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Differential scattering cross sections for excitation of helium by electron impact from its
ground state to its 2 P excited state have been measured at four incident electron energies in
the range 26-55.5 eV for scattering angles between 10' and 70', and at 81.6 eV for scattering
angles between 10' and 80'. These differential cross sections have been. placed on an ab-
solute scale by normalizing them to the experimental absolute integral cross sections of
Jobe and St. John. These experimental differential and integral cross sections have been
compared with the results predicted by the Born approximation, and by several other first-
order approximations in which direct excitation is calculated in the Born approximation and

exchange scattering by various Oehkurlike approximations. The calculations provide reli-
able tests of these scattering theories since they are made using the accurate generalized
oscillator strengths of Kim and Inokuti. As expected, these first-order theories are poor
near threshold and exchange is important at high scattering angles for all energies. Further,
the absolute magnitude of the calculated integral and small-angle differential cross sections
is too large and is within 50% of experiment only at energies greater than 80 eV. These first-
order models are in qualitative agreement with the experimental angular dependence at 34-81.6
eV for scattering angles between 10 and 40'. At higher scattering angles (corresponding
to momentum transfers greater than about 7.6 a.u. ), the calculated differential cross sections
fall well below the experimental ones. The phase between the direct and exchange scattering
amplitudes was found to be important at all energies, and is apparently not predicted correctly
by any of the first-order models examined here. Some approximations for the exchange (e.g. ,
Ochkur approximation and the post interaction form of the Ochkur-Rudge approximation) were
found to be better for integral cross sections and some (e.g. , prior Ochkur-Rudge approxi-
mation) were better for differential cross sections. The use of good analytic self-consistent-
field (SCF) wave functions for both the ground and excited states was tested by computing
generalized oscillator strengths from them and comparing these results with the calculations
using the accurate generalized oscillator strengths. The SCF functions yield differential
cross sections in quantitative disagreement (20%) with the accurate results, although the en-
ergy and angle dependence of the cross sections is predicted qualitatively correctly.

I. INTRODUCTION

This paper presents a theoretical and experimen-
tal study of the differential cross section for exci-
tation of helium from the 1s'1'S ground state to the
ls2P 2'P excited state by electron impact. We are
concerned only with energies in the nonresonance
regions. Another article' uses the same methods
to study excitation to the 2'S state.

The excitation energy &E of the 2'P state of He

is 21.22 eV. Because of the close proximity of the
2'P state (&E = 20. 96 eV), a high resolution appa-
ratus is required to determine the differential
cross section for excitation of the 2'P state at elec-
tron-impact energies E below about 100 eV. (At
higher energies, the excitation of the 2'P becomes
less likelya for at least some angles, and then the
closest peak is the 2'S at 20. 61 eV. ) Six previous
high-resolution measurements of the 2'P differen-
tial cross section '-' are summarized in Table I.
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TABLE I. Measurements of the differential cross
section for the 1 S-2 I' transition is helium.

Reference

3
4
5a

6

7
8

10
This paper

E(eV)

417-604
500
56.5

400
100-400
21-23

26.5-81.6

0 (deg)

3.8 —12
6.3 —15.3

5 —70

1.5 —4.0
5 —20

10 —145
10 —70
10 —80

a 3The 2 P excitation eras present but not clearly re-
solved in these measurements.

Present experiments.

(Some of the older data is discussed in Ref. I. ) The
table shows that prior to the present work little was
known about the energy and angle dependence of the
differential cross section, except for high energies
and/or scattered angles (8 ) less than 20'. In fact,
the differential cross section was known over an
angular range &6& 15' at only one energy much
above threshold. The determination of large angle
differential cross sections requires a very sensi-
tive detection system so that low enough pressures
to avoid double scattering difficulties' can be used.
In this research we used our high-resolution vari-
able-angle electron-impact spectrometer" to ob-
tain the differential cross section for 10 & 8 & 80' at
five energies. The 2'P excitation is completely
resolved from the 2'P in all the spectra reported
here. The energy and angle range of the present
experimental investigation are included in Table I
for comparison. By using the experimental 2'P in-
tegral cross sections of Jobe and St. John, ' we are
able to put our experimental differential cross sec-
tions on an "absolute" basis.

