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We present a method for calculating the elastic scattering of electrons from atoms and mol-
ecules using the many-body Green s-function techniques of Martin and Schwinger. The pro-
cedure involves the self-consistent solution of a pair of equations; one for the one-particle
Green's function and the other for the response function of the target in the time-dependent
Hartree-Fock approximation (random-phase approximation). That both equations are one-
dimensional provides a great computational advantage over more conventiona&. techniques.
We discuss the physical nature of our approximation and a numerical scheme to implement
our theoretical discussion.

I. INTRODUCTION

A. Historical

The problem of the elastic scattering of electrons
from atoms and molecules has received consider-

able attention in the literature in the last few years,
and a number of methods have been developed to
handle the problem. Temkin' ' and Callaway'
have used the "adiabatic" method to incorporate
the distortions of the target by the incoming elec-
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tron with considerable success for small atomic
systems. Quite recently, Callaway' has been able
to extend the theory to account for some of the ef-
fects of the finite kinetic energy of the incoming
electron. While these adiabatic or quasiadiabatic
methods are quite useful in practical situations, it
is not always clear that the approximations in-
volved in their derivation are quantitatively justi-
fied. ' As the incoming electron is drawn into the
core by the long-range polarization potential, its
kinetic energy becomes comparable to those of the
target particles. Under such circumstances, quasi-
adiabatic methods break down, and one must resort
to other techniques to handle the problem. ' In par-
ticular, the back coupling of the target particles to
the incoming electron is totally neglected in these
theories. In principle, one can eliminate all such
problems by using the close-coupling method of
Burke and Schey. ' However, though these methods
are capable of yielding as good an answer as one
desires, they require the use of large numbers of
target states to correctly describe the distortions
of the target and become somewhat unwieldy in
practice. Two papers in the literature are note-
worthy in that they approach the elastic scattering
problem from a different point of view, namely, from
many-body perturbation theory. As has been shown
by Bell and Squires, ' the self-energy of the one-
particle Green's function is formally identical to
the optical potential of conventional scattering the-
ory. Both Kelly" and Pu and Chang" have used this
equivalence to do accurate low-energy elastic scat-
tering calculations of electrons from small atoms.
In this paper we will show, using the equation-of-
motion method of Martin and Schwinger, "how one
can derive an approximation to the optical potential
capable of accurately predicting elastic scattering
cross sections. In contrast to the usual perturba-
tion methods, our theory may be viewed as a sort
of generalized self-consistent-field (SCF) method in
which all approximations are made in the equations of
motion. In the course of deriving our working equa-
tions, the relationship between scattering theory
and the frequency-dependent response function of
the target will become apparent. In Sec. IB, we
discuss elastic scattering to show what physical ef-
fects need to be accounted for in any quantitative
theory.

B. Physical Model

An electron incident on an atom or molecule,
first and foremost, causes a large distortion of the
target wave function. If one considers this in a
static picture, such as the Hartree-Fock (HF) model,
these distortions are found basically to be the po-
larization of the target orbitals caused by the elec-
tric field of the incoming electron. This can, of

course, be described in terms of one-electron ex-
citations from the occupied target orbitals. One
can think of the incident electron as moving in the
potential of the polarized target. Since the inci-
dent electron is moving, the target feels not a stat-
ic electric field but a field that depends on the in-
cident-electron traj ectory. Thus, the polarization
of the target is explicitly time-dependent. The
time-dependent nature of the polarization potential
is reflected in a new path for the incident electron
which, in turn, causes a change in the polarization
of the target, etc.

The distortion of the target orbitals due to the in-
cident electron changes not only the field in which
the external electron moves but also that felt by the
target electrons. This is shown by the HF Hamil-
tonian being a function of the electron density, which
has now been changed by the interaction with the
incident electron. Allowing for the change in the
HF potential caused by the incident electron is called
coupled HF theory or in its time-dependent version,
the random-phase approximation (RPA) (time-depen-
dent HF). " "The polarization outlined above is known

to describe long- and intermediate-range interac-
tions between the incident electron and the target.
However, as the incident electron is accelerated
by the induced polarizations, shorter-range two-
particle correlations between incident and target
electrons begin to become significant. Thus the ex-
plicit two-particle interactions should be taken into
account in order to adequatelydescribe the scattering
event. When one properly takes account of the in-
distinguishability of electrons, improving target-
incident-electron correlation automatically improves
target-target correlations.

