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A trial wave function describing the ground state of a quantum system of N interacting bosons
is written in the Jastrow form, a product of pair functions. With the interaction potential
chosen to represent liquid He, and with the parametrized form of the pair function chosen to
include a long-range term which has been found necessary to represent the zero-point motion
of the long-wavelength density osciDations, a variational calculation has been performed using
a new approximate integral equation for the pair distribution function. This equation, which

can also be used for classical fluids, is found to be more accurate for repulsive potentials
than the Percus-Yevick equation and comparable to (but much simpler than) the Percus-
Yevick 2 equation. The essential results are that including the zero-point motion in the wave

function tends to lower the energy, raises the equilibrium density, corrects the behavior of
the structure function and the momentum distribution of the particles in the low-wave-number

region, and slightly decreases the Bose-Einstein condensate fraction. The value of the lower
limit on the wavelength of the density oscillations was determined variationally to be about
three interparticle spacings.

I. INTRODUCTION

The ground state of liquid He'(T = 0 'K) has been
considered by McMillan' and Verlet. ' The Jastrow
form, ' a product of pair functions, is used as a
variational wave function for the quantum system
of interacting bosons (He4 atoms). A parametrized
form for the pair function is chosen, and the pa-
,rameter values are determined by minimizing the
ground-state energy. The resulting wave function
gave zero-temperature properties of liquid helium
generally close to the experimental values.

However, Chester and Reatto4 have recently re-
vised the form of the pair function to specifically
include the zero-point motion of the low-lying
long-wavelength phonon modes which are believed
to exist in the system. This motion was not pres-
ent in the wave function used in the calculations of
McMillan and Verlet. The phonon effects are
particularly dominant in the small-k-region
behavior of the structure function S(k) and the
momentum distribution of the particles n(k). The
present calculation obtains the best wave function
and properties of the system by applying the varia-
tional principle to the problem, using the form of
the pair function suggested by Reatto and Chester.

The long-range nature of the phonon modification
introduces a major complication; the previous
methods of calculating the two-body correlation
function' g(r) from the wave function are not fea

sible. Section II discusses this problem and its
resolution, a new approximate integral equation
for g(r) called PY2XS. Its mathematical handling
is discussed in Appendix A, while its validity is
analyzed in Appendix B.

Section III is a presentation of results for the
minimum energy per particle, the equilibrium
density p, the two-body correlation function g(v),
the structure function S (k), the Bose-Einstein con-
densate fraction no/p, and the momentum distribu-
tion n(k). The calculation of the latter two quanti-
ties is mathematically analogous to the calculation
of the three two-body correlation functions of a
two-component mixture system in the low-concen-
tration limit. The PY2XS -mixture integral equa-
tions used for this calculation are presented in
Appendix C.

METHOD OF CALCULATION

Our major task is to calculate the two-body cor-
relation function g(r) from a variational wave func-
tion of the form .II, f (r ..)~ The relation between
g(r) andf(r) is "~
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where 0 is the volume of the system and N the num-
ber of particles. The formal analogy between this
and the classical N-body system at temperature
Teff with pairwise interaction Vc determined by
the identification,

-V (r)/k r „
(2)

allows the use of any of the methods developed in
the theory of classical fluids. These methods are
called Monte Carlo (MC), molecular dynamics
(MD), and approximate integral equations; and
they have all been used for the liquid-heliumprob-
lem. '

The pair function suggested by Chester and Reatto
is

f(r) = exp(- 2[(k/r)

+(uc/m pe)(r pk ) ]]
-2 -1

(3)

where the second term in the exponent is due to the
phonon modes (only phonon modes with wave num-
ber in the range 0&k& ke are allowed), p. is the
He4 atom mass, and c is the speed of sound in
liquid helium. In the absence of the phonon modes,
the parameter m was typically 4 or 5. 'y ' So the
essential change induced by the second term is to
make lnf (r) long-ranged, i.e. , it behaves like r '
instead of ~ ' or r-' for large r. In fact, it is con-
sidered to be of infinite range since it decreases
more slowly than r-'.