As has been demonstrated previously, " "elec-
tron-impact spectra for intermediate incident ener-
gy and large angular range are very useful for the
discovery and elucidation of molecular excited
states, particularly those whose excitation by pho-
ton impact is forbidden. Also, as will be shown be-
low, such experimental data provides a stern test
for any approximate theory. For these reasons we
make an extensive theoretical analysis of our re-
sults in an attempt to ascertain upon what foundation
our interpretation of such spectra can rest. We an-
alyze the low-energy variable-angle data to see in
what way it can and cannot be related to a first-or-
der mechanism which includes both direct excita-
tion by means of the Born approximation"~ ' and
also exchange excitation througli various Qchkur-
Bonham-like relations, " "some of which have not
previously been tested. By using recent and very
accurate generalized oscillator strengths, calculat-

ed from correlated wave functions by others, "-"
we can confidently test the various approximations.
Also, by calculating the corresponding generalized
oscillator strengths using self-consistent-field
(SCF) wave functions, we can test how the predic-
tions are modified using accurate wave functions of
the type usually available for molecules. (After
the present work was well under way, Kim and
Inokuti" suggested another reason why a calcula-
tion, such as ours, using accurate Hartree-Pock
wave functions would be of interest. We discuss
this in Sec. III D. ) Another important motivation
for performing these calculations is that the Born
approximation with Ochkurlike corrections for
exchange is calculated by evaluating the expecta-
tion for a one-electron transition operator —a cal-
culation which is practical even for large scatter-
ing systems. The theoretical considerations are
extended to cover not only our new data but also
some of the other data referred to in Table I.

Recently, much interest has been focused on de-
termining the applicability of the Born approxima-
tion and various generalized Born approxima-
ions. " " Several investigations of electron ex-
citation of helium to the 2'P and O'P states are
particularly pertinent here. Silverman and
Lassettre~ used a semiempirical technique to
show that the Born approximation does not give an
integral cross-section curve which agrees with the
experiments of St. John, et al."for the excitation
of the O'P state below about 100 eV. Vriens,
et al. ' showed by similar technique that there
were small departures from the Born-approxima-
tion prediction for the small-angle differential
cross section for 2'P excitation at energies below
200 eV, but that the theory was qualitatively cor-
rect down to 100 eV, the lowest energy they con-
sidered. Kennedy and Kingston'7 used accurately
calculated generalized oscillator strengths to test
the 2'P integral cross section and found good agree-
ment of the Born approximation with the experi-
ments of Moustafa Moussa and de Heer" at ener-
gies down to 50 eV. The accurate Born calcula-
tions of Kim and Inokuti" and the recent experi-
ments of Jobe and St. John' agree with the cross
sections used for the comparison mentioned in the
last sentence; however, Kim and Inokuti found that
the small-angle differential cross section is repre-
sented quantitatively by the Born approximation
only at and above 200 eV. Bell, et al. "calculat-
ed generalized oscillator strengths for the 3'P
state and found agreement with experimental inte-
gral cross sections" down to about 100 eV, con-
firming the result of Silverman and Lassettre. ~
For this state, they also studied the effect on the
integral cross section of including exchange by the
prior Ochkur and prior Ochkur-Rudge (OR) approx-
imation. These corrections extended the range of
agreement of theoretical and experimental integral
cross sections only slightly. In the present re-
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search, we are interested both in the accuracy of
predicted integral cross sections over the whole
energy range and also of the predicted behavior of
the differential cross sections over a wide angular
range at low and intermediate energies.

