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A general approximation method is developed for the treatment of bound quantum systems in
the presence of an intense external electromagnetic field of long wavelength. The method is
based upon a unitary transformation which approximately removes the electromagnetic field
from the problem. The accuracy of the technique increases with the number of photons in-
volved in any given process; and in the case of large photon number, the results have a simple,
concise form resembling first-order perturbation theory. It is possible to handle intense-
field problems with small numbers of photons also, but then the formalism takes on a com-
plexity analogous to the corresponding perturbation expressions for the same number of pho-
tons. The theory is extended to the case where two electromagnetic field modes are present,
one or both of which may be intense. Bound-bound transitions in a hydrogenlike atom are
calculated as an illustration of the application of the method. One of the explicit nonlinear
effects to appear is an intensity-dependent deviation of the transition probability behavior from

for n-photon transitions, where I is the field intensity. It is demonstrated that intensity
effects are much more probable with bound electrons than with free electrons.

I. INTRODUCTION

The only method of general applicability pres-
ently available for the treatment of bound-state
problems in semiclassical electrodynamics is
perturbation theory. Although perturbation theory
has been remarkably successful, a new techno '

logical situation has been developing in recent
years which promises to provide electromagnetic
field environments so intense that the usefulness
(and possibly even the correctness) of perturbation
theory is in doubt. For example, atomic pro-
cesses in intense fields have already been ob-
served' where on the order of ten photons are in-
volved in a single transition. Perturbation cal-
culations of such high-order processes are ex-
tremely difficult to perform. ' Furthermore (as
will become evident later in this paper), when a
transition requires a large number of photons in
order to proceed, transitions involving more than
the minimum number of photons can also become
significant. The problem of calculating higher-
order corrections to the (already high-order)
lowest-order result becomes prohibitively diffi-
cult for a perturbation method.

It is possible to give an order-of-magnitude ar-
gument which indicates the likelihood of trouble
with a perturbation approach. Consider an atom
subjected to a plane-wave electromagnetic field
given by the vector potential A. This vector po-
tential enters the dynamical equation through the
substitution p-p —eA. (Throughout the paper,
Gaussianunits will be used, and K=c= 1. ) Let us

compare the magnitude of eA with a characteristic
parameter of the atom itself, such as the binding
energy. If A is trigonometric with amplitude a,
and if the energy E is given by a Rydberg unit
2me, then

eA 0 ea 0 1

where o. is the fine-structure constant, and ~'/
is the field-intensity parameter which arises

in free-electron problems. ' Values of (~'/m')'~'
as large as 10 ' can be achieved at present with
focused laser beams, and n ' is of the order of 104,
so that the magnitude of eA can actually exceed the
atomic binding energy. Clearly, caution must be
exercised in the application of perturbation meth-
ods to such a problem.

In Sec. II of this paper, a nonperturbation approx-
imation is introduced which is particularly suited
to the many-photon bound-state problem in the
long-wavelength case. The basic motivation for
the technique is to reduce the influence of the 8A
term by approximately transforming it away. The
method is demonstrated first for the relativistic
case, and is then developed in detaii for the non-
relativistic case. The nature of the approximation
is shown by an order-of-magnitude analysis. Cor-
rections to the basic approximation are then in-
troduced,

In Sec. III, the expectation of the energy of a
bound system in the presence of an electromag-
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netic field is examined.
Section IV presents the development of the for-

malism necessary to calculate transition proba-
bilities without recourse to the standard results
of perturbation theory.

Section V is concerned with the conversion of the
general formalism into a practical calculational
tool. A gener alized dipole-approximation commu-
tator theorem is demonstrated, and used to give
a simple general matrix element which must be
calculated. This matrix element is subjected to
an angular momentum reduction valid for central
potentials. The example of 1s-2s transitions in a
hydrogenlike atom is calculated, and analyzed in
terms of departures from perturbative intensity
behavior. An important general feature is the ap-
pearance of a field-intensity parameter which is
(137)' times larger than the parameter which oc-
curs in free-electron problems.

Combined effects of intense and weak fields are
treated in Sec. VI. Results analogous to those
developed for a single intense field are established
for the two-fields situation, and again applied to
the 1s-2s transition in hydrogenlike atoms as an

example. The particular cases considered are
Raman-like processes involving absorption of n

photons from the intense field, and emission of a
single photon of appropriate energy to make up
the 1s-2s energy difference; or emission of n'
photons stimulated by the intense field, plus emis-
sion of a single photon sufficient to conserve en-
ergy in the decay of the 2s state to the ground state.

Section VII is devoted to a general comparison
of the new method developed here with perturba-
tion theory. It is shown that the present method,
although designed for many-photon problems, re-
duces to first-order perturbation results for low
field intensity. Systematic corrections to the gen-
eral method developed in Sec. II can be applied to
make the results reduce to any higher order of
perturbation theory. A general analysis involving
an intense field and a weak field is employed to
show the manner in which the intense field causes
real and virtual transitions into all possible states.

II. MOMENTUM-TRANSLATION METHOD

A. Rationale

elementary quantum system is small as compared
to the wavelength, then the electromagnetic field
has an approximate uniformity throughout the atom
(hereafter, for convenience, we shall use "atom"
in place of "bound elementary quantum system").
If the field were truly constant, it would be a sim-
ple matter to make a unitary transformation which
would eliminate the electromagnetic field from the
problem. We shall find it a useful technique to
make this unitary transformation even when the
field is not constant. The relativistic case will
be presented first, since it is simpler in formal
appearance. Then the nonrelativistic case,
which is simpler in practical application, will be
developed in detail, and applied.

B. Relativistic Case

"Natural" units (h=c =1) will be used. The met-
ric is such that the scalar product of two four-
vectors x ~ and y~ is x&y~ =g»x ~y =x.y
=x'y'- x ~ y, where x and y are three-vectors and
gI" ~ is the metric tensor'. The electromagnetic
field is introduced through the minimal-coupling
substitution P~ -P& —eA&, where pI" is the oper-
ator i8&.

Set

@=exp(-ieA x)+,

where we consider 4' to be either the spinor solu-
tion to the Dirac equation

(2)

or the scalar solution to the Klein-Gordon equa-
tion

[(P —eA —V5 )(P —eA —V5 ) —I'j 4 = 0 .