The long-range character of the new pair function
requires a considerably greater range in r space
than has previously been used. It is also desirable
to obtain g(r) over a larger range to prevent severe
truncation error problems in calculating its Fourier
transform S(k), especially at low k. The maximum
feasible range so far attained by both MC and MD is
about 3v(v=2. 556 A), whereas our problem needs
a range of about 100. For this reason we are es-
sentially forced to use an approximate integral
equation for g(r}. The Percus-Yevick (PY1}equa-
tion is relatively easy to solve over a 10o range,
but it is a reasonable approximation only for den-
sities less than about 2p„where p, =2. 2x 10"
atoms/cm' is the liquid-He~ equilibrium density.
The PY2 equation' is reasonably accurate at
liquid-helium density, but is sufficiently compli-
cated to make an extension of the range beyond
about So impractical.

Our requirements are fulfilled by the new ap-
proximate integral equation designated PY2XS.
Its accuracy is about that of PY2, while its struc-
ture is simple enough to allow a 10o range even on
the CDC 1604 computer available to us, which is
considerably slower and smaller than the machines
generally used for MC, MD, and PY2.

It is well known that the PY2 equation cannot be
considered as a completely systematic extension

k(r) = g(r) —1,
F(r) =g(r)e -1P V(r)

(5)

and the direct correlation function C(r) defined
implicitly by the Ornstein-Zernicke relation,

k(r) —C(r) = p fd's k( ~r —s
~
) C(s) (6)

The PY2XS equation is then

Y(r) = p fd's[k(s)- r(s)]k( ~r —s ~) + C (r), (7)

where C(0, 1) = 2 p' ff d2d3C(0, 2)C(0, 3)

x g(2, 3) k(1, 2) k(1, 3), (6)

with vector variables indicated by integers, and
@(r) is 4 (0, 1) with r =

I r, —r, ~. The details of
handling the expression for @(0,1) are given in
Appendix A.

For a given p and P V(r), g(r) is obtained by the
following double-iteration procedure. The g(r)
from the previous outer iteration determines a
C(r) by solving Eq. (6) using Fourier transforms.
The 4 (r) is then calculated from these functions
and considered a fixed function for the remainder
of this outer iteration cycle. The object is now to
find the new g(r) which satisfies the PY2XS equa-
tion (7) with the @(r) just calculated. This is
achieved by an inner iteration loop in which the
first term on the right-hand side of Eq. (7) is cal-
culated from the previous (inner) g(r) yielding a
new g(r) on the left-hand side. A new g(r) is thus
obtained for the next inner iteration. When this
inner loop converges, the resultant g(r) is used to
begin the next outer cycle. In both the inner and
outer loops, an iteration cycle is characterized by
an input function and an output function, the func-
tion being 4'(r) for the outer loop and g(r) for the
inner loop. The input function for the next itera-
tion is calculated according to the mixing formula

F. "()= F ' '()
in out

+ (1 —o.) F (r), .(f -1)
in

of the PY1 equation. Indeed, Verlet has proposed
two different forms of the PY2 equation. For this
reason we see no reason why we should not pro-
pose some other form of this equation, particular-
ly if the form we propose is much simpler to com-
pute with and is essentially as accurate as the
standard PY2 equation used by Verlet.

The PY2XS equation relates the two-body corre-
lation function g(r), the density p, and the product
p V(r), where p = (k g T) ' and V(r) is the interac-
tion potential. It is convenient to express the
equation in terms of the functions,
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III. RESULTS

The pair function f(r}, Eq. (3), is uniquely de-
fined by choosing values for the four parameters:
b, m, p, and kz. Kith such a choice the effective
p V(2') is defined by Eq. (2). This along with p
then determines a g(r ) via the PY2XS equation (7).
If the average & E& of a function F(r) is defined by

&» = .' p -f-d"E(.}g(.}, (10)

then the energy per particle (E/N& may be ex-
pressed as follows':

&E/N& = &T& ~ &V&,

&p& = «&+ «&,
«& = «& (/)"&,

& V) = —4&& (o/r)'&

&
7'& = ( )SR+&T&LR

where E(x) is either g(r) or 4 (r}. Typically the
inner loop required 100 iterations with n = 0. 1,
while the outer loop required 10 iterations with
0( = 0.8. @(r) —= 0 is initially assumed (the PY2XS
equation is then just the usual PY1 equation)
for the outer loop, whereas g(r} = e ) (~) is the
initial assumption for the first inner loop.

was found to be weak, so p was fixed at p, for the
k~ search. A minimum energy occurred at about
kz = 0. 5 A-' which corresponds to a lower bound
on the wavelengths of the phonon modes of about
three interparticle spacings. It also compares
favorably with the upper limit of the phonon portion
of the experimental excitation spectrum.