II. EXPERIMENTS

A. Apparatus

The low-energy variable-angle electron-impact
spectrometer used in these experiments is shown
schematically in Fig. 1. It consists of an electron
gun, two hemispherical electrostatic energy ana-
lyzers (for generating a monochromatic electron
beam and energy analyzing, i.e. , selecting, the
scattered electrons), a flexible welded-bellows
scattering chamber, and an electron-multiplier
detector. Details of the spectrometer's construc-
tion and operation can be found elsewhere. "

B, Experimental Procedure

High-purity dry helium was admitted to the scat-
tering chamber at a rate which provided a constant
pressure (within 5%) of 1 —3x10 ' Torr, as mea, —

sured by an uncalibrated ion gage. The instrument
was tuned to a resolution of about 0.10 eV (full
width at half-maximum of the elastic peak) for a
fixed incident energy and an incident beam current
of about 5x10 —' A. This resolution is sufficient
to clearly separate transitions to the 2'P level from
those to the 2'P' one, which lies closest in energy
loss. It is evident from earlier work' that a fail-
ure to resolve these two features can lead to erro-
neous results at large scattering angles and low
incident energies.

The zeros of the energy loss and scattering-angle
scales were defined in terms of the elastically scat-
tered electrons. In addition, the intensity distri-
bution of inelastically scattered electrons (1'S -2'P)

DAC
CRM

SVS

Selector

RVS

Scattering
Chamber

Electron
Gun
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FIG. 1. Schematic diagram of the electron-impact spectrometer. The kinetic energy of the electron beam at the
scattering chamber is determined by the reference voltage supply (RVS). Appropriate voltages are applied to the mono-
chromator, selector, and their associated electron optical elements (ROE) by the monochromator and selector voltage
supplies (MVS and SVS, respectively). Scattered electrons which reach the electron Inultiplier produce pulses which are
preamplified by a nuvistor preamplifier (NPA), amplified by a double-delay-line amplifier (DDLA), and then discriminat~

by a single-channel pulse-height analyzer (SCPHA) to eliminate low-level electrical noise. The output of the SCpHA can
be routed to a 1024-channel scalar (MCS) or a count-rate meter (CRM). In the former case, the voltage used to sweep
the energy loss spectrum is supplied by a digital-to-analog converter (DAC) that converts the number of the channel into
which counts are being stored to an analog signal specifying the energy loss. In the latter case, the voltage sweep is
supplied by a sweep generator (SG). The output of the MCS (e.g. , counts/channel) can be recorded digitally on punched

paper tape, displayed visually on an oscilloscope (not shown in figure), or plotted continuously on an ~-F recorder. The

signal from the CRM can be plotted on the X-F recorder. The scattering angle is variable.
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was measured in several cases to —20' and found to
be symmetric about 6=0', as defined above. The
incident energy was calibrated in each experiment
by observation of the 57.1- and 58.2-eV helium res-
onances' and taking the correction so determined to
be independent of incident energy. This calibration
was done for all experiments except those at 81.6
eV, for which no calibration was made. This cal-
ibration required a change of 1 eV or less from the
nominal incident energy, as set by the instrument
power supplies. Thus, we believe the quoted im-
pact energies to be accurate within about 1 eV.

The basic experimental measurements consist
of the determination of the intensity of electrons
scattered after losing an energy corresponding to
excitation of the 2'P state. This determination was
made by scanning the 2'P energy-loss feature and

measuring its peak intensity with a count-rate me-
ter as a function of scattering angle for fixed inci-
dent energies of 26, 34, 44, and 55. 5 eV. Each
peak intensity was normalized to the same incident
beam current. Our use of peak heights rather than
areas is justified by the fact that the peak shapes do

do not change with angle.
Since the intensities at each scattering angle cor-

respond to a different scattering geometry, they
have been normalized to the same geometry (in
order to obtain 2'P differential cross sections in
arbitrary units) by a procedure previously dis-
cussed. " (The preliminary results in Ref. 10 were
normalized by a simplified procedure. ) The nor-
malization assumes at each angle that the differen-
tial cross section is constant over the range of
scattering angles (about + 2-,") that actually con-
tribute. to the intensity at any one nominal scatter-
ing angle [the range would be negligibly small if

the beam and view cones were narrow rays (see
Ref. 11)].