(3)

In Eqs. (2) and (3), V is the potential which gives
rise to the bound states of the atom, and in Eq. (2)
the y" are the Dirac matrices which satisfy y&y~

+y ~y& =2g&". If A& were a constant four-vector,
the transformation given by Eq. (1) would amount
to a momentum translation of amount eA&. Since
A& is not constant

We wish to develop a calculational method for
bound-state problems when an intense, external
electromagnetic field of long wavelength is pres-
ent. By long wavelength is meant that the in-
equality a, «1 is satisfied, where ~ is the fre-
quency of the electromagnetic field, and a, is a
characteristic elementary size of the bound sys-
tem (e.g. , a Bohr radius for an atom, a unit cell
for a solid, a pion Compton wavelength for a nu-

cleus). It is the long-wavelength restriction which
suggests the method. ' If the size of the bound

(P —eA )g

= exp(-ieA x)[p" +ex (s A )]i.
V

i.e. , Eq. (1) amounts to a repla, cement of eA&

by ex ~(s&A~) in the wave equation. For an atom
of radius a„x& can be approximated in magni-
tude by a„and for a plane wave of frequency ~,
8I"A~ has a magnitude of v times the magnitude
of AW. Hence,
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= O((ua, ) «1,

so that the transformation of Eq. (1) leads to a
suppression of electromagnetic field quantities in
the wave equation by the factor co a„considered
to be very small by the long-wavelength hypothesis.
That is, Eq. (2) becomes

i~ 4 =II@

where i8 = exp(- ieA ~ x ) i8 exp(ieA x)t

H= exp(-ieA x)H exp(ieA x)

The transformed operators are found readily to be

{y [p +ex (8 A )]—y V- m]' 4=0,
p, V

(4) i8 =i8 —e(8 A) ~ x

and Eq. (3) becomes

{[P".ex (8'A') —V5 "]
H=H +.m-'(8 A )x. P . .,'i.e—m—-~=

0 (10)

x [p +ex (8 A ) —V5 ] —m )4=0.0 2—
p, X p,

(5)

Equations (4) and (5) should be much more man-
ageable in terms of perturbation theory than Eqs.
(2) and (3), even for very intense fields, as long
as ~ ao«1. As will be shown in detail for the
nonrelativistic case, it is both nontrivial and
justifiable in certain cases to employ Eq. (1) as
the approximate solution of the complete problem
when 4' is replaced by the solution of Eq. (4) or
(5) for A & = 0; i. e. , zeroth-order perturbation
theory in the terms arising from ex~(8&A ~) leads
to meaningful results.

C. Nonrelativistic Case

i8 4 =HI, II= (2m) '(p —eA)'+ V(r ),

where a gauge with AD=0 has been chosen. We
shall impose a restriction to source-free fields
(8&8&A ~=0) subject to the Lorentz condition
(8&A& =0), so that we have also V ~ A=0. There
will be a requirement also for the solution C of
the field-free equation

i8 C =H C, H =(2m) 'p'+V(r).
t 0 ' 0 (7)

Consider the unitary transformation induced by
exp(- ieA ~ x),

The Schrodinger equation for an atom in the pres-
ence of an electromagnetic field can be written

x(V'A'. )x.+-'e'm '(8.A. )(8.A )x.x,zu ju'

where H, is as given by Eq. (7), and repeated
indices are to be summed from 1 to 3. Equation
(9) can thus be written as the Schrodinger equation
with iat operator

i8 @=(H +H )e,

where H =e(8 A. )x, +em '(8.A. )x.p.t g, ij js
—-' iem-'(v 'A. )x.+-', e'm- ~

Z 2.

x(8.A. )(8.A )x.x .
z j z 0 j (12)

+=exp(ieA x) C .

Let us explore the circumstances under which it
is reasonable to neglect Hy. Two conditions will
be imposed: (a) The magnitude of HI should be
small as compared to a characteristic energy of
the field-free problem; and (b) the magnitude of
Hl should be small as compared to the usual per-I
turbation operator H of semiclassical electro-
dynamics, where

If HI could be neglected, then the solution of Eq.
(11) would be simply 4 of Eq. (7), the field-free
solution of the atomic problem. Then, by inverting
Eq. (8), the general solution of the original prob-
lem would be

e = exp(- ieA
' x ) e, (8)

1H' =H —H, = —em 'A p+ —e m 'A (14)

which is the nonrelativistic analog of Eq. (1),
since in the gauge with AD=0, A x= —A x. The
transformed Schrodinger equation is

The necessary order-of- magnitude analysis is
greatly expedited if we can confine our attention
to only a single term of HI. With the order-of-
magnitude replacements xi a0, Bt&i r ~j i -~a
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(where a is the amplitude of A), pf/m - (2E/m) "',
then the second term of Hf as given in Eq. (12) has
the relative magnitude (2E/m)'~' as compared to
the first term. For explicitness, we can take E
to be the binding energy of a hydrogenlike atom,
so (2E/m)'~'= Ze'. For light atoms or outer
electrons of heavy atoms, the effective Z is much
smaller than the inverse fine-structure constant
e ' (or o. '), so the second term of Eq. (12) is
dominated by the first term. The third term of
Eq. (12) bears the ratio &u/m with respect to the
first term, which is certainly small for any long-
wavelength atomic problem. The last term of HI
is smaller than the first term by the factor (&u/m)

(eaa, ). It has been remarked already that ~/m
is small. The product eaa, is of particular inter-
est because it occurs throughout the analysis of
this paper, and it (or, more properly, its square)
can be identified as the fundamental intensity param-
eter of the bound-system problem. For hydrogen-
like atoms, a, =(Zme') ', so

change of the atom in the transition is the small-
est characteristic atomic energy that would enter
into the problem. Hence, the requirement ~ «E,
with E as the transition energy and + as the ener-
gy of a photon, is equivalent to a many-photon
condition. Thus, we conclude that if a transition
can occur only through a high-order process in-
volving the electromagnetic field, then it is a
reasonable approximation to neglect III and em-
ploy Eq. (13) as the solution to Eq. (6). This
will be referred to as the momentum-translation
approximation.

Corrections to the momentum-translation ap-
proximation are derived readily. The complete
solution to Eq. (11) is given by the integral equa-
tion

4=4+2 c
n n

X [ —i f (4 (t'), H (t')4(t'))dt']

eaa =(Zo.') '(2&m'/m')'

eaa, ((u/Z) «1. (16a)

Condition (b) requires that e(&&A) ~ x be small as
compared to em 'A p. With the relation
ao=(2mE) +=p ', condition (b) gives

—,'((u/Z) «1. (16b)

It has already been pointed out that the parameter
eaa, is less than unity. Even with great future
increases in available intensity, eaa, will never be
a large number, so Eqs. (16a) and (16b) can both
be satisfied if v/E is taken to be sufficiently small.