Taking b, nz, and Ac to be fixed, the density
variation of &E/N) is depicted in Fig. 1 for the
cases: MD, SR (Verlet)2; PY2XS, SR; PY2XS,
LR. SR corresponds to kc = 0. The first and
second cases directly contrast the effect of the
method of solution for g(r), while the second and
third cases directly contrast the effect of the
phonon modes. Table I lists the minimum en-
ergy and equilibrium density for the three cases.
One might thereby be tempted to conclude that
the effect of the phonon modes is to slightly lower
the minimum energy and slightly raise the equi-
librium density from the values appropriate to
the SR solution. The reality of these effects is
jeopardized by the fact that the effects of using
PY2XS in place of MD are in the same direction and
of the same order of magnitude. However, it does
seem reasonable to conclude, at the very least,
that including the phonon modes has little effect
upon the minimum energy and equilibrium density,
and perhaps slightly improves them.

The PY2XS g(r) for kc = 0. 5A ' (LR) and p=p,
is given in Table II and plotted in Fig. 2. The

&T& =, m(m-1) b &(o/&)
'

fi ' 20 pc (r/o)' —3(kco) '
LR 4pr' ptP n'X [ (r/r)'r (P r) *)')'

0
MD, SR

=10.22 'K

with the interaction potential of liquid helium being
the standard Lennard- Jones potential used by
McMillan and Verlet.

In principle, the variational problem may be
stated as finding the set of parameter values
(b, m, p, kc) giving a minimum & E/N) . That set
would then give the best wave function for the sys-
tem, at least within the function space spanned by
the form, Eq. (3). In practice, the short-range
parameters (b, m} are assumed not to change from
their best values obtained without the phonon
term in the pair function. So we take b =1.16,
m = 5 to be fixed. It is believed that the effect
of this assumption is smaller than that due to the
simple form assumed for the pair function, or due
to PY2XS being only an approximate equation for
g(r), or even due to the uncertainty in the actual
interaction potential between two He atoms. '

The coupling between the p and kz parameters

0

-5 5-

z
UJ

-6.0 "
~&pY2xs, sR

-6.5-

I

0.9 1.0
Density p/po

I

l.2

I"IG. 1. Variation of energy per particle with density.
The system parameters are m=5, b=1.16, and k~=0
(SR) or ko=0.5A (LR). Also, p()o =0.3648 and
a = 2.556 A. These system parameters apply to all the
figures unless explicitly stated otherwise.
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TABLE I. Values of the energy per particle and the
density at the variational minimum (see Fig. 1).

1,5-

MD, SR
PY2XS, SR
PY2XS, LR

(E/1U) . (' K)

—6.015
—6.29

P /P0

0.9075
0.970
1.035

1.0—

PY2XS, LR, p/po =1.0

0,5- a, aa PY2XS, SR, p/po&1. 0
~ o MD, SR& p/po I'0

PY2XS, SR g(r) and MD, SR g(r) at the same density
are included for contrast. The only marked effect
is the general outward shift of the LR g(r}compared
tobothSRg(r)'s as a result of the increased inter-
particle repulsion from the phonon term. A more
interesting contrast is seen in Fig. 3 where the
radial probability density for the three cases is
shown with the experimentally derived results. "
The differences among the three theoretical curves
are much smaller than the differences between
these and the experimental curves. The theoretical
curves do not show strong enough correlations for
r/0'~2. This is presumably directly reflected in
the main peak discrepancy in S (k) Isee Fig. 4]
and would seem to be a major failing of the pair
function f (r). Its simple form seems to lack the
flexibility to accommodate intermediate range cor-
relations, a deficiency apparently unaffected by
the phonon term.

The structure function S(k) is defined by
~ ~

S(k) —1 = p fd' [gr( ) —rl]e . (12)

0.5 1.0 1.5
r /cr

2.0 2.5

FIG. 2. Pair correlation function g(r) .