At 81.6 eV, the intensity of inelastically scat-
tered electrons had become so low that long data
collection times were required (from 1-24 h,
typically 10, at a single angle). Thus, it was pos-
sible that the instrumental conditions for data col-
lection at one scattering angle might not have been
identical to those for another angle. To circumvent
this problem, the energy-loss spectrum at each
angle was obtained by first scanning the elastic
peak, then jumping in energy loss to 18.95 eV,
which is below the first inelastic feature at 19.82
eV (2'S ), and then scanning to 21.35 eV. This
process was repeated from about three times at
smaller angles to as many as 162 times at larger
ones using a multichannel sealer" to accumulate
the result of each scan, thereby increasing the
signal-to-noise ratio of the 2'P feature. The ratio
of the 2'P peak height to that of the elastic one was
'determined at each scattering angle from the re-
sult. An example of such an accumulated energy-
loss spectrum is given in Fig. 2. Subsequently,
separate determinations of the elastic differential

xIQ
I4—

l2—

xIQ
2— 2 S

I

2$2P 2P
l i

Ci
IO-O

C3
LLI
(A 8—
LLI
CL

I—

(3
0

n~ .L liM

0 ~

2—

I I, ~ I

0 .1' I9

.4wae v~~eaeaw~~o

I I I

20
ENERGY LOSS (eV)

l

21

FIG. 2. Energy-loss spectrum of helium at E = 81.6
eV and 6=22'. The elastic peak, which defines the zero
of energy loss, has been reduced by a factor of 10 before
plotting. This spectrum was obtained by accumulating

the results of five consecutive scans in the 1024 channels

of the multichannel scalar. Dwell time per channel = 1
sec; time per scan= 17 min; scan rate=0. 0026 V/sec;
helium pressure= 1.5 && 10 Torr; incident beam current
= 6.4 && 10 A. We obtained the ordinate in counts per
seconds by dividing the measured counts per channel by
five. The insert displays the same data with an expanded

ordinate scale.

q(Z)=2~ f f(Z, 6) sin&de.

If the experimental differential cross section were

cross section were made during the periods that
were short (about 2 h) compared to that associated
with instrumental instabilities. In addition, during
this determination we verified that the instrumen-
tal conditions did not change. Finally, multiplica-
tion of the 2'P elastic ratios by this elastic differ-
ential cross section yielded the 2'P differential
cross section (in arbitrary units).

The error bars assigned to the experimental dif-
ferential cross sections were determined from the
reproducibility of the peak-intensity data (average
deviation of three to five values at each angle) or
the ratio data in the 81.6-eV case and from the un-
certainty in the scattering geometry normalization.
The errors average 15% for E = 26-55. 5 eV and
37% at 81.6 eV. The possibility that these measure-
ments were affected by double scattering' has been
eliminated by verifying that the scattered signal
was linear with pressure up to 5x10-' Torr at sev-
eral angles for each impact energy.

The absolute scale for the differential cross sec-
tions was determined in the following manner. The
DCS I(6) is related to the integral cross section
@by
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(2)I(E, 8) =A q

where AE and NE were determined from I (E, 60')
and I (E, 70'), and q(e) is the magnitude of the mo-
mentum transfer. The breakdown of the integral
(1) into regions 0-"70' and 70'-180' for the differ-
ential cross section normalized this way is given
in Table II. Also included is an estimate of the
percent error which is based on consideration of
both regions of the integral. This is probably an
upper limit, since the error for the second range
is taken as that which would occur if the correct
I (E, 8 ) were a constant for 70' & 6 & 180' (or 80'