All the physical effects discussed above are nat-
urally incorporated into the Green's-function meth-
od of Martin and Schwinger. " In brief outline, the
scheme we propose involves the self-consistent so-
lution of two basic equations: the equation for the
linear-response function of the target and the equa-
tion for the one-particle Green's function. Thefirst
of these equations, the equation for the linear re-
sponse function of the target in the RPA, depends on
the knowledge of the single-particle Green's func-
tion. The second equation, an integrodifferential
equation for the Green's function, depends upon a
knowledge of the target-response function. Hence,
a self-consistent procedure is called for. If one
starts by choosing the Green's function as that of
the HF model, the equation for the response func-
tion becomes the well-known time-dependent cou-
pled HF approximation. This gives the polariza-
tion of the target orbitals in the field of the exter-
nal electron and also the change of the average cor-
relation among these electrons. On the basis of
the calculation of frequency-dependent susceptibil-
ities with the time-dependent HF method" (which
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compare very favorably with experimental mea-
surements), and from double-perturbation-theory
investigations, "one can expect very accurate tar-
get polarizations. In evaluating the spectral rep-
resentation of the response, one obtains a set of
poles which are the excitation energies of the tar-
get. Having obtained the response function, we
now proceed to use that result to solve the one-
particle Green's -function equation. In solving for
the Green's function, one takes explicit account of
the interaction of the polarized target and the inci-
dent electron, and also adds further correlation
effects to the target. Once we have the solution of
the Green's function we return to resolve the re-
sponse function equation, using the new Green's
function as input. We loop these two equations un-
til self -consistency is obtained. When this process
is completed, the response function of the target is
no longer linear, due to the iteration process.

One obtains the scattering function by solving for
the continuum orbitals in the spectral expansion of
the one-particle Green's function. That these are
in fact the true scattering functions can be seen by
examining the equation for the Green's function.
For energies in the continuum, this equation be-
comes the Lippmann-Schwinger equation for the
scattering of a particle from the true optical poten-
tial. From scattering theory, these continuum or-
bitals then yield the phase shifts and elastic cross
sections.

It is well known from the theory of Green's func-
tions" that one may obtain a variety of quantities,
such as natural orbitals, "ionization potentials, the
exact correlation energy" of the target, etc. , from
a knowledge of the one-particle Green's function.
It is clear that it would be very difficult to carry
out the calculation of the Green's function with a
sufficient basis set to obtain all such quantities ac-
curately, even with the most modern techniques.
What we shall do is to tailor our basis to accurately
describe the response function over most of its en-
ergy range. Solving the matrix equations in such
a space may well sacrifice other quantities in this
work, which concerns itself primarily with scatter-
ing.

Below, we will present the Green's functionfor-
malism outlined above. This will be followed by a
discussion of the physical content of the equations
and a suggested numerical method. In Sec. VI, we
will point out some of the problems which arise in
the solution of these equations and how we may uti-
lize the experience obtained from time-dependent
perturbation problems.

II. THEORY

In order to treat all particles equivalently, it is
most natural to formulate the problem in terms of

the time-dependent second-quantized field opera-
tors, g and gt. These operators, respectively,
annihilate and create an electron at position r and
time t and satisfy the usual Fermion anticommuta-
tion relations. In what follows, we will use the no-
tationn to refer to space, spin, and time points.
In terms of a complete one-electron basis (yt},
we may write

g(1) = Z c.(t)y.(r) (2. 1a.)

4~(1) = +c.~(t)y, (r)

where ct and cj are, respectively, the time-depen-
dent annihilation and creation operators for state
i. The field operators satisfy the equation of mo-
tion":

i ——h, 1 = d2V1 —2 2 2 1

(2. 2)

where P1
2' (2. 3a)

the bare one-electron Hamiltonian in natural units
(e=k=1), and

V(1 —2) = V(r, —r, )5(t, —t, ) (2. 3b)

In terms of these field operators, one defines the
one- and two- particle Green's functions as":

(2. 4a)

G,(12, 1'2') = (1/t') (T[g(1)g(2)P(2')$~(1')])

(2. 4b)

= 5(1 —1') (2. 5)

Throughout the paper, we use the convention that
t, = t, + 0, where 6 is a positive infinitesimal. One
should note that the equation of motion for G, is
given in terms of G, . Similarly, the equation for
G, depends on G, and G„etc. Written in this

where T is the well-known time-ordering operator
and the angular brackets denote an average over
the exact state of the system. For our purposes,
this averaging is always over the exact target
ground state. We will defer a discussion of the
properties of the Green's function until later and
turn our attention to the problem of obtaining a
tractable set of equations for G, . By differentiating
(2. 4a) with respect to t, and using (2. 2), one ob-
tains after a little manipulation"

A1 G1 1 1 +i d2 V 1 2 G2 12 1 2
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form, this hierarchy of coupled equations has the
same mathematical structure as the Bogoliubov-
Born-Green-Kirkwood- Yvon (BBGKY) equation of
statistical mechanics. In order to solve these
equations, one must truncate the hierarchy at some
point. This is a difficult and dangerous procedure,
since one has little physical insight into the effect
of such truncations. One can also expand in a
perturbation series and then solve the resulting
equation for Gy. ""