S(k) = hk/2p, c,

and the Brout formula"

Table III lists the PY2XS S (k} for p = p„kc
= 0. 5 A-', while Fig. 4 shows the function as well
as the PY2XS, SR functions and the experimental
results. " Agreement among the results is close
except in the main peak region mentioned above
(ko=5) and in the low-k region, kv& 2. The latter
is emphasized in Fig. 5 where the SR and. LR
PY2XS results, the x-ray data (T = l.4'K), the
theoretical 0- 0 limit behavior for a system of
phonons at T = 0"

TABLE II. Ualnee of the pair correlation function g(r) for m=5, k=1.16, p/p0
——1.0, kc=0.5A

0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05

1.10
1.15
1.20
1.25

1.30
1.35
1.40
1.45
1.50
1.55
1.60

0.0000
0.0007
0.0073
0.0375
0.1158
0.2540
0.4423
0.6504
0.8555
1.0257
1.1634
1.2479
1.3044
1.3116
1.3103
1.2714
1.2383
1.1796
1.1380

x/o.

1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00
2.05
2.10
2.15
2.20

2.25

2.30
2.35
2.40
2.45
2.50

1.0791
1.0432
0.9967
0.9729
0.9434
0.9338
0.9208
0.9235
0.9239
0.9340
0.9426
0.9562
0.9686
0.9817
0.9938
1.0037
1.0132
1.0191
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FIG. 3. Radial probability density. FIG. 4. Structure function S(k).

TABLE IH. Values of the structure function 8{k) for m=5, 5=1.15, p/p0 ——1.0, k =0.5A

0.123
0.245
0.368
0.491
0.614
0.736
0.859
0.982
1.104
1.227
1.350
1.473
1.595
1.718
1.841
1.963
2.086
2.209
2i332
2.454
2.577
2.700
2.823
2.945
3.068
3.191
3;313
3.436
3.559
3.682
3.804
3.927
4.050
4.172
4.295
4.418

s(u)

0.0190
0.0305
0.0442
0.0560
0.0648
0.0719
0.0791
0.0870
0.0952
0.1034
0.1116
0.1205
0.1303
0.1409
0.1521
0.1641
0.1773
0.1920
0,2081
0.2257
0.2450
0.2665
0.2906
0.3173
0.3469
0.3797
0.4164
0.4574
0.5030
0.5532
0.6082
0.6682
0.7330
0.8017
0.8729
0.9448

4.541
4.663
4.786
4.909
5.031
5.154
5.277
5.400
5.522
5.645
5.768
5.890
6.013
6.136
6.259
6.381
6.504
6.627
6.995
7.118
7.240
7.383
7.486
V.609
7.731
7.854
7.977
8.468
8.958
9.449
9.940

10.431
10.922
11.413
11.904
12.395

s(u)

1.0153
1.0819
1.1420
1.1928
1.2326
1.2603
1.2760
1.2805
1.2750
1.2613
1.2412
1.2168
1.1897
1.1614
1.1329
1.1050
1.078
1.054
0.9952
0.9807
0.9685
0.9587
0,9511
0.9455
0.9417
0.9396
0.9389
0.9464
0.9625
0.9804
0.9963
1.00836
1.0149
1.0157
1.0123
1.00752
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the momentum distribution of particles n(k) may
be mathematically related to quantities in an equiv-
alent classical system of a two-component mixture
of particles. The three interaction potentials for
the two-component system are

O. I5

P V»(r) = —2 lnf (r),

P V„(r) = —lnf(r)

P V„(r) = —-'. lnf(r),

(16)

O. IO

0.05

so the potentials differ only in strength. Sub-
scripts refer to particle species. The densities
are p, = p and p, «& p, (low-concentration limit).
If we define Y»(r) as in Eq. (C4), then we have

p/n, = lim [ Y» (r) + 1],
x-0

0
n(k) = n, Jd rY„(r)e (16)

FIG. 5. Behavior of the structure function in the
small ka region.

