal wave-dispersion relation is iden-
tical with that obtained for k x V = 0, except that k V
is replaced by k ~ V. This logical result is that
which obtains using Poisson's equation in the solu-
tion, rather than the full Maxwell equations. As
R becomes comparable with unity, it is difficult to
estimate the polarization without numerical com-
putation. Figure 1 shows the values of 8 versus
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Since the deviation between results for cos8
= 0. 05 and cos8 =1.0 in Fig. 2 is so small, we
show the lower left-hand corner of the graph (i.e. ,

that regime where R becomes large) on an expanded
scale in Fig. 3. Also shown here are the polariza-
tions as defined by Eq. (11). The results suggest
that there is no distinct division between the long-
itudinal and hybrid regimes, except insofar as the
polarization is clearly longitudinal outside of the
hybrid zone. This lack of distinction can be shown
to be especially pronounced in the case e =0.001,
for example, since l PI becomes comparable to
unity only for quite small values of 0 Vcos8/+b.
For e =10.0, ~P~ rises to values near unity for
values of k . V that are approximately2~oits value at
maximum growth; at this point the growth rate has
dropped to -~8 of the maximum.

For the singular case of cos8 = 0, the dispersion
relation [Eq. (12)] is cubic in +'; all three roots
are real, with two positive and one negative. The
latter gives a pure imaginary value for cu which
changes, butslowly, withkV/&ob. Itis this value
that the knees of the large-angle curves of Fig. 3
are approaching. Since the real part of this eigen-

.OOI . IO
(kV/~b) cos e

I.O
2.0

FIG. 1. A graph of the parameter R as a function of
normalized wave number. If R «1, the instability is
largely longitudinal, but if R-1, the instability has an

appreciable transverse part. The angle between wave

propagation and the streaming velocity is 0.
3
3

O. I 0

= IO. O

kVcos8/+b for one value of e =—vp'/&ub' and for
P= 0. 1. These plots indicate the region where
Eq. (13) is a good approximation; this is seen to
apply for all values of A Vcos8/&b, save the very
small ones, depending upon e. These observations
are not inconsistent with Neufeld's.

The conjecture in th literature that a single
plasma stream might be unstable can be examined
by setting ~p = 0 in Eq. (12). The solution is then
seen to be stable since

I.O

Real Port

Imaginary Part-

+k c
b

~ =kVcos8 y ~ (I p2)~/2
b

.05

III. NUMERICAL RESULTS

This section presents some of the numerical re-
sults which have been obtained for the roots of
Eq. (12) using an IBM 7094 computer. Two basic
examples have been chosen for illustration; a
weakly relativistic beam [P'= 0. 01 (Figs. 2 and 3)]
and a strongly relativistic beam [P'= 0. 50 (Figs.
4 and 5)].

0 5.0
(kV/~b) cos 8

6.0

FIG. 2. Real and imaginary parts of the frequency of
an unstable wave as a function of wave number. The ef-
fect on the growth rate when the propagation is nearly
perpendicular to the streaming is shown.
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greater region in which the full dispersion relation
must be used to give accurate results. The eigen-
values shown in Figs. 4 and 5, for P'=0. 50, were
obtained from solution of the full equation.

In Fig. 4 is shown the behavior of Im~/~b andof
IP) over the entire range of the instability for
various angles of propagation and for the case of
& =10.0. One notes that the results are remarkably
sensitive to the propagation angle and that the
cos6 =1.0 result is a poor approximation to the
large-angle cases for this highly relativistic veloc-
ity. Perhaps more significant is the observation
that for cos8 =0.05, for example, the growth rate
of the instability is -

—,
' the maximum growth rate

near the point where ) PI =1. This indicates that
the transverse-wave part of the instability for
nearly perpendicular propagation is not over-
whelmed by the longitudinal-wave part. It is for
examples of this sort that we conclude that radia-
tion effects would be significant.

In Fig. 5 some results are presented for nearly
perpendicular propagation (cosa =0.05) with P'
=0. 5 and for several values of 5 =—e '. The inde-

pendent variable is kVcos6/wp in this graph. One

notes that, over a large range of wave numbers,
the growth rate is essentially constant, a behavior
in considerable contrast to the customa, ry two-

stream results. As the parameter 5 (—= ~b'/vf, ')
increases beyond unity, values of the polarization
for fixed k ~ V become small, relative to unity.
The results shown in Fig. 5 show the best combi-

nations which we have found between polarizations
and large growth rates.

One concludes from this analysis that the linear-
ized theory of the two-stream instability for a
homogeneous, cold, unbounded plasma predicts sig-
nificant radiation effects via a direct coupling be-
tween the transverse- and longitudinal-wave com-
ponents of the eigenmode. The radiation effects
have been found to be significant under the following
conditions: (i) The streaming velocity is highly
relativistic; (ii) the electron plasma frequencies of
the beam and the background are within about an
order of magnitude of one another; and (iii) the
direction of propagation of the unstable eigenmode
is nearly perpendicular to the streaming direction.
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