In contrast to both of these procedures, Martin
and Schwinger have recast the problem in a form
much more suitable to physical understanding and

approximation, using the method of functional dif-
ferentiation with respect to an artificial time-de-
pendent external potential. It is not necessary to
specify the explicit form of thi:s potential, since,
after all functional differentiation has been per-
formed, the external potential is set equal to zero.
The fundamental identity of Martin and Schwinger'~
(derived in their paper) is

clear from (2. 9) that a knowledge of the self-en-
ergy is sufficient to solve for G. We will now use
the method of functional differentiation to eliminate
the 5G/5U in Eq. (2. 7) in favor of 5Z/5U. Differ-
entiating the identity

fd2G(1, 2)G-'(2, 1') = 5(1 —1')

yields

5G1 1' 5G "3 4
= fd3d4G(1, 3) ' ' G(4, 1')

In the presence of the external potential

G '(1, 1') = Go-'(1, 1') —U(1)5(1 —1') —Z (1, 1'),

(2. 11)

where G, is the free-particle Green's function.
Substituting (2. 11) into (2. 10) gives

1 1'
= —G,(12, 1'2 ) + G, (1, 1')G, (2, 2 )

(2. 6)

where U is the external potential. Equation (2. 6)
is now substituted into (2. 5) eliminating G, in fav-
or of Gy and its functional derivative.

x G~ 2& 2 Gy 1 1 = Q 1 1 2 7

= G(1, 2)G(2, 1')
5U(2)

+ fd3d4G(1, 3) ' G(4, 1'), (2. 12)5Z(3, 4)

which on substitution into (2. 8b) gives

Z (1, 1') = —i5(1 —1')fd2 V(1 —2)

x G(2, 2 ) +iV(1 —1')G(1, 1' )

+ifd2d3 V(1 —2)G(1, 3) ' . (2. 13)
5Z (3, 1')

For convenience, it is useful to define an auxiliary
function":

Z(1, 1') = ifd2d3 V(1 —-2)

At this point, it is evident from (2. 9) and (2. 13)
that we must have an expression for 5Z/5U in or-
der to solve for G and Z. By repeating the proce-
dure of functional differentiation on (2. 13) we ob-
tain

xG, (12, 32 )G, '(3, 1'),

Q (], 1') = —i5(1 —1')J d2 V(1 —2)G,(2, 2 )

(2. 8a) 551 1' +
= —i5(1 —1')J d4 V(1 —4)

5U(2) 5U(2)

+iV(1 —1') ' +i fd3d4 V(1 —3)
5G(1, 1') 5G(1, 4)

+ifd2d3 V(1 —2) ' ' G, -'(3, 1'). (2. 8b)

This function is usually cal)"" ..~ self-energy op-
erator and has been shown by Bell and Squires' to
be the optical potential of scattering theory. Using
(2. 8a), Eq. (2. 5) can be rewritten

(2. 9)
Since G, will no longer appear in any of the equa-
tions to follow, we drop the subscript on G, . It is

5Z(4, 1') 5'Z(4, 1')
U(3)+ f fd3d4V(1 —3)G(1, 4)()5U(4)

(2. 14)

Noting that (2. 12) has eliminated 5G/5U in favor
of 5Z/5U, and mentally using this in (2. 14), it is
apparent that one is replacing a hierarchy of Green's-
function equations by a similar hierarchy of func-
tional derivatives. In order to close this set of
equations, one must still employ a truncation pro-
cedure. The advantage of truncating this hierarchy
rather than the one in the G's is that one is able to



MANY-BODY THEORY OF ELASTIC SCATTERING 859

provide a better physical motivation for the trunca-
tion procedure. In Sec. III, we shall present the ex-
plicit truncation procedure in detail.

Before concluding the section on the general the-
ory, we present several equations which will be
used later on. Since it is convenient to work in en-
ergy variables, we Fourier transform Eq. (2. 9) to
yield an expression for the energy-dependent
Green's function:

agonalized by a simple orthogonal set of functions.
The functions (Qz} and gz) which diagonalize G and
appear in (2. 16) form a biorthogonal set and satisfy
the eigenvalue equations

h(x )p (r, z)+ fdrIZ(rlrl, z)p (rl, z)
n 1' 1 11' n

(2. 178)

[z -A(r, ) jG(r„r'„z)

—J dr, Z(r„r„z)G(r„r'„z)= 6(r, —r',), (2. 15)

where z has the dimensions of energy and may be
complex. It is very useful to have G in diagonal
form, "that is, its spectral representation. In this
representation, G has the form

(2. 16)

Since G does not in general satisfy an equation of
motion with a Hermitian operator, it cannot be di-

h(rl)p (rlz)+ fdr' y (r', z) Z*(r' rl, z)

(2. 17b)

For values of z below the first excitation threshold,
the operator remains Hermitian and the biorthog-
onal set collapses to the usual orthogonal form.
For values of Ez(z) lying in the continuous spec-
trum, Eq. (2. I'7a) is equivalent to the I ippmann-
Schwinger equation with Z being the optical poten-
tial. Hence, once we have closed our set of equa-
tions, we can construct the optical potential and
solve for the scattering function and phase shifts
by standard scattering techniques.