S(k; k ) =S(k; k =0)/(1+ (2p, c/I)

x [ exp(-k/k )/k] S(k; k = 0)j

are displayed. Both the helium system at T + 0
and any classical fluid exhibit the behavior (y&
is the isothermal compressibility), "

The function Y'» (r) is calculated from the PY2XS
mixture equations (presented in detail in Appendix
C)~ Table IV contains the PY2XS result for the
condensate fraction and compares it with other
values obtained previously. The PY1 entry refers
to using the PY1 mixture equations instead of the
PY2XS mixture equations. The effect of the zero-
point motion of the phonons would seem to be a
lowering of the fraction even, perhaps, to the
original estimate of Penrose and Onsager. '~

Figure 6 shows the LR and SR n(k) obtained from
PY2XS along with that from McMillan's MC calcu-
lations. ' The primary difference is at low k,
where the LR n(k) has the expected k ' behavior, "
whereas the SR system has a finite n(k), as k- 0.

S(k) - pq /p + O(k'), as k-O .T

Equation (15) states that 8 (k) should be quadrat-
ic with 8 (0) = 0. 0506. The x-ray data fits this
behavior well. Equation (15) also explains why
the SR S (k) also exhibits quadratic behavior with
S(0) 0 0, since the corresponding g(r) is just that
for the analogous classical fluid. In sharp con-
trast to these, the LR S (k) tends to approach the
proper linear low-k behavior (the slight upward
curvature at ko = 0. 2 is due to truncation errors)
even though it was also calculated using the clas-
sical system analogy. The infinite-range charac-
ter of the added phonon term prevents the analo-
gous classical fluid from having a thermodynamic
limit which invalidates the argument leading to
Eq. (13)." The Brout formula has the proper
0-0 limit behavior and is a fair approximation for
kv& 1.5, but it does not have the shoulder shown
by the PY2XS, LR curve atko = 0.5.

The Bose-Einstein condensate fraction nJ'p and

IV. CONCLUSIONS

TABLE IV. Fraction of particles in the Bose-Einstein
condensate. Comparison of values obtained by various
methods.

Heference

McMillan (MC), Hef. 1
Verlet (MD), Ref. 2

PY1, This work
PY2XS, This work
Penrose and Onsager, Hef. 14

np/p SR no/p& LR

0.11+0.01
0.105 + 0.005
0.25

0.131 0.101
about 0.08

Application of the PY2XS integral equation to the
LR problem with the short-range parameters
m= 5, b = 1.16 assumed fixed, produced a mini-
mum energy of —6. IV K at p/p, = 1.03 and kc
= 0.5 A '. The primary conclusion was that in-
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0,8

metals, where the interaction potential has a
rather long tail. This suggests a wider investiga-
tion on the limit of validity of the PY2XS equation.

Q.6

APPENDIX A: MATHEMATICAL HANDLING OF 4 (r)

m 0.4
C

0.2

Care is needed to prevent computer core size
and reasonable computation time limits from
being exceeded. First we note that the Ornstein-
Zernicke equation (6) may be written in the form

0- ~ 0 ~ sosoo gz —-O~ k(0, 1) —C(0, 1) = p Jd2k(0, 2) C(1, 2). (A1)

FIG. 6. Momentum distribution function n(k).

eluding the phonons does not change the variational
results very much, while the value determined for
the phonon-mode wave-number cutoff. k'& corre-
sponds to the physically reasonable lower limit on
the wavelength of about three interparticle spacings.

The other properties of the ground state did not
show striking differences except in the low-A
region. The proper linear behavior in S (k) and

k ' behavior in n(k) were obtained. The Bose-
Einstein condensate fraction was found to be 0. 10
with a possible extrapolation to 0. 08, taking into
account the inherent PY2XS-MD discrepancy. The
tendency of the zero-point motion to lower the frac-
tion by about 0.02 did seem to be significant.