Consider a transition induced in an atom by the
electromagnetic field of frequency e. The energy

where, as remarked above, &m'/m' is the inten-
sity parameter characteristic of the free-electron
problem. For effective values of Z which are not
much larger than unity, (eaao) is then some 10
times larger than the intensity parameter for free
electrons. A value of hm'/m' of 10 ' leads to
(eaa, )' about 10 '. Hence, despite the much greater
size of the bound-state intensity parameter as
compared to the free-electron intensity parameter,
the magnitude of the last term of HI is, like the
others, small as compared to the e(ef A ) x term
of HI'

Now it is a simple matter to examine the two
criteria which are to be imposed to justify the
approximate solution Eq. (13). Condition (a) was
that HI be of small magnitude as compared to a
characteristic energy of the atom. Comparing
e(&f A) ~ x with an atomic energy E gives the re-
quirement

where the summation is over the complete set of
field-free solutions Cz. A Neumann series solu-
tion of this integral equation gives what would
commonly be termed a perturbation expansion
for 4, with HI as the perturbing potential. For
instance, the zeroth-order result 4«'& = C is
just the momentum- translation approximation,
Eq. (13). The first-order result is

4&'& =C+Q C
n n

x [-f f (C (t ), H (t')C(f'))dt ] . (18)

As shown above [and as can also be shown directly
in Eq. (18)], the second term in Eq. (18) gives
contributions whose order of magnitude is eaa,
(&u/E) times the contribution of the 4 term. This
means that for arbitrarily intense fields, as long
as &u/E is small enough, the zeroth-order result
is accurate. Conversely, if we wish to explore
the intense-field behavior of processes involving
small numbers of photons, it may be necessary to
employ higher-order approximations to Eq. (17).

III. ENERGY BEHAVIOR

Because A is time-dependent, the Hamiltonian of
Eq. (6) has explicit time dependence, and thus it
does not possess energy eigenvalues. Neverthe-
less, we can examine the energy behavior of an
atom in an electromagnetic field in terms of the
expectation value of the Rt operator.

For the momentum-translation approximation,

(@
[
i &

J
@)= (+

(
P

(
@&
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=8+&4 eg ~ x 4) (19) jH0t @

where we have used Eg. (10), and introduced the
electric field vector 6, given by 6 = —st A in the
gauge being used here. Equation (19) has a very fa-
miliar appearance. It has exactly the same form
as the energy for the first-order Stark effect
caused by a static electric field. In Eq. (19), h is
not static. If, as is generally done in the dipole
approximation, h is taken to be a function of time
only, then Eq. (19) says that the momentum-trans-
lation approximation predicts that the average en-
ergy of an atom oscillates in phase with the applied
electric field, with the same amplitude as if that
field were static. It will be seen later that the mo-
mentum-translation result predicts that the A field
leads to both real and virtual transitions in the
atom. One can take the point of view that it is the
average over all these transitions' that leads to the
"adiabatic" Stark effect given by Eq. (19).

The Stark-effect result of Eq. (19) can be refined
if 4' "' as given in Eq. (18) is used instead of 4'&'&.

To first order in Hy, the result can be shown to be

&e~;s ~e)=Z+&C ~eS.x C)+2ae(&C~eh x~t

iH0t, —jH0tH=e He
(22)

The time-development operator becomes the S op-
erator when t o -~, t, -—~ (with appropriate be-
havior of H' at t=a ~), so that

The S-matrix element defined between a pair of in-
states 4y( —~) and 4i(- ~) is then

(+ (- ), S@.(- )) =f ' i

zf dt -(@ (- ), H'(t, )4.(t )),

(S —1) .= —i lim f dtfi to —~ to 1

where Eq. (21) has been used. To transform back
to the original Schrodinger picture with the inverse
of Eq. (22), it is convenient to reintroduce a limit-
ing process in terms of tp,

The ].ast term in Eq. (20) explicitly exhibits the ef-
fects of coupling between levels in the atom caused
by the electric field.

IV. FORMALISM FOR TRANSITIONS

The conventional means for calculating transition
probabilities in semiclassical electrodynamics
makes use of the machinery of perturbation theory.
Such methods are not appropriate here, and so a
more general technique will be outlined below.
What is required is only a slight extension of well-
known results of the formal theory of scattering, so
the presentation will be quite brief.

The starting point is to split the total Hamiltonian
operator H into a field-independent part H, and a
field-dependent part H', as given in Eq. (14). The
operator exp(iH, t) then defines a transformation to
the interaction picture, in which the time-develop-
ment operator V(t, to) is given by

x(e' 'o+ (t ) e ''H'(t )+ (t )) (28)
z 1

It should be noted that the S matrix is the same in
both the pictures employed, so there is no need to
employ the caret on S. Implicit in the introduction
of S is the assumption that H' is "turned off" at
t-+ ~ by means of appropriate convergence fac-
tors, as explained in any standard text which dis-
cusses the formal theory of scattering. The ab-
sence of H' in the limit t -- ~ means that

i. e. , the operator involving to reduces %~ to the
time-independent field-free wave function at t = —~.
and the operator involving t, restores the time de-
pendence at time t„but retains the field-free char-
acter of the time-independent part. Thus, if we
introduce a new notation ~ to replace $-1, Eq.
(23) becomes

(S- I) =r. .-

where the time-development operator is defined by
=-i f dt(C (t), H'(t)4. (t)) (24)

e(t') = v(t', t,)e(t,), (21)
Equation (24) is quite general. Suppose now that

the momentum-translation approximation Eq. (13)
is introduced. Then, with 4 split into time-depen-

and the caret denotes operators and wave functions
given in the interaction picture, e.g. ,
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dent and time-independent factors denoted by

C(r, &)=4(r) (26)

[p., exp(ieA ~ x)] = [eA. + ex.(&.A. )]exp(ieA ~ x)i j i j

[we assume V(r) and hence H, to be time-indepen-
dent], vfi takes on the form

i(z -z.)t

we get, after some rearrangement,

[H„exp(ieA x)] = —H' exp(ieA ~ x)

+exp(ieX x)[H —e(& A.)x.) .t z (30)
(26)

(n) . , ieX x
=-term in (4,H' e Q.)i

proportional to e
in(dt (2&)

This definition is consistent with the usual concept
of a 7 matrix, and leads to

The matrix element in the integrand of Eq. (26) de-
pends on f through the presence of H' exp(ieA x).
This suggests the definition

H& is given in Eq. (12), and the discussion following
that equation led to the conclusion that Hi
—e(et Ai)xi is small.