III. APPROXIMATION SCHEME

In order to obtain a practical approximation scheme, one must start with a soluble initial approximation.
For atoms and molecules HF theory presents just such a starting point. With this idea in mind, we may
immediately rewrite (2. 13) as

6Z3 1'
Z(1, 1') = Z (1, 1')+i fd2d3 V(1 —2)G(1,3) (3.1)

where Z (1, 1') = —i6(1 —1')fd2 V(1 —2)G(2, 2+)+ i V(1 —1')G(1, 1'+),

and is the ordinary HF potential. " That this is indeed the case follows from the fact that

p(r,
~
r,') = —iG(1, 1'+)

(3.2)

(3.3)

where p(r, ) r, ) is the ordinary one-particle density matrix. Equation (3.3) is an immediate consequence
of the definition of the Green's function (2.4a). Similarly, it is convenient to separate 6Z/6U in (2. 14) in-
to 6ZHF/6U and a remainder term, where

1 1"
= —i6(1 —1') fdx V(1 —x) — '

— +iV(1 —1') (3.4)

In this paper we. will employ the truncation procedure

1 1'
6Z(1, 1') - HF

6U(2) 6U(2)
(3. 6)

In terms of Eq. (2. 14) this truncation explicitly drops all terms of second order in the variational deriva-
tives. Such terms are expected to be small since they represent a second-order change in a total internal
field with respect to an external parameter. Additional motivation for this truncation will be provided below
by considering its relationship to the linear response.
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Explicitly using (2. 12) with 5Z/6U replaced by 5ZHF/5U in (3.4) and the resulting equation in turn in the
equations for Z, (3. 1) and G, (2. 9), we obtain the following approximate closed set of equations (denoted
by the subscript A)

(i ——h )G (1, 1') —fd2Z (1,2)G (2, 1') =5(1 —1')
"1

5Z (3, 1' )
Z (1, 1') =Z (1, 1')+i fd2d3 V(1 —2)G (1,3)

(3. 6a)

(3. 6b)

6U(2)
= —i5(1 —1') fdx V(1 —x)G (x, 2)G (2,x~)+iV(1 —1')G (1,2)G (2, 1'+) —i5(1 —1')fdxdydz V(1 —x)

A ' A ' A ' A

5Z (x,y)
x G x, y G z, x+ — +iV1 —1' dxdyG 1,x G, 1'+ (3.6c)

Equations (3. 6) are a set of coupled equations for Gg and 6ZHF/6 U [note that Eq. (3. 6b) is purely quad-
rature]. These equations are the basic equations of our method and should be solved self-consistently.
In Sec. IV below we shall present alternative forms of these equations which are perhaps more familiar and
amenable to calculation.

IV. ALTERNATIVE FORMS OF THE THEORY

It is apparent from Eq. (3.4) for 6ZHF/6U that
one could present a slightly different form for the
above truncation procedure. To this end we may
define"

A (12 1'+2+) =i
5 U(2)

(4. Ia)

A(12, 1'+2+) =i (T( [g t(1'+)g(1)][g~(2)P(2)]}) (4. lb)

where [t/)~(1'+)g(1)] = g~(l'+)P(l) —( 4~(1'+)l(I))

After inserting a complete set of target states be-
tween g(1) and g~(2) and performing a Fourier
transform in time we have

The variation of the density matrix with respect to
an external potential is called the linear-response
function. As will become apparent from the equa-
tions below, the linear-response function is no
more than the Green's function for the response of
the target to an arbitrary time-dependent external
potential. " It is this feature which motivates our
choice of this approximation. Due to our experi-
ence with time-dependent problems, we have some
physical feeling for the nature of the truncation.
We can rewrite (4. 1a) as

A(r,r„r,' r„z)=(0
I g (r,')g(r, )

x(-z+x -E0 -fe) 'Qp(r2)l0&+&0IP(r2)

x(z+x —E iz) 'Qg (r')t)'—(r ) I0), (4. 3)

w~ere Q= 1-Io&&ol .

It is easily demonstrated that if one knows the so-
lution to the equations '

(.-~~.E0 )IR =Qp(, )10&
T

(- —& +E ) IG) =Qp(, )l0),

(4.4a)

(4.4b)

where p(v) = g~(r)g(r)

T T
and sv = E —En=n 0

If one has a knowledge of the exact target ground
state, it is possible to convert the problem of the
determination of A into a set of differential equa-
tions. These equations are just the Green's-func-
tion version of the frequency-dependent perturba-
tion equations. To show this it is only necessary
to write (4. 2) in operator form,

A(r, r„r,' r„z)

«I p(, )l && lg (,')w(, )I0&
z +so —z6

'n

(4. 2)

then the determination of the response is just qua-
drature. Unfortunately, one rarely has the exact
target state in practice, and an exact solution of
these equations is impossible.