This entire set of conclusions rests upon the
validity of the PY2XS approximate integral equa-
tion. A calculation presently in progress replaces
the LR-pair function by an equivalent shorter-
range function in the Monte Carlo method. This
should present a check on the above conclusions
as well as a possible refinement of them.
Note added in proof. If the above conclusions hold
also for an interaction potential V(r) with an at-
tractive part, the PY2XS equation would be useful
as an accurate and rather simple integral equation
for classical fluids at liquid densities. This would
be particularly important in the case of liquid

Now writing g(2, 3) in terms of k(2, 3), Eq. (8) be-
comes

C(0, 1) = g p' f J d2d3C(0, 2) C(0, 3) k(2, 3)

x k(1, 2) k(1, 3) + 2 p' f fd2d3 C(0, 2)

x C(0, 3) k(1, 2) k(1, 3). (A2}

The double integral in the second term factorizes

4(0, 1) = first term + & [p J d2C(0, 2), k(1, 2)]

x [ p fd3 C(0, 3) k(1, 3)] (A3)

So using (A1), we have

C'(0, 1) = k p' ff d2d3. C(0, 2) C(0, 3) k(2, 3)

x k(l, 2) k(1, 3) + 2 [k(0, 1)—C(0, 1)]' . (A4)

Let us proceed to treat the first term. Define

I (0, 1) = ~g p' ffd2 d3 C(0, 2) C(0, 3)

x k(2, 3) k(1, 2) k(1, 3). (A5)

Now using the transform for k(2, 3) [Eq. (12)], we
can effect a factorization of the double integral
similar to, but more complicated than, Eq. (A3).

j(0, 1)= fd k [S(k) —1] fd2 C(0, 2)k(1, 2)e fd3 C(0, 3)k(1, 3)e
2(2m)'

(A6)

Let us now define
~ ~

H (0, 1) =—fd2C(0, 2) k(1, 2) e (Av)

Choosing r, = 0, this becomes
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H „- (r, ) = fd'r C(r) h(~ r, —r
~
) e

' ' ' . (A8)

Choose the coordinate system with z axis coincident with r „and let 8y be the angle between k and z while
8kr designates the angle between k and r. Then, using an expansion in Legendre polynomials, (A8) becomes

H -(r ) = fd rC(r) h(~r —r ~) Q (2l +1) e j (kr) P (cos8 ),
l =0

(A9)

where j (e) is the spherical Bessel function and P (e} is the Legendre polynomial. Now the addition
theorem for these polynomials gives

l
P (cos8 ) = P (cos8 ) Pl(cos8) + 2 Q I

't P (cos8k) Pl (cos8) cos[m(cp —q)] .(l —m)! m m
kr l k l+m tm=1

(A10)

When (A10) is used in (A9), the integration over (p will cause all m & 0 terms to be zero. So (A9) becomes

H (rl) =2m Q (2l +1) e P (cos8k)f dr f d8r C(r)
l =0

xh((r'+ r ' —2rr cos8)'~') j (kr)sin 8 P (cos8}.1 1 l l

If we now define

(k, r ) —= f dr r~j (kr) C(r) f de P (e) h((r2+r ' —2rr e)'~'), (A12)

then we may write (A11) as

H k(rl) = 2w Q (2l + 1) e P (cos8 ) gl(k, rl)
l =0

(A13)

Equations (A8) and (A13) now give for (A6)

I (rl) =
4 fd k[S(k) —1] Q (2l + 1)e P (cos8 )q (k, r )1 4'

l 0 k l ' 1

Ii

x Q (2l'+1) e P, (cos8k) q, (k, rl)
l'= 0

(A14)

Now the integrationover the angles in k space gives

fd&kP (cos8 ) P, (cos8 ) = 4w6, /(21 + 1). (A15}

Thus, we finally have

I(r )=p Q (2l+1) f dkk'[S(k) —1][g (k, r )]'
l=0

(A16)

along with (A4) and (A5)

(AIV)
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Equations (A12), (A16}, and (A1V) explicitly show
how to calculate C (r). Further modifications of
(A12) were made for computational advantages.
First the spherical Bessel functions ji (kr) are
written in their elementary trigonometric function
form wherein each term contains a single sin(kr)
or cos(kr) factor. This gives the gl(k, rl) as a
sum of terms of the form

eliminates square roots. Powers of sums of vari-
ables (which now appear explicitly in the Legendre
polynomial) are expanded using the binomial theo-
rem so that all variables occur only as factors,
and hence all but the actual integration variable
may be removed from the integral. In this way the
integration over z is reduced to moment integrals
of h.

f, dr E(r) sin(kr)

or f, dr E(r}cos(kr) .