First we wish to show what happens to Eq. (30) in
the perturbation limit. In a perturbation calcula-
tion, II' consists of the single term m 'eA ~ p, so
that (in the long-wavelength case) the H' exp(ieA ~ x)
term clearly dominates the second term in Eq.
(30). To lowest order in eA ~ x, Eq. (30) then be-
comes

[H„ieA ~ x]= —H'

.= —27ii Z 6(Z —Z. +n~)r .
"(n)

Z in=-~
(2S)

or in more familiar form

[H„x e]= —im-'p e (31)

Finally, the transition probability per unit time wfi
between an initial state 4i and a final state Cf is
given by

g =2vg ~Z' .
~ 6(Zf —Z +n~).(n) 2

fi n i Z
(20)

V. INTENSE-FIELD TRANSITIONS

A. Commutator Theorem

The practical calculation of rfi is greatly facili-
tated by a simple device which has a close analogy
in perturbation theory. The idea is to replace the
H' exp(ieX x) operator by a commutator involving

Ho as one of its factors. When H, operates on 4f
and Ci in 7fi, an energy difference factor appears.
%e shall evaluate the commutator

[H„e p(iexX x)]=(2m) '

x(p[p, exp(ieX. x)]+[p, exp(ieX. x)]p]

which holds for Ho= (2m) 'P'+ V(r). Then, since

The transition probability of Eq. (29), although
written in terms of a sum over n from —~ to + ~,
will give nonvanishing contributions only for those
n for which n(d can match the energy difference Ez
—Zf. Whether this is an infinite, a finite, or a null
set of terms, depends on the physical problem.

(~/I )«(ea/2m) (32)

This is true only for intense fields. It will be em-
ployed subsequently for the practical examples
which are given because it simplifies the calcula-
tions so much, and because we shall be seeking to
identify explicit intensity effects, i.e. , we shall be
exploring cases where Eq. (32) will surely be val-
id. It must be clearly understood, however, that
Eq. (32) is not essential to the general method,
and represents the only case encountered in this
paper where an intensity parameter must be di-
rectly compared with a wavelength parameter.
The result to be employed below is then

[H„exp(ieX x)]= -H ' exp(ieA x) (33)

With Eq. (33), the matrix element which defines
&fi as given in Eq. (26) is

where e is the polarization vector of the A field.
Equation (30) is really useful in the nonperturba-

tive problem only if the last term can be neglected.
In the general case, H' contains (2m) ' eiA' as well
as nz -'eA ~ p. From the same type of order-of-
magnitude analysis employed earlier, the last term
in Eq. (30) will be small as compared to (2m) 'e'&'
if
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B. Angular Momentum Reduction ieA ~ x ieAz
e =e

For any central potential problem, the matrix
element on the right-hand side of Eq. (34) can be
reduced to a form involving only radial wave func-
tions. For convenience, take A to be plane polar-
ized in the z direction, which leads to the partial-
wave expansion

Q (2l+1) i j (eAr)P (cos8).l.
l=0

Then, since the solutions for a central potential
can always be written as the product of a radial
wave function and a spherical harmonic,

((t),e (t).) = Q (2l+ 1)i f r drR* (r)R.(r)j (eAr) f did r
l=o 0

(8, y)Y (8, y)P (cos8) .
Z

(35)

The solid-angle integral of the product of three spherical harmonics is well-k own and can be expressed as'

I" ee. ee ((21 1)(21 r 1)(21 1) } 1 1. 1 ) (l 11/

'1'=( )
f

l l. l 47I'(0p0)(p
The properties of the Wigner 3-j coefficients give the selection rules

-m )

l+ l. + l = even integer, ll -l
l

&l&l +l ~

i
(37)

Equations (35) and (36) yield the general result
00 m l l l l l. l

(2,e 2.)= 2 (21 ~ 1)l [(2( ~ l)(21 ~ 1)] ( —) 2 t - ) f r CrR" (r)R (r)2 (eRr).
2 l=0

0 0 0 0 m. -m.
Z

2 l

(38)

For transitions between any given pair of states,
(t)2 and (t)f, Eq. (38) gives an explicit expression for
the matrix element, provided only that the radial
wave functions are known for the problem in the
absence of the external electromagnetic field. The
electromagnetic field parameters enter the prob-
lem only in the argument of the spherical Bessel
function.

We can si.mplify the result still further if we con-
sider the class of problems in which the initial
state is an s state lz =0. Not only does this restric-
tion require mi=p, but the conditions of Eq. (37)
stipulate that the l summation reduces to the single
term l = lf, i.e. , the angula. r momentum supplied

by the electromagnetic field must provide the en-
tire angular momentum of the final state. The lj
= 0 case of Eq. (38) is then

C. Hydrogen Atom Example

= f r drR (r)R (r)j (eAr)
0 2s is (40)

The integral is readily done in closed form wit;;
hydrogen atom radial wave functions, to yield the
result

To illustrate the procedures involved in practical
application of the momentum-translation method,
we shall consider the example of 1s to 2s transi-
tion in hydrogenlike atoms. The relevant matrix
element is, from Eq. (39),

l

(y, e" '"y.), =2 (2l +1)
Z

x e 'A'[1+ (-', (2 )' A'e] -'

x f r'drR (r)R (r)j (eAr).
0 2

where a, is the Bohr radius of a hydrogenlike atom
of nuclear charge Ze. With Ey~ —E2+= —Sm 'a0 '
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xe A [1+(—',a ) e A ]
2 2, 2 2 2 —3 . (41)

We now substitute the dipole-approximation
plane-wave form for eA.

and Eq. (34), the matrix element required for the
evaluation of the T matrix defined in Eq. (27) is

where the lower limit on the k sum follows from
the upper limit j ~ 2k+2 in Eq. (44), combinedwith
j=n+k+1. If the index of summation is shifted so
the sum starts with zero index, and if appropriate
factors are placed outside the summand to make
the initial term have unit value, then

(
O'P' (-2n) -2inu)t,

[ ( )]( )n+1
(1+ b&P2)s

8 A = ea eos(dt = —,
' ea p

where P= eight+ e-i~t and a is the amplitude of the
vector potential. To accomplish the identification
of the coefficient of etn(2)t required by Eq. (27), we
first expand b'P'[1+ O'P'] ' in powers of P, where

1b= ~ eaa, (42)

and P is the only time-dependent parameter appear-
ing on the right-hand side of Eq. (41). The bino-
mial theorem for negative integer powers

(46)

The required result has now been achieved for
the transition from the 1s to 2s state in a hydro-
genlike atom by a plane-wave field of frequency
such that E2s —E1s ——2nco. The transition proba-
bility per unit time is given by a special case of
Eq. (29),

(1 )-n g (n+k-()( )k
k=0

gives the result

(-) (b'P') ' . (43)

where T2 1 =,— (—,)'n(n+1)(-) (2 eaa )
(-2n) 1 2, n 1 2n

(n+1+k)(n+k)(2n+2k)( )k(, )2k

(46)

The next step is to employ the usual binomial the-
orem to expand P2&+2= (ei(dt+e t~t)2&+2, i.e. ,