known from 0' to 180' at each energy, we could in-
tegrate it and use the experimental Q(E) of St. John
and Jobe' to put it on an absolute scale. We car-
ried out this procedure, but since our differential
cross section is not known over the full 180', we
had to estimate its value at 8&10' and 8 & 70'
(or 6 & 80' at 81.6 eV). This estimation is partic-
ularly simple for the 2'P state because of the
smooth monotonic nature of the differential cross
section in the 30'-70' range. The uncertainty of
the differential cross section below 10' does not
introduce much error in the integral (1) because of
the sin8 weighting factor. Because the small phase
shifts in the higher partial waves determine the
shape of the low-angle scattering, this shape can
be well predicted by using the first-order calcula-
tions described below. These calculations predict
that the differential cross section flattens out in the re-
gion of small scattering angles. To extrapolate
the experimental data, we assumed the differential
cross section is linearly increasing for 8«10' with
a slope determined by the lowest angle points. A
change in this slope by a factor of 2 from that
which we used only changes the value of the 0 -70'
integral by 2-4%%uo. Using an exponential extrapola-
tion instead of a linear one for this purpose
changes the results less than 1%. Except at 81.6
eV, the uncertainty in the integral (1) over the
range 0-80' is probably about 15/~, since this is
the approximate relative error in each experimen-
tal point 1(E, 8). At 81.6 eV this error is about
35%. The data were extrapolated to 180' by as-
suming

& 6 & 180' in the 81.6-eV case).

C. Results

The 2'I' differential cross section [l(E, g )] was
determined for 10' «8 «70 at energies of 26, 34,
44, and 55. 5 eV, and for 10' «8 «80 at 81.6 eV.
For reasons discussed elsewhere, ' the lowest en-
ergy point will be considered to be at 26. 5 eV.
These five differential cross sections are given in
Figs. 3-7 (note that for purposes of display the ex-
perimental results are multiplied by the scale fac-
tors given in the captions). The theoretical curves
in these figures will be discussed in Sec. V. An
interesting aspect of the experimental results is
that the shape of the differential cross section is
the same within experimental error at impact ener-
gies of 44 and 55. 5 eV.

The differential cross section at 55. 5 eV can be
compa, red in shape with that of Simpson, Menendez,
and Mielczarek (SMM)' at 56. 5 eV. The agreement
is excellent for 8«25', but the SMM data is prob-
ably in error due to double scattering' at higher
angles. However, the good agreement at the
smaller angles indicates that our volume correc-
tion is probably accurate to within the errors of
SMM (unknown) and the present work (about 14%).

III. THEORY

A. Notation

We shall use the following notations: r is thevec-
tor to the sth electron from the He nucleus (taken
as c.m. ); Rp, g are the wave-number vectors of the
incident and scattered electrons, respectively.
k =mvz/h; m is the mass of the electron; vf is
the velocity of the scattering electron; E~ is the
energy of the atom in state i; and E& is the total
energy E7 =Eg +(8'/2m)kf'. Cf is the spatial elec-
tronic wave function of the atom in state i; V is
the ionization potential of the atom in state i; 8
=arccos (kp 0&) and j=kp —k„. The momentum
transfer is Rq. f is the direct scattering ampli-
tude, and g is the exchange scattering amplitude.

In the following, we shall use hartree a.u,"

TABLE II. Integration and normalization of the 2 & integral cross sections Q(ao ).

E
(eV)

26.5
34
44

55.5
81.6

Range

0-70'
0-70'
0-70'
0-70
0-80'

Contribution
to Q

0.0468
0.121
0.199
0.241
0.320

Range

70-180'
70-180'
70-180
70-180'
80-180'

Contribution
to Q

0.0032
0.013
0.029
0.041
0.002

0.050
0.134
0.228
0.282
0.322

EPE

38
22
22
21
37

aEstimated percent error.
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" g+(r, r )+ (rl, r )

lo )

= —(2/q') 8

V)

N 0
O

and

(7)

lO 2 Equation (7) is written in the length formulation of
the integral. 3' There is no post-prior discrep-
ancy in the Born approximation.