The Cooley- Tukey fast Fourier-transform method"
can then be used for this purpose. Next the inte-
gration over z is modified, primarily to eliminate
the awkward argument of h.. This argument re-
places z as the variable of integration, transfers
the awkwardness to the Legendre polynomial, and

A (x) -=f "df f"k(f ) . (A18)

These have the useful advantage of being indepen-
dent of x„ l, and k, so they need only be recom-
puted when k(t) changes. Of course, a price has
been paid for this; gi has become a sign of many

terms. However, this turns out to be a rather
good bargain. Performing all the manipulations
mentioned, the following form is obtained to re-
place (A12):

S Q -S
l+1 1 1 nl-2s-2s&-1

g(k r )= Q Q Q Q p(l n~n, s s )k rl &(k, rl,'&»1 —n —n+1)
1 n=l v s=0 s =0

1 1

n, = 0, 2, ..., l, for l even; n, = 1, 3, ..., l, for l odd;

I (k, r; i, j)=- f drr C(r} [A . (r r+,)-A . (~r —r ~)]S(kr),

(A19)

S(kr) = cos(kr), for j odd;

S(kr) = sin(kr), for j even;

(-1) ' ' " (l+n, )![(2l+1)'-1'] [(2l+1)' —3'] "[(2l+1)'-(2n-3)]
(l n n s s ) =-—

7 P 3.% 0 ]. i +Bi+ 3'Pl —3 1 1
2 ' (n —1)!(2(l -n, ))!(~ l+n, ))!(n, —s —s,)!s,!s!

(see Table V for values of e).
The largest value required for good numerical accuracy was l = 3, while the r-space grid consisted of

20 points per 0 over a range of 10o.

APPENDIX 8: VALIDITY OF PY2XS

We wish to establish the validity of the PY2XS
approximate integral equation. We do this by com-
paring results from it with MD calculations which
we shall assume to be exact. We shall also com-
pare it to the other approximate integral equations
PY1, known to be poor at liquid He4 density, and
PY 2, considered to be fairly good. The most
convenient and appropriate test system is the SR,
m = 5, b = 1.16 pair function. Since ( E/N) is the
important variational quantity, we shall use it as
the primary basis for our comparison. But( T)
(SR only, of course), ( V,}, and ( V,} are also

TABLE V. Behavior of E for odd and even values of
n and l in equation (A19).

ocM

even
even
odd

odd
odd

even
even

interesting since each is directly proportional to
an inverse power moment of g(r) [e.g. , (T) ~ f
xd'rr 'g(r), see Eq. (11}]. Thus, our test for
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FIG. 7. Comparison of the differences in the values
of the inverse 12th moment of g (x) obtained by each in-
tegral equation method and molecular dynamics (MD).

FIG. 9. Inverse seventh moment of g(x) treated as
in Fig. 7.

the relative validity of the methods will consist
of comparing their results for these averages as
a function of density.

Figures 7-9 show the differences between MD
and each method' s results for ( V, ), (V,), and

( T) as a function of density. " The following con-
clusions are apparent. Each method gives poorer

results the higher the density. At any fixed den-
sity, PYl is the poorest by far while PY2 and
PY2XS are relatively good with PY2XS being
slightly better. To give the difference scales a
reference, note that at p/p0 = l. 0, ( T) MD
= 13.7 '

K, ( Vl) MD = I7. 2 'K, and ( V2) MD =
—36. 7 'K. Thus, at p/p, = l. 0, the relative er-
rors of the PY2XS results compared to MD are
about 0. 7, 3, and 0. 5/0 in ( T), ( V,), and( V,),
respectively. These conclusions are further sup-
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FIG. 8. Inverse sixth moment of g(&) treated as in
Fig. 7.

FIG. 10. Method contrast of the variation of the en-
ergy per particle as a function of density for the SR
system.
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ported by the plot of (E/N) versus p/p, in Fig.
10. However, the relative error at p/p, = 1.0 is
now about 8%.

Thus, we are able to conclude that the PY2XS
approximate integral equation is somewhat better
than PY2 and reasonably close to MD.