2k+ 2 2k + 2 2i(2) t (k-j+ 1)
2k+ 2

e
j=0

(44)

c
O'P' (-2n) -2in(dt ~ k+ 2

(1+bRPR)s Zf
k =n-1

2)'t+2
(

)kb2)'t+2
n+A+1

In principle we must now single out the eont term
from this series. For this 1s —2s transition, how-
ever, only even powers of ei~~ can occur, corre-
sponding to the requirements of angular momentum
conservation in a transition between s states.
Furthermore, we are calculating an absorption
process where Ef )Ei ~ We shall thus extract the
coefficient of the negative even power terme-2in~
from Eq. (43). From Eq. (44), this imposes the
constraint 4 —j+1= —n. The required e-2'~
coefficient in Eq. (43) is

which follows from Eqs. (41), (42), and (46).
Equation (46) demonstrates several important

points. The intensity of the electromagnetic field
enters in the form (-,'eaa, )'. The —,

' in this param-
eter is specific to the 1s —2s transition just calcu-
lated, but the occurrence of the field intensity (ea)'
multiplied by the square of the size of the bound
system is an essential characteristic. As re-
marked earlier, this intensity parameter is on the
order of (137)' times larger than the e'a'/2m' pa-
x ameter that occurs in free-electron problems.
Another point to be made concerns the radius of
convergence of the sum in Eq. (46) ~ This radius
of convergence is (e.g. , from the ratio test) eaa,

This domain is amply large enough to encom-
pass intensity effects which can dramatically
change the qualitative aspects of semiclassical ra-
diation theory which are familiar to us from per-
turbation theory. Another aspect of the sum in Eq.
(46) is that the numerical coefficient which multi-
plies the successive powers of (3 eaa, )' has a gen-
erally rather flat behavior with 0, and exhibits an
increase in the early part of the series. This
causes an early onset of intensity effects.

To illustrate the influence of such intensity ef-
fects on hypothetical experimental observations,
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consider the power-law dependence of
I T2s 1s(-2n) I

2 (or the transition probability) on
the field intensity. For convenience, set x
= ( —,'eaa, )' From perturbation theory, we would get
the simple result

d(in~ r ')
d(ln x)

for a transition of order 2n F. rom Eq. (46), we
get

d(ln x)

4(n+1)(n+ 2)

(47)

where we have displayed the effect of only the first
two terms in the series of Eq. (46). Thus, the sum
over all higher-order corrections (which is what
the series represents) has the effect (for achiev-
able intensities) of reducing the power-law depen-
dence of transition probability on intensity to some-
thing less than the lowest order of the transition.
Apparently this type of effect has already been ob-
served' in ionization processes.

We wish to emphasize the significance of the ap-
pearance of the series in Eq. (46). This power
series in the intensity parameter is associated spe-
cifically with the e-»n~t factor, and the factor
e-2'4~ raised to any other power also has an infi-
nite power series in the intensity associated with
it. In perturbationlike language, we can say that
each energy-conserving transition comes about not
only through a direct transition between initial and
final states through the absorption of 2n photons;
but that the contribution of all other processes of
higher order which go to the final state by way of
real or virtual states above or below the final
state, are all summed in Eq. (46). The validity of
this statement will be shown in a rather transpar-
ent way later in this paper, when general compari-
sons with perturbation theory are made.

Some of the limitations of Eq. (46) should also be
noted. It is specific to the 1s —28 transition in hy-
drogen caused by an electromagnetic field whose
photons are of such frequency that 2n of them pro-
vide precisely the difference E28 -E18. Since it is
not likely that an extremely intense source satis-
fying that condition will be available, a more real-
istic case to treat is that in which the intense-field
photons do not exactly match the energy level dif-
ference, and an additional photon of different fre-
quency must be considered in order to satisfy en-
ergy conservation. This problem will be treated
in Sec. VI.

VI. COMBINED INTENSE- AND WEAK-FIELD EFFECTS

A. Extended Formalism

B. Generalized Raman Process in Hydrogen

We shall again treat the 1s -2s transition in hy-
drogen, but we shall not require that the intense
field be of such frequency that E2s —E1s = 2n~.
Rather, the conservation condition will emerge as
E2s —Els = (2n+1)~ —~' for absorption from the 1s
level, or E2s —Els = (2n —1)~ + a&

' for emission
from the 2s level, where co' is simply the frequen-
cy of a Raman photon required to satisfy energy
conservation. The field X' of frequency ~' can
certainly be treated as weak.

From the Appendix, the matrix element to be
evaluated is

(P, exp[ie(A+A') x ly. )

= f r drR (r)R.(r) Q (-) (2l+1)
l=0

xP (e &')j (eArj)(eA'r) . (46)

In accordance with the weak-field assumption for
A', we retain only the j, and j, functions of eA. 'r,
with j,(eA 'r) = 1 and j,(e A 'r) = -,' e A 'r . Hence,
Eq. (48) reduces to the two terms

(y, exp[ie(%+A') x]y.)

= f r'drR (r)R (r)j (eAr).f i 0

—eA'e f' f r'drR (r)R.(r)j (eAr), (49)
Q f E 1

where the first term is precisely that which arose
[Eq. (40)j in the problem with the intense field
alone present. By hypothesis, this first term can-
not satisfy energy conservation requirements~ and
it will therefore not contribute.

The integration indicated in the second term in

The problem to be considered now contains two
plane-wave electromagnetic fields, with vector po-
tentials denoted by A and A'. Although X' is eventu-
ally to be regarded as a weak field, with higher or-
ders neglected, it is actually most convenient at
the outset to treat it in exactly the same way as the
intense field A. The results of Eqs. (33) and (34)
can then be applied directly, with the simple sub-
stitution A -A +X'. Angular momentum reduction
can be carried out in substantially the same way as
for a single field. This is done in the Appendix.
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Eq. (49) is elementary for hydrogenic radial wave functions. It has the result

f r'drR (r)R (r).j (ehr)=16&2(2)~a bp[ —,'(1+b'p') ' —(1+b'p') ']f i 1 ' 0 (50)

where b and P are as defined earlier [see the paragraph containing Eq. (42)], and the same result obtains
for transitions in either direction between the ls and 2s states. As in Eq. (43), we get

2 bP 2 ~ k+2
( )k(b )2k+1

3(l+bP) 3 k@=0

and by a similar procedure,

bP g k+3
( )k(bP)2k+1

(1+ b'P') 4
0 k

The complete expansion in powers of P is thus

2 1 1 ~ (k+1)(k+2)! k 2k+1
3 (lpb P2)' (I+b2P')4 Z 6k!k=0

(51)

which contains only odd powers of P, as expected. The required odd-power analog of Eq. (44) is

2k+1 2k+1 isn't(2k 2j +1)-2k+ 1
e

j=0 (52)

We now make a distinction between 1s-2s and 2s-1s transitions. For absorption of 2v+1 photons
from the X field by an atom initially in the Is state (with concurrent emission of a single photon into the A'
field), we must identify the coefficient of 8 ( "+1)~t, i. e. , we must set 2k —2j+1= —(2n+1) in Eq. (52).
This leads to j=k+n+1, so that Eq. (51) becomes

2 1 1 (- 2n —1) -(2n+1)i&et,
3 (1+O'P')' (I+b'P')

——e ,'(n+1) (—n+2)

2n+1 2n+1 ~ n+1+2 2 n+ 2+2 2n+22+1)
~

12 22
n+1 8+ 2

(53)

where again the series has been arranged to have unit value for the k =0 term. When combined with Eqs.
(49), (50), and (34), Eq. (53) leads to the T-matrix element

(-2n-1, +1) 2t 2 (2)3 in(, ) ( 1)2( 2)( )n+1(2, )(1 )2n+1
2s, is mao'

00
n+1+k v+ 2+ k 2n+ 2k+1 k & 2k2

X & eaa,@+1 n+2 k
(54)

where the parenthetical superscript on the T matrix indicates absorption of 2n+1 co photons and emission
of a single ur ' photon, and e~& arises from the relative phase between the A and A' fields.