In the Born-Oppenheimer (BO) scattering approx-
imation, 38 f=fB and g=gBO, where ' ~"

ioo--

io'-
0 IO 20 30

I

40
8 (deg)

50 60 70

FIG. 3. Theoretical (lines) and experimental (circles
with error bars) differential cross sections for excitation
of the 2 I' state of helium at E=34 eV. The solid lines
are theoretical differential cross sections calculated
from the Kim-Inokuti (KI) set of Qoz. The labels on the
curves are summarized in footnote b of Table X. The
Born-transferred VPS approximation (not shown) is the
same as the 0 within plotting accuracy. For clarity of
presentation, the symmetrized BOR approximation,
which would lie entirely between the 0 and BORP is not
shown. The BTKF crosses the BOB from above at 18'
and the B from above at 28 '. The experimental cross
section is here arbitrarily normalized to the post BOR
approximation at 10 by multiplying it by 2.37.

lh

CU
O

O

[0 2

B. Methods

The integral (Qfh } and differential (Io„) cross
sections for excitation of an excited singlet state
n of the helium atom from the ground state p are
related by Eq. (I), where

(0 3

0 20 50 40
e(deg}

50 60 70

(e)=(a /r ) ~A

and Ao„f-g. In the Born ——approximation f=f
and g = 0, where" "

FIG. 4. Theoretical (lines) and experimental (circles)
differential cross sections for excitation of the 2 I' state
of helium at E=44 eV. The theoretical DCS's are cal-
culated from the KI set of Qoz. The BOR is not plotted
below 42, where it is within 6% of B. The BTKF dif-
ferential cross section crosses the BOR at 19' and the
B at 21'. The experimental cross sections (Sec. II C)
were multiplied by 2.17 so as to show the difference in
shapes of the experimental and theoretical differential
cross sections.
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«)=(2/q') 8 -& ) I& (q) ' (lo)

IO

lh

CU
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Within the framework of perturbation theory, the
differential cross section can be expressed as

o~(s)=(a /2u &E) I&I'q'4~(q),

where ~E —=E —E and
0

I

& I'=
I

—(2/q') - G I'= «/q')+
I

G I'+ (4/q'»«(»)

G is a quantity defined differently in the different
theories discussed below. The integral cross
section can now be obtained in terms of the gener-
alized oscillator strength from (1) and (11)or
from "

q =—; —
I
B I' y (q) q' dq, (18)

On g '(g g ) On

5 IO I5 20 30 40 50 60 70 80
e(deg)

ioI
I I I I I I I

'
I I I I

FIG. 5. Experimental and theoretical differential cross
sections for excitation of the 2 I' states of helium at
& = 55.5 eV. The circles with error bars are the present
experimental results multiplied by 2.27. The experimental
results of Simpson et a&. (Ref. 5) at E= 56.5 eV agree
with the present results for 0&30' and are given by the
dotted line at larger angles. The theoretical differential
cross-section curves are calculated from the KI set of

f0+. The Born approximation is not shown because it is
within 3% of the BOR up to 60' and is 82% below it at 70'.
The OP is shown because it is in worst agreement with

experiment (it has a zero around 70 ); the others because
they are in best agreement of all the theories we con-
sidered. For clarity of presentation, the BOR and BORP
are not shown below 30', where all these cross sections
are similar.

io-'

)0 ~

lA

N

io-'

io-4

ik r —ik r
BO 1 JJJ 0 8 n 1

2r n '3"2

x4',(r„r,) —+ ———dr, dr, dr, . (8)
31 32 3

In the Ochkur modification of this amplitude,
g =gO, where""'

g = —(2/ko )M. (9)

Only the first of the three terms in the interaction
potential (8) contributes to (9). It is convenient to
introduce the generalized oscillator strength de-
fined by '

~
'~~'

IO-'

i
0-6

0 lo 20 30 40 50 60 70 80 90 too IIO l20

e(deg)