Up to this point we have made no reference to
our approximation procedure. In order to make
such contact, we need only recall Eq. (3.4), where
the linear response appears explicitly. Substitut-'ng
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(3.4) into (2. 12) with the replacement of 5Z/5Uby
5ZHF/5U, we obtain, using (4. la)

R (12, 1'+2+) =iG (1,2)G (2, 1'+)

—i fd3d4G (1,3)[V(3 —4)G (3, I'+)A (42, 4+2+)]

N (1 —N ) (N —1)Ncd a c a c
ab 8 —8 —z —ic + 8 —8 —s+iec a c a

x 5 |r —Q (V —V )&,(4. 7)
bc ad ac Pc ab

+i fd3 d4 G (1,3) [V(3 —4)G (4, 1'+)

x 8 (32, 4+2+)], (4. 5a)

where N =1 8 cGc c

=0 8 cG
c

or its Fourier transform

R (r r, r'r, z) = —[fdz'G (r r, z')

xG (r r', z' —z)

—fdz'dr dr G (r r, z')

xG (r r', z' —z)V(r —r )A (r r, r r, z)

x fdz'dr dr G (r r, z')G (r r';z'-z)

S.= orbital energies
Z

V =(«i I/r ~aP).

X X" sgn(w )cd ~ ac db n
ab w —z —iesgn(w )

se n n
n

(4. 8a)

It would be very convenient at this stage to have a
diagonal representation for B." In such a repre-
sentation

x V(r —r )A (r r, r r, z)]. (4. 5b) where X =(O~C C ~n), w &0
ac a c ' n

We emphasize once again that we have done nothing
more than rewrite our original truncation procedure
in terms of BA. In turn, we may also write

=(n~C +C ~0), w
(4. 8b)

Z (1, 1') =Z (1, 1') —i fd2d3 V(1 —2)

xR (32, 3+2+)V(3 —1')G (1, 1') +i f d2 d3 V(1 —2)

xR (32, 1'+2+) V(3 - 1')G (1, 3) (4. 5)

Equations (4. 5) can be shown to be equivalent to the
fully coupled time-dependent HF equations"~ " if
the one-particle Green's function is taken to be

GHF. Since we are solving for G~ and Zg self-
consistently, we actually wind up with the fully re-
normalized version of these equations. It is this
fact that makes this a highly nonlinear theory. Un-
fortunately, we are stuck with the expression "lin-
ear response" since it is the accepted terminology.
We point out again that this terminology only has
meaning in terms of the exact target states. We
shall continue below with the first iterate to Eqs.
(4. 5), that is with G& replaced by GHF, since this
approximation shows how the ordinary time-depen-
dent HF equations appear. The general equations which
appear in higher-order iterates are not particularly
enlightening and have been relegated to the Appen-
dix. After introducing the spectral representation
for GHF, we may take matrix elements of Eq. (4. 5b)
in this basis to yield (suppressing the subscript A
for the moment)

We obtain this form by inserting Eqs. (2. 1) into
(4. 2) and converting to a sum over both positive
and negative exciiation energies. Inserting (4. 8a)
into (4. 7), multiplying by (z —wn), taking the lim-
it as z-sv, and canceling common factors of X
on both sides of the resulting equation gives

X n
ac

(N —N )

c a n n, p

(4. 9a)
or (8 —8 —w )Xc a n ac

=(N —N )Q (V —V )Xc a ac pc np
Qr

(4. 9b)

Z X sgn(w )X =(N —N )5 5ac n db a c ad bc
n (4. 10a)

Q X (N —N )X =sgn(w )5 . (4. 10b)
ac a c ac. n mn

a,c

These equations may be cast into a set of one-di-
mensional coupled integrodifferential equations. "

This equation (actually a pair of coupled equations)
is the famous RPA eigenvalue equation. The eigen-
vectors obey a generalized completeness and ortho-
normality relation of the form '
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In this latter form they are usually called the cou-
pled time-dependent HF equations. Dalgarno" and
others have used them in this form for the calcula-
tion of frequency-dependent polarizabilities with
considerable success. One great advantage of the
differential equation formulation is that the possi-
bility of variational approximation immediately
suggests itself. Alternatively, we may use the
matrix form above or attempt a numerical integra-
tion. In any case, once we have the response, we
may calculate the first iterate to Z from (4. 6).