All of the remarks made about Eq. (46) apply to Eq. (54) as well, including the statement that the radius
of convergence of the power series in b is given by eaa, & —,. The power-law dependence of the transition
probability on the electromagnetic field intensity deviates more markedly from perturbation theory results
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in Eq. (54) than was the case in Eq. (46). The power-law dependence which follows from Eq. (54) is, for
the first two terms of the expansion,

(-2n-1, +1) 2
d(ln~ T2

d(ln x)
2(n+ 2)(n+ 3)(2n+ 3)= (2n+�-

(1n+�)

' (ss)

where g = 5' as before. To be explicit, suppose
that the A field arises from a Q-switched Nd-glass
laser, with an output of 10' W, which is focused
down to a beam of 10-4 cm2 in cross section. ' Then,
for hydrogen (Z= 1), the intensity parameter x (or
b2) is x =1.5 x 10-2. The 2s —1s energy difference
in hydrogen is 10.2 eV, and a Nd-glass laser pho-
ton has about 1.17eV, so 2n+ 1 = 9 and e'= 0.3 eV.
The power-law coefficient is, from Eq. (55), 9
—(36.96)(0.015)= 8.4.

Apart from the basic fact of deviation from 2n+ 1
behavior, two important points must be made. One
is that an increase of about an order of magnitude
in laser power would make the second term in Eq.
(55) comparable to the first term, and moderate
further increases in power would bring terms of
higher- order in b2 to prominence. Under such cir-
cumstances, our intuition about transitions involv-
ing photons would tend to fail, since such intuition
is based upon perturbation-theoretic concepts of
the dominance of lowest-order processes. If the

first term in Eq. (55) is not the most important,
this is evidence that the sum of all higher-order
processes overshadows the lowest-order process.
The second point to be made is that Eq. (55) is spe-
cific to the 1s —2s generalized Raman transition in
a hydrogenlike atom. The explicit form of the
correction term will be different, in general, for
each transition considered. That is, if we write

d(» & I') (,„,1)
d(lnx)

then & depends on n, on b', and on the process.
Thus, it is likely that other processes than the one
considered here might show stronger deviations
from perturbative behavior.

Results for emission from the 2s level will be
quoted here, since they are obtained very easily.
The T matrix for emission of 2n- 1 photons of en-
ergy ~ and one photon of energy co is

(2n-1 +1 ~2 2 3 fu -.-I
Sq S

(k
~ k) (n

~ 1+k)k+2k —
k) ~ ~k~, ~kk (ss)

Equation (56) can be obtained directly from Eq.
(54) if the substitution n+ 1-n is made in Eq. (54),
and the over-all sign is changed. This happens be-
cause of the symmetry of the radial integral be-
tween final and initial states, and the symmetry of
A between e~~~ and e- ~~t. The over-all sign change
is a consequence of the antisymmetry of the Ez —Ef
factor.

theless, there are meaningful and instructive com-
parisons which can be made with a theory designed
for low field intensity, i.e. , perturbation theory.

Consider the low-intensity limit of the basic ma-
trix element of Eq. (24). For iAI -0, the perturb-
ing Hamiltonian H -- m 'eA. p. In the momentum-
translation approximation, 4'f(t) -C f(t) to lowest
order in A, and so

VII. RELATION TO PERTURBATION THEORY (4, H'4'. )-(C, —m 'eA pC'.),i (57)

A. Low-Intensity Limit

The method developed in this paper is designed
explicitly for many-photon problems, and it retains
its validity up to very high field intensity. Never-

which is the usual first-order matrix element of
semiclassical radiation theory. Thus, the mo-
mentum- translation appr oximation yields first- or-
der perturbation theory when the low-intensity lim-
it is taken.



814 HOWARD R. RE ISS

For a second-order result from the momentum-
translation approximation, we have

(4, H 4.) = (4, H 4 .)
2.

+ (4, (- m-'eA p ) (ieA x )4 .), (58)

where in the second inner product an expansion Of

the exponential in Eq. (13) has been used. H as
it appears in the first term of Eq. (58) is the com-
plete H of Eq. (14). The second term of Eq. (58)
can be resolved into a more familiar form by in-
serting a complete set of C states,

(4, (-m-'eA p)(ieA x)4.)

= 5 (4, —m 'eA pC )(C, ieAx e 4.) .
n n'

n

We can then invoke the dipole approximation for eA
(i.e. , view eA a,s a function of time only), and em-
ploy Eq. (31) in an inverse sense, by using it to
introduce p'e in place of x '~. This gives the re-
sult

approach [other than the condition of Eq. (16a),
which is not a stringent condition on intensity and
which can always be satisfied if ~/E is small
enough, regardless of the magnitude of eaa, ], this
approach should contain A to all orders because
of the obvious fact that electrodynamics is nonlin-
ear to arbitrarily high order when no intensity con-
straints are imposed. Thus, the momentum-trans-
lation method contains diagrams, or elementary
processes of all orders involving the electromag-
netic field, albeit in a fashion which is accurate
only when Eqs. (16a) and (16b) are satisfied.

Now consider the correction to the momentum-
translation approximation which follows from Eqs.
(8) and (18). The matrix element of Eq. (24) with
this correction is

(C, H'e. )=(C, H' " "4.)
2 2

n

x f „(4 (t'), HI(t')4, (t'))dt' (60)

(4, (- m 'eA p)(ieA x)4'.)

, —I eA p4 4, —m ~eA p4.
n n'

Z

E —E.
n n (59)

We can see from Eq. (59) that the momentum-trans-
lation approximation does not reproduce second-
order time-dependent perturbation theory. It has,
instead, very much the appearance of a second-or-
der time-independent perturbation, except that A
has a time-oscillatory behavior which will manifest
itself when the matrix element of Eq. (59) is em-
ployed in Eq. (24).