FIG. 6. Theoretical (curves) and experimental (circles
with error bars) differential cross sections for excitation
of the helium 2 J' state at E =81.63 eV. The theoretical
curves are calculated from the KI set of Q0„. The ex-
perimental results have been multiplied by 1.21 for this
plot to normalize them to the post BOR approximation at
10'. The prior and post BOR and Born-transferred KF
approximate results are not shown at small angles where
they are similar to the Born approximation.
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Rudge's result for the exchange amplitude has been
called the Ochkur-Rudge approximation. The ap-
proximation in which the direct amplitude is calcu-
lated in the Born approximation and the exchange
amplitude is calculated in the (OR) approximation
will be called the Born-Ochkur-Rudge (BOR) ap-
proximation. However, Rudge has not used exactly
this approximation; rather, he used the OR approx-
imation for the exchange amplitude and a similar
result for the direct amplitude. 4'~" The expres-
sions (9) and (15) are derivable in a prior inter-
action formulation. '~ 4' We can also obtain from
the post interaction formulas4'

G= —1/k '
n

0.001

0.0005

0.0002
15 45 60

e(deg)
75 90 105

in the post Ochkur approximation, and

G=-i/[k -f(2U )"']'
0 n

in the post Born-Ochkur-Rudge approximation.
There is another modification, due to Bely, which
is to take4'

FIG. 7. Experimental differential cross section for
excitation of helium to the 2 I' state at 26.5 eV. The
cross sections are normalized to the experiment of Jobe
and St. John as described in the text (Sec. IIB). Several
theoretical cross sections are shown for comparison.
The BTKF is not shown at small angles where it crosses
the B (at 41') and the BOB (at 8 ). The BTVPS approxi-
mation is not shown because it differs from the 0 by only
1-4% over the range shown. The labels on the curves
are summarized in footnote b of Table X.

G = —1/k

Rudge modified the Ochkur result so that it can be
obtained from a variationally correct expression
for the scattering amplitude. The result is 4

G= —1/[k —f(2U ) ] = —e (k '+2U )
1/2 2

'
O

n 0 n 0

where $ =arctan[(2U )"'/k ]. (is)

which can easily be derived from (1) and (11). The
three terms of Eq. (12) which contribute to the dif-
ferential and integral cross sections, are the di-
rect, exchange, and interference terms, respec-
tively. Their sum is denoted as the unpolarized
beam cross section or total cross section, which is
the one experimentally observed.

We now proceed to define the several G. In the
Ochkur approximation"~ '~4 it is given by

G=-1/(k '+2U )n 0
(19)

i.e. , G is the negative of the modulus of the com-
plex value it has in the OR approximation. This
approximation, in which we use (5) for the direct
amplitude and (19) for exchange, we call the sym-
metrized BOR approximation (or, when referring
3ust to the exchange pa, rt, the symmetrized OR
approximation). »' It has the advantage that there
is no post-prior discrepancy. (For consistency
with the derivation of the Rudge approximation, we
use the ionization energy for the calculated wave
function employed (see Table III). When kz is com-
puted from k, and the experimental ~E, this does
lead to a very small post-prior discrepancy when
approximate wave functions are used. (We use the
prior form. ) The BOR approximation does not sat-
isfy detailed balancing; the symmetrized BOR
cross section does. '~"

Using approximations to the amplitudes in the
Coulomb wave approximation, Kang and Foland
derived another Ochkurlike relation, i. e. , they
found that the ratio of their exchange amplitude to
their direct amplitude was a quotient which did not
depend on the bound-state wave functions. ' Their
relation has no post-prior difference. 4' We use
this relation and the Born direct amplitude to ob-
tain an exchange amplitude. We use this exchange
amplitude with the Borndirect amplitude to calculate
the cross sections. We call this the transferred
Kang-Foland (TKF) approximation for the ex-
change part of the scattering and the Born- TKF
approximation for the total scattering. The re-
sult is again given by Eqs. (11) and (12), but
with
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TABLE III. Properties for wave functions used in scattering calculations. Energies are given in hartrees and the
diamagnetic susceptibility is given in 10 cm /mole.