After a Fourier transform we can write (4. 6) as

x[8 (r r, r r, z') V(r —r')G (r rl, g —z')]

+ —Jdr dr dg' V(r —r2)[R (r r, rlr2, z')

x V(r —r')G (r r, z —z')] (4. 11a)

(r r', z)=Z (r r' ) ——fdr dr dz' V(r —r )

By substituting the first iterate for B~, Eq. (4. 8a), into (4. 11a) and performing the indicated integrations,
we obtain

V (r )v (r')x "x"*
q (r )q &(r')

f
) ( g) Q Q Q bd 1 ac 1 ac db a 1 n

g —8 —zo +i&
zv &0 ncG &abed N n

n

zg &0 ncG abed
n

g —8 —I) —ZE'

a n

ze &0
n

zo &0
n

V (rl)V (rl)X "&"
d&V (r, )V*(rl)

g —8 —z6 +ZfzcG abed Q n

V (r )V (r')X X y (r, )V*(rl)
8 —@ —~ —Z'E

(&ca& abed n n

(4. 11b)

where V (r )= fdr p*(r ) - y (r )ab x y a y r b ySy

~e now substitute this result back into Eq. (3.6a)
and solve for the orbitals which diagonalize G.
Having done this, we use these new orbitals as the
driving force in the RPA equations and resolve them.
This procedure is continued until the orbitals inthe
Green's-function equation do not change (self-con-
sistency has been reached). The entire procedure
is summarized in the following. (i) Use the HF
one-particle Green's function as your initial ap-
proximation to G. (ii) Using the time-dependent
coupled HF equations [(4.7)—(4. 10)] with the orig-
inal HF orbitals, we solve for the response func-
tion. (iii) Using the results of (i) and (ii), we cal-
culate the optical potential [Eq. (4. 11)] by quad-
rature. (iv) Using Z from (iii), we diagonalize
the Green's function, [Eq. (2. 17)]. (v) Return to
(ii) and use the new orbitals to calculate the re-
sponse. Repeat the entire procedure until self-
consistent.

One should note that at no stage of the calculation
do we have to solve more than a one-particle equa-
tion. In view of the fact that we have a complicated
set of coupled equations to solve, this can be an
enormous computational saving. In Secs. V and
VI we will show exactly what terms we have includ-

ed in our theory and a numerical scheme to imple-
ment our results.

V. DISCUSSION

The physical content of our equations may be un-
derstood quite readily by considering the incoming
electron as a time- (or frequency-) dependent per-
turbation of the target electrons. Each frequency
component of the incoming wave packet a.cts ag a
probe and induces correlations in and among the
target electrons. The type of correlations includ-
ed can be found by an examination of the coupled
HF equations. Using our equation for the response,
we write these terms using field diagrams (see
Fig. 1). All time orderings are implied in this
representation. These diagrams can easily be
transformed to the more usual Goldstone diagrams,
such as appear in the recent paper of Karplus and
Caves" on the coupled HF method, by realizing
that G is a "free" propagator and including all pos-
sible time orderings consistent with instantaneous
interactions. If one does so, one sees that all of
the terms represent particle-hole interaction in
the target. Single excitations and a large class of
double excitations of the occupied HF orbitals are
accounted for. Physically, we expect this to be the
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+ + I +
RA (l2, I'2 ) = IW2~ I' + I:2; I'

I~2M3: 4~I' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~+

FIG. 1. Solid lines represent one-particle Green's

functions; and dotted lines, the interaction potential.

explicit solution of a two-particle problem by solv-
ing two one-particle equations, one linear in the
interaction potential, the other quadratic. By per-
forming the required convolution integral we get a
significant fraction of the two-particle correlation
with all renormalizations included. The residual
two-particle terms which have been neglected are
given by Eq. (5. 2) to lowest order. By the argu-
ments given above, we expect these to be small in
comparison to 6ZHF/5U. We hope to support our
conclusions by explicit calculations in a later pub-
lication.

VI. NUMERICAL PROCEDURE

dominant type of correlation neglected in the HF
approximation. This, however, is only the target
side of the problem. Once we have calculated
these polarizations and induced correlations, we

must still solve the one-particle Green's-function
equation. The solution of this part of the problem
is equivalent to the back reaction of the polariza-
tion on a/l the particles of the system and the ex-
plicit introduction of two- and higher-body correla-
tions. Both the target electrons and the incident
electron move and interact in a polarized fluctua-
tion potential. As is typical of all Green's-function
techniques, we have included some effects to infi-
nite order in the perturbation potential, while we
have neglected others entirely. One of the nicer
features of the Green's-function method is that it
is quite easy to see what terms have been omitted.
We need only look at the leading terms of Eq. (2. 14)
beyond 5ZHF/()U. If we replace G by GHF and I)Z/
6U by I)ZHF/pU on the right-hand side of (2.14), the
lowest-order terms are as shown in Fig. 2.

The first two diagrams are of the particle-hole
type and represent higher-order polarization and
consistency effects within the target. Since we
have already accounted for the more important dia-
grams of this type within the RPA, we do not expect
these to contribute significantly. The last two con-
tain hole-hole and particle-particle interaction and,
therefore, represent true short-range two-particle
correlations of the target. These latter diagrams
can easily be taken into account by perturbation
theory if it is necessary. It is doubtful that they
play a really important role in low-energy elastic
scattering for the following reason. As a rule of
thumb based on excellent physical and mathematical
arguments, the Feynman diagrams, which are im-
portant for ordinary optical susceptibilities, are
also important for low- energy elastic scattering.
The time-dependent HF equations have been shown
to give excellent frequency-dependent moments. If
one couples this with our additional SCF calculation
of the Green's function, which brings in additional
correlation, one feels he has accounted for most
of the physics outlined in Sec. II. One avoids the

Su (2)

X

Q (I, I') QH F (I, I')
IM2 ' I'

2

+ 1~2~3~2~1' +
I

I

IX
I

II)

+ I
—X—2 3—I'

FIG. 2. First two diagrams are of the particle-hole
type and represent higher-order polarization and con-
sistency effects within the target; the last two contain
hole-hole and particle-particle interaction.