Further development of the exponential function
in the matrix element (Cf, H e~eA'xC'i) leads to ex-
pressions resembling, but not equivalent to, per-
turbation expressions to all orders. This is not
surprising. Because the momentum- translation
approximation is designed around a low-f requency
approximation, it should not be expected to repro-
duce the intensity-parameter expansion which per-
turbation theory is. Because there are no a priori
intensity restrictions in the momentum-translation

I

The first term in Eq. (59) gives the only contribu-
tion as l Al -0, and leads to the same outcome as
Eq. (57). Thus, the corrected momentum-trans-
lation approximation reduces to first-order pertur-
bation theory for weak fields. Since H and HI both
involve A, a result to second order in intensity in
Eq. (60) is achieved by keeping only the leading
terms in H and IIJ, and replacing e~eA x by unity
in (Cg, H'e ieA xC„). That is, we set H' =—m-'
eA p and HI = e(btA) x [see the discussion in the
paragraph following Eq. (12)]. The integral over
t in Eq. (60) can be rearranged using integration
by parts and the presumption (consistent with the
S-matrix formalism) that the A field is turned
off" at t= —~, to yield

f (4, e(& IA) x4.)dt' =(4, eA x4.)

—z(Z -Z.) f (C, eA x4.)dt'.

Equation (31) can be employed in this last term to
give

i(E —E.) f (4, eA xC .)dt' = f (4, —m-'eA po.)dt'.
n i —~ n' i —~ n'

If we insert these results in Eq. (60), we get,

(4', H @.) =(4', H e 4.)- i(4, (- m eA'p)(eA x)o.)i f' 1,
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j Q(4, —m eA'p C )f (C, —m eA'p C )dt.

n

The first term in Eq. (61) can be treated as in Eq. (58) to give the final result

(61)

(C, H'@.)=(C (-m 'eX'p+ —,'m 'e'A')4 ) —i Z (4, —m 'eA'pC )f (4, —m 'eX'pC )dt'.f' i f' i f' n —~ n' i
n

which is identically the result of second-order time-
dependent perturbation theory.

Successively higher-order approximations to Eq.
(17) will give successively higher-order correspon-
dences with perturbation theory. We have already
seen that the zeroth-order approximation to Eq.
(17) reduces to first-order perturbation theory for
small field intensity, and the first-order approxi-
mation to Eq. (17) reduces to second-order per-
turbation theory. This pattern continues to higher
orders. It is important to keep in mind that when
no low-intensity limit is taken, all orders of approx-
imation to Eq. (17) lead to accurate high-intensity
results.

B. Physical Interpretation of Two-Field Problem

We have seen above in what manner the present
method reduces to perturbation theory when one
considers the intensity of the electromagnetic field
to be weak. However, much more physical insight
into the nature of the momentum-translation approx-
imation can be achieved by avoiding the low-inten-
sity limit, and, instead, casting the complete re-
sults in a form which makes possible a very in-
structive physical interpretation.

Let us consider the case of two plane-wave fields
A and A, where we shall consider A to be arbitrar-
ily intense and A to be weak. The interaction
Hamiltonian is

H = —m 'e(A'p+A 'p)+(2m) 'e'(A+A )2 . (62)

In Eq. (62), the term (2m) 'e2A' can be neglected,
but not m-'e'A'A, which can be of comparable im-
portance to rn-'eA p. The A'A term is trouble-
some, since it intimately couples the two fields.
However, H does not appear in the theory by itself,
but in the combination H exp[ie(A'x +A 'x)]. The~P Pawkward A'A term in H can be removed by com-

~ P
muting e~eA x to the left of EI . This commutation
operation leads to

H'exp[ie(X+X') x ] = exp(ieA'x )

x[H'(A)+ v'] exp(ieX'x)

where H (A)= —m 'eA'p+(2m) 'e'A'

is the interaction Hamiltonian with the A field alone
present, and

P P
V = —m-'eA 'p

is the usual perturbation Hamiltonian that would
normally be used for the weak field A alone. If we
now employ exp(ieA 'x) =1+ ieA 'x, the basic ma-
trix element of Eq. (24) becomes

(e, H'+. ) =(e,H' Q)e Q))

+(4, ieA 'xH'(A)4'. (A))+(O, V'eQ)) . (63)

where 4(A) denotes the momentum-translation
approximation wave function which pertains to A
alone, i.e. , 4'(A) =e&eX'xC. The second term in
Eq. (63) can be transformed by introducing a com-
plete set of C states between ieA 'x and H (A), and
then using Eq. (31) to get

(c, feX xe )=(z -z )-'(c, v'4 ) .
n n ' n

The third term in Eq. (63) can also have a complete
set of C states introduced between V and 4; (A).
Equation (63) then takes the form

H'exp[ie(X+X')'x] =exp(ieX'x)[- m 'e(A+A')'p

+ (2m) 'ea(A2-A ')] exp(ieA'x)

where the dipole approximation has been invoked to
neglect a term ex& (aA&). Now we can drop the A '
term, so we achieve the convenient form

The first term in Eq. (64) describes the transi-
tions caused by the A field alone, e.g. , as calculat-
ed in Sec. V. As emphasized in the foregoing dis-
cussion, this term describes A interactions to all
orders.

The second term in Eq. (64) strongly resembles
second-order perturbation theory. It can be in-
terpreted as representing a two-step process. The
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initial state @i (A) in the presence of the intense
A field gives rise to virtual transitions to Cn in-
termediate states. [Note the similarity of the ma-
trix element (4„,H (A)4'i (A)) to the first term of
Eq. (64). ] The A field, through its intera, ction
Hamiltonian V ', then makes possible the second
step in the tra.nsition to Cf. The energy denom-
inator, Ez —Ef, involves the difference in energy
between the two states connected by the weak field
A, retained here only to first order.

The third term in Eq. (64) has a very direct in-
terpretation. Suppose we first focus attention on
the A field only, and write the state of the atom in
the presence of A [which we denote 4 (A )] as a.

superposition of 4 states,

@(A')=Re (t)C
n n

The expansion coefficient follows from direct appli-
cation of the Schrodinger equation as

photon transitions. For such problems, the meth-
od has an ease of application (and a formal ap-
pearance) similar to that of first-order perturba-
tion theory. If the method is to be applied in
cases where the transition can be effected with a
small number (other than one) of photons, then
corrections must be introduced which increase
the complexity of the calculations. Thus it is
anticipated that the method will find its principal
application to problems where a large number of
photons from an intense electromagnetic field act
alone, or in concert with a weak field which can
be treated perturbatively.