APPENDIX C: PY2XS MIXTURE INTEGRAL EQUATIONS

To obtain Y»(r), we modify the PY2 equations for the mixture" to get the following PY2XS mixture
equations:

2 2
4..(1, 0) = s Q Q f fd2d3phCh. (2, 0)p C . (3, 0)ghf(2, 3) h. (1, 2) h. (1, 3),

4=1 l =1
(cl)

C..(1,0) = h. . (1, 0)- Y..(1, 0)+4..(1, 0),
gj

' lj '
gj

'
gj

' (c2)

2
Y"(1)0)=@..(1, 0)+ Z ph fd2[h. h(1, 2) —Y. (1, 2)]h .(2, 0) (C3)

P V. .(r)
Y..(r) = g. .(r)e —1 .

zj z.1

c4)

For the ps «& p, case, (Cl) and (C3) simplify to

4.. (1, 0) = s pl' ffd2d3C1. (2, 0) Cl. (3, 0) +11(2,3)h.l(1, 2)h. (1, 3),2 1 (cs)

Y.. (1, 0) = 4.. (1, 0) + pl fd2 [h. (1, 2) —Y.l (1, 2)]h .(2, 0)

Thus, we see that

(cs)

Y»(1, 0) = 4~~(l, 0)+p, f d2 [h, s (1,2)- Y» (1, 2)] h „(2,0), (cv)

4 (1, 0) = —,
'

p,
' ffd2d3 C„(2,0) C, (3, 0)g„(2,3)h, (1, 2) h„(1,3).

So Y'»(r) and O»(r) are simply related to the Y» and 4» functions, which are determined from

Y»(1, 0) = @»(1,0) + p, Jd2[h„(1, 2) —Y„(1,2)]h„(2, 0),

(c8)

(c9)

@»(1,0) = ap, s f Jd2d3 C»(2, 0) C,s(3, 0)g„(2, 3)h„(1,, 2)h„(1,3). (C10)

The f = i = 1 equations are just the usual PY2XS equations for the pure system [(7) and (8)] due to the de-
coupling caused by the low-concentration limit, so the Yyy and @yy functions are those already obtained.
These are used in (C9) and (C10) which are then solved iteratively [as in solving (7) and (8)] to obtain the
Y,s and @» functions. Equations (C7) and (C8) then produce Y»(r), directly.
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Using close-coupling calculations of Burke and Moores for the scattering of electrons by
Mg ions in the 3 S~/2 and 3 Pf/2 3/2 states, Baranger s expression for the impact approxi-+- 2 2

mation width of an isolated line is implemented for the components of the resonance doublet.
These widths are extrapolated to below inelastic thresholds and averaged over elastic reso-
nances according to theoretical threshold laws. In the experimental energy range, results
compare reasonably with semiclassical approximations and with a semiempirical method in-
volving effective Gaunt factors extrapolated to zero electron energy.

I. INTRODUCTION

%hile semiclassical calculations'y ' of the broad-
ening of atomic lines by electron impacts are gen-
erally in satisfactory agreement with measure-
ments' (to about+20% in terms of widths), ion
lines were found to be wider than calculated (assum-
ing straight perturber paths) by factors ~ 2 in num-
erous experiments. Homever, measured widths
were shown in a preceding paper' to fit (by factors- 1.5 on the average) a semiempirical formula
containing effective Gaunt factors, which are only
functions of kT/&E, i.e. , the ratio of perturber
(thermal} energy and splitting between levels con-
nected by allowed dipole transitions. These ef-
fective Gaunt factors are analogous to those used
to estimate inelastic cross sections, ' but had to be

extrapolated4 below threshold energies to obtain
"optical" cross sections in satisfactory agreement
with experiment. Presumably this accounted for
elastic collisions which would then dominate for
kT/&E ~ 1, a common situation for isolated (not
hydrogenic) ion lines. (For atomic lines, the op-
posite situation kT/&E & 1, tends to prevail. )

The importance of elastic contributions had been
realized before, '& but their estimations using
either a second-order impact parameter methodey '
(which is, therefore, only first order in the phase
shifts, while at least quadratic terms are needed
for line widths) or an adiabatic classical-path ap-
proximation7 (which had to be supplemented by
semiquantitative criteria to separate inelastic col-
lisions) were almost as ad koc as the effective Gaunt
factor method and were much more involved. More-