The fact that the response function is merely the
Green's function for a time- or frequency-depen-
dent perturbation problem allows us to use approx-
imation techniques and insights developed for time-
dependent problems. ~ It is of course clear that if
one has the exactlinear response, one can immedi-
ately solve for any frequency-dependent suscep-
tibility exactly. Similarly, if one knows the RPA
solution, one knows the susceptibility in the time-
dependent HF approximation. The RPA has been
known to give excellent results for one-electron
perturbations. Within the subspace defined by the
target particles 1/r» is a one-electron perturba-
tion and, consequently, we expect to get quite rea-
sonable results. Since we know that we are after
the response of the target to 1/r» type interaction
from the structure of the self-energy operator, we
try to use a basis for solution which reflects this
fact.

In attempting a solution of the RPA equations in
a finite basis set, we are immediately faced with
the problem of having a finite pole approximation
to the response function. This, of course, means
that the response function cannot mirror the exact
response for all frequencies. This is not a serious
problem since the response function goes into a
convolution integral. What it does mean is that the
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n poles of the approximate response cannot be the
same as the first n poles of the exact function, but,
in fact, are n effective poles, i. e. , the best n poles
over the entire frequency range. This is much the
same as the use of n pole frequency-dependent po-
larizabilities to convolute in order to obtain the
London dispersion force.

The second problem we must face is what finite
one-electron basis set to use. The objective is
obviously to obtain a good response to the 1/r» in-
teraction with as small a basis as possible. A guide
to our thinking is the fact that at large distances
1/x» can be expanded in a multipole series. The
effect on the target, therefore, is much the same
as that observed in the calculation of the various
frequency-dependent polarizabilities. It has been
shown that a particularly convenient set for these
types of calculations can be constructed by using
the unperturbed orbita, ls times a polynomial in ra-
dial coordinates with coefficients to be determined
by the calculation times the desired spherical har-
monic. These basis sets have been shown to be
quickly converging for polarizability calculations.
The various spherical harmonics, of course, block-
diagonalize in the RPA eigenvalue problem, thus
keeping the requisite matrix equations small. The
number of spherical harmonics which must be in-
cluded will necessarily await the actual calculation.
However, we do not anticipate the need of including
a large number of them.

It is apparent from Eq. (4. 11a) for the optical po-
tential that the one-particle Green's function is just
the other side of the system's response to the 1/x»
potential. Thus, the physical considerations con-
sidered above with respect to the response function
apply to the solution of the Green's function problem
as well. From such arguments it is apparent that
the same form of one-electron basis functions used
for the RPA solution would be appropriate for the
Green's-function equation. However, one can do
even better. Since the RPA solutions have much of
the physical effect of the distortions built into them,
it is reasonable to use them as our starting point in
building up the basis set. One then improves these
by multiplying them by a small polynomial in radi-
al coordinates to allow for additional flexibility.
As before we have only a small matrix equation to
be iterated. Similarly, we can start off the second
iteration through the linear response equation with
the orbital calculation to the Green's function, again
allowing for improvement with a small polynomial.
This method of iterating the basis set allows for
the incorporation of most of the physics with only
small matrix equations at each stage. This should
allow for considerable computational savings.

Because of the finite pole approximation it is
somewhat difficult to obtain the scattering orbital
from the Green's-function equation. This can be
easily remedied by solving for the scattering orbit-
al numerically. That is, after one has self-consis-

tency in the Green's-function equation in the finite
basis set, one uses the fixed self-energy operator
to determine the scattering orbital by numerical
integration. This may be done by a noniterative
method similar in spirit to the one used by Marriott. "
By examining the asymptotic behavior of these or-
bitals, it is a simple task to evaluate the phase
shifts. In addition, this can be used as a test of
self-consistency by evaluating the phase shifts nu-
merically after each loop through the Green's-func-
tion equation. The calculation would be stopped
when the phase shifts have stabilized to constant
values.

VII. CONCLUSIONS

In this paper, we have described a method for the
calculation of elastic scattering of electrons from
a many-body system. The method involves the
self-consistent solution of the response function of
the target in the RPA and the one-particle Green's
function. We have discussed the physical motiva-
tion for this procedure, described the physical na-
ture of the terms included and the lowest-order
correction to our results. We have outlined a pos-
sible approach to the numerical solution of these
equations which incorporate the physical insights
gained from time-dependent perturbation calcula-
tions.