An important conclusion which emerges from
this paper is that the intensity parameter appro-
priate to bound systems is proportional to (eaao)',
where a is the amplitude of the vector potential of
the electromagnetic field, and a, is the size of the
bound system. This parameter can be given an
obvious meaning. Since p, the number of photons
per unit volume, is given by

c (t) = —i fdt 2 e (t)(C, V'@ ) . (65)
p=a'(4X) ',

i . = —i JdtZ (C, 4. (A))(4, V C ) (66)

Comparison of Eqs. (65) and (66) leads to the iden-
tification of c„(t) with (C~, 4i (A)). That is, the
overlap of 4'i (A) onto the states Cz gives an initial
population of C„states, from which the p term
causes transitions to the final state.

In summary, the first term in Eq. (64) gives the
effect of the intense field A alone. The second
term in Eq. (64) is the sum of all processes where
the A field causes a virtual population of states,
from which the A field causes transitions to the
final state. The third term in Eq. (64) gives the
sum of all first-order transitions caused by A
starting from a conditioned medium" (a distribu-
tion of states) generated by A. One could say that
the second and third terms both represent transi-
tions where a distribution of virtual (second term)
or real (third term) states generated by the intense
field treated in momentum-translation approxima-
tion provides an intermediate medium from which

jthe weak A field causes first-order transitions to
the final state.

VIII. DISCUSSION

The method developed in this paper has its prin-
cipal usefulness for problems involving many-

Standard time-dependent perturbation theory can be
developed from Eq. (65) by substituting an assumed
initial distribution for c„(t) on the right-hand side.
We do not use a perturbative approach here, but
remark instead that the coefficients cf(t) corre-
spond to the T matrix of Eq. (24), and the contri-
bution of the third term of Eq. (64) to the ~ matrix
is

where X is the photon wavelength, then

(~eaaO)'=paar X.
0 e

That is, the intensity parameter (-,' eaa, )' is just
the number of photons contained in a rectangular
box whose sides are given by the size of the atom
a„ the Compton wavelength of the electron Xe,
and the wavelength of the radiation X. The inten-
sity parameter for free electrons is

(-,'ea/m)'=p~ X X,0 e

which is the number of photons in a box with sides
given by X, X, and the classical electron radius

Thus, the fact that the electron is bound to
an atom increases its effective "radius" from
xo to ao, a gain of a factor of (137)' if aO is the
Bohr radius of hydrogen.

Largely as a consequence of the size of the in-
tensity parameter, it was shown that intensity ef-
fects can be significant with available laser pow-
ers. Furthermore, these intensity effects have
the nature that when they do make themselves
manifest, modest further increases in intensity
can make major qualitative changes in the be-
havior of the system. The nature of these quali-
tative changes, which are such as to contradict
obvious features of a perturbation treatment, lead
one to suspect that perturbation theory may fail to
converge for the intensities being discussed.

Much additional work remains to be done on the
methods introduced here, both in terms of specif-
ic applications and further formal developments.
The most obvious application, perhaps, is to the
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calculation of intense-field multiphoton ionization
processes, for which experimental results are
already available. Other applications would be in
atoms more complicated than hydrogen, in mol-
ecules, in nuclei, and in solids. There should be
more investigation of the relativistic problem,
specifically, to see if high intensity magnifies
relativistic effects. There should also be more
work on line broadening and shifting. In this con-
text, it should be noted that the energy expectation
value calculated in Sec. III is actually a line-
broadening. calculation, since the oscillation of the
Stark-like result is generally too rapid to be time
resolved, and would appear as a broadening of the
line.

Formal developments which are required are
numerous, and include such things as investigation
of electromagnetic fields of other than plane-wave
type; development of convenient methods for treat-
ing spectral distributions of plane waves (i.e. ,
extending the monochromatic results developed
here); exploration of nonperturbative means of
getting corrections to the momentum-translation

!
approximation; further investigation of path-in-

tegral methods' in intense-field problems; and so
on.

In brief summary, the method developed is, in
principle, applicable to any problem where many
photons participate in the process, where the di-
pole approximation is valid, and where there is
reasonable knowledge of the wave function for the
system when no electromagnetic field is present.
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APPENDIX: ANGULAR MOMENTUM REDUCTION FOR
COMBINED FIELDS

The matrix element to be considered is ((t)f,
exp[ie(A+A') ~ x] pf). There is no advantage in
choosing any particular orientation of axes. The
exponential factors can be represented by the
general partial-wave expansions

00

exp(ieA ~ x) = 4m Z Z i j (eAr)Y (8, y )Y (8, P),
1=0~=-l

00

exp(ieA' ~ x) =4m Z Z' ij (eA'r) Y-- (8 2 2 p )Y- (8, p)
l =0 m=-l

where g p are the angular coordinates of the vector x, and e~ yg and 8A', ygi are, respectively, the

angular coordinates of the X and X' vectors. Since we can set

(t). =R.(r) Y& (8, y),
z.

y =R(r)Y (8, q ),

we have the preliminary partial-wave representation of the matrix element

(Q, exp[ie(A+A) x](t).) = J r CrR (r)R.(r)(4))) Z & j (eArj)-(eA'r)Y (H, y )
2 e 2 .~+~, an~

0 l, m, l, m

mf2)2 m.
x Y— (8,, y 2)J dflYf (8 y) Yf (8 y) Y (8 y) Y- (8 y).

Z

(Al)

With the phase convention

we can reduce the number of spherical harmonic factors by using the expressions

m . m Y
(

(2 ( . 1 ) (2 1 1 ) (2 L 1 ) 1 ) . 1 L 1 1 1 L 1 M Il/2 i
'=(-) f

l. 4m 0 0 0
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(2l+ 1)(2l + 1)(2X+ 1) l l X l l X p, *li2(
mm p. 0 00 (A2)

The solid-angle integral over 8, p coordinates then contains only two spherical harmonics, for which we
get

(A3)

from the phase convention and orthogonality. The complete integral over solid angle in Eq. (Al) is,
from Eqs. (A2) and (A3),

fl Y Y Y Y- '= Z (-) (2L+1)[(21+1)(21+1)(21.+1)(2l +1)]
Z

L l l L l. l L jt l L

OO O 0OO
(A4)

The most general result follows from Eq. (A4) employed in Eq. (Al).
The above result is rather complicated, since it involves summations over the indices l, m, l, m, L,

and M. We get a much simpler special case if we consider initial s states, i.e. , l. =o. Then the result is

(P, exp[le(X+A') x]P.)=f r'drR ~(r)R (r)4n(. 21 +1)'i'
Z 0 t

E, m, 2, , m
[(2l+1)(2l+1)] i j (eArj)(eA'r) Y -(8, p ) Y- (8 „y,)l l l A' A l A" A'( — )(0 0 0i

lf we set lf =0 as well as l =0, we get

(p, exp[ie(A+A') 'x](f&.) = f r'drR *(r)R.(r) Z (-) (21+1)P (s s')j (eArj)(eA'r) .f' i 0 f i l l l
(48)
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