E (SCF used here )

U
b

Xd

E (Weiss )

U

E (KKB d e)

U

E (expt )

Xd

E (KK-I ks e)

Xd

E (KK-II k)

Xd

E (KK-m k)

Xd

—2.8617
0.8617

—1.8779

—2.9037
0.9037

—2, 9033
0.9033

-1.890 f

—2, 9036
—1.890

—2, 9033
—1.890 f

—2.8750
—1.9861

—2.8475
—1.6687

—2.1225
0.1225

—25.5844

—2.1238
0.1238

—2.1222
0.1222

—24.3536 g

—2.1238
24.972 3

—2.1222
—24.6633

—2.1224
—26.1066

—2.1222
24 3536 I

~= 0.7392

~= 0.7799

~= 0.7811

~= 0.7797

~= 0.7811

~= 0.7526

~= 0.7253

Reference 59.
This is calculated from Xd=-0.791987 &&10 (r& +r2 ),

where & is in ap tcf. T. H. Dunning, Jr. , N. W. Winter,
and B. V. McKoy, J. Chem. Phys. 4~9 4128 (1968)].

cReference 58.
Wave functions used by Bell, Kennedy, and Kingston

(Ref. 18).
The KKB calculations used in this paper are from

Ref. 18 and calculation I of Ref. 17.
Y. -K. Kim and M. Inokuti, Phys. Rev. 165, 39 (1968).

gThis wave function is written with a sign error in
Ref. 18, but is the same wave function as used in calcu-
lation III of Ref. 17.

W. C. Martin, J. Res. Natl. Bur. Stds. 64, 19
(1960).

C. L. Pekeris, Phys. Rev. 115, 1216 (1959).
&B. Schiff, H. Lifson, C. L. Pekeris, and P. Rabinowitz,

Phys. Rev. 140, AI104 (1965).
Wave functions used by Kennedy and Kingston in cal-

culations I, II, and III of Ref. 17.
This wave function is not properly normalized in Table

I of Ref. 17.

G=G C
0 (20) where G is defined in Eq. (9) and"O.

0 Q+ fE
2i(k k —k k)0 n 0 n y'(i/k, i/0 1' X}0' n' '

0 n
(21)

and n = —,
' q',

p = & /p cos8- k ',
on n

(22)

(22)

fluent hypergeometric function and the hypergeo-
metric function, respectively. ~' Equations (20)
and (21) are equivalent to writing

g=f (q /u )c8 2
(26}

7 =-,'(a a

0 n
(24)

X =2k 4 (cos8 —I)/(u —0 )'
0& 0 (25)

E(u, v, x) and F(u, v, m;x) in Eq. (21) denote the con-

B.where f is defined in Eq. (4}. In the high-energy
limit, the complex number CKF approaches 1, and
Eqs. (20) —(26) become the Ochkur-Bonham
approximation. Kang and Poland do not use any ex-
plicitly energy-dependent approximations, however,
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( VPS(fVPS)f B
(27)

or

and Eq. (26) is claimed tobe valid at all energies. "
Presnyakov, Sobelman, Vainshtein, and

Opykhtin'o attempted to derive an expression for
the cross section that takes account of electron-
electron repulsion as much as possible. They
made several mathematical approximations" which
have been variously criticized. '4~ 55 However, the
method has been shown to give good integral cross
sections even at intermediate energies. "~ "~" In
addition, by taking the ratio of their exchange
scattering amplitude g ~ to their direct scatter-
ing amplitude fVPS, we find it yields a relatively
simple Ochkur-like relation. We can use this
ratio and the Born direct amplitude to obtain yet
another approximation to the exchange amplitude.
We call this amplitude the transferred Vainshtein-
Presnyakov-Sobelman (VPS) method; that is

@,= &n,(r, )y,(~,), (32)

@ =(v 2) '[ql(~I)q 2(r2)+pl(r2)q 2(rl)1, (33)

2
where y (r )= Q c..y . .(r ), i=0, 1

i 2 . ji1ji 2'
j=1

(34a)

2

2 2 .
1 j2 2j2 2

. .(r) =v'(k. .'/7r) (rk. .} e jl',
gji jj ji

with n being the principal quantum number. The
best coefficients and exponents are given in Table
IV and the energies in Table III. Using Eqs. (10),
(6), and(7), we find

0G=C G (28)

where
F(—ip iv 1 g)

TVPS