It is clear from an examination of the equations we
have presented that varying degrees of approxima-
tion are possible. The lowest-order approximation
would use the RPA response function and the HF
Green's function to construct an optical potential
which would be used to calculate the scattering func-
tion directly. This neglects the short-range effects
of correlation on the polarization potential and self-
consistency effects within the single- particle Green' s
function. This is already a good deal better than
many of the quasiadiabatic approximations. An in-
termediate level of approximation would use the
RPA response function and solve the integrodifferen-
tial equation for the Green's function. Using this
Green's function and the RPA response function, we
calculate a new optical potential and then solve for
the scattering function. This leaves out the explicit
effects of correlation on the target polarization.
We are going to undertake calculations using this
method to investigate the importance of these var-
ious effects.

In the absence of calculations, one can already
see that a number of theoretical questions have
been formally answered. We have seen how to use
time-dependent methods in scattering calculations.
Specifically, we see how the RPA occurs quite nat-
urally as a lowest-order approximation and how we
may incorporate the effects of correlation through
the solution of the one-particle Green's function.
By making this connection between scattering the-
ory and time-dependent perturbation methods used
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in susceptibility calculations, we may draw on a
wider field of experience. In closing, we would
like to point out again that through the use of mod-
ern many-body techniques, the intrinsic many-par-
ticle equations of scattering theory have been re-
duced to a set of coupled one-particle equations.
One need hardly emphasize the practical simplifi-
cation this affords.
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APPENDIX: DERIVATION OF THE GENERAL FORM OF EQ. (4.9)

By inserting a complete set of (N+1) and (N 1) pa-rticle states in the definition of the Green's function,

Eq. (2. 4a), we may write

f~(r 1)f~ (r 1) gf (r 1
)gf* (r1)

(Al)

where (a) f (rl) =(Oig(r )i& ) (b) g&(& )=(i lit(rl)io)

(c) c =E —E, (d) e =E —EN+1 N-1
(A2)

Substituting (Al) into (4. 5b) and performing the contour integration yields

N 1 —N P r P*r P, r2 0 'r1
q q q 1 q 2 q' 2 q' 1

RA("("2'( "2 *)- A. , 8 Rrrq,
q, q' q q

N (N, —1)(f) (r )(f)+(r )(f),(r )(f) +, (r') N, (1 —N )(f) (r )(f),(r ')

+ —S,-z+i~ -z —icI

q q' qq' q q

N (N, —1)(f) (r )(f) *,(r')
x fd r V,(r )E (r r, r r, z) +

4 qq' 4 A 42' 42' —S,-z+ie'q 'q

xfqr 'q, (r )R (r r, r ,r))r4 qq' 4 A 42'42'

N, (1 —N )(f) (r )(f) *,(r')

q, q 'q'q '"
N (N, —1)(f) (r )(f) *,(r ')

r . fdr qr qr(r )q(r —r lq, (r )R (r r, r r, r)), (A2)—S,-z+i~'q 'q

where we have used the symbol (f) to represent either f& or g& and

N =1, 8(=G
q

'
q

(A4a)

N =0, 8 (=G'
q

'
q

(A4b)

(A4c )
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We now introduce the spectral expansion for R~ into Eg. (A3)

sgn(w )x (r', r )x *(r,r )

A 1 2' 1 2' —z —is sgn(w )
ZO n n

n

(A5)

where x (r', r )=(0~$ (F')P(r )~n), w &0 (A6a)

= (~
~
4 (Fl)4(F1) ~

0), w & 0 . (A6b)

to yield

sgn(w )X (r', r )X (r, r )n
w w —z —ie sgn(w )

n n n

N, (1 —N )y (r )p*(F )y,(r )cp*,(r')q' q q 1 q 2 q' 2 q' 1
-z —seI

q q'

N (N, —1)rp (r )p+(F )p,(F )y +, (F')
q q' q 1 q 2 q 2 q' 1

8 —S,-z+ie
q q'

,(1 —N )p (r )cp*, (F') sgn(w )X (r, F )
dF V,(F )X (F,r )—8,—z —iz w —z —ie sgn(w ) 4 qq' 4 4' 4

q, q'zp q q' n n
1 n

(N, —l)p (F1)p*,(F1) sgn(w )X *(r,r )

, —z+ is w —z —ie sgn(w ) 4 qq' 4 4' 4
q n n

+ q q q 1 q' 1

q
—z —$c11n q q'

sgn(w )X *(r,r )

fdr3dr p+(F3)V(F —r )p, (F )X (r, r )

N (N, —1)p (r )p*, (F') sgn(w )X (F, r )

'q 'q ' n'
(A7)

We now multiply (A7) by (wz —z), take the limit as z -wz, and cancel common factors to get

q q' q q' n

(N, -N )p (r )y+, (Fl)
+ g ~ ~ fdr dr ys(r )V(r3 —F4)p, (r4)X (r, r )

q q' q q' n

which is the general form of Eq. (4.9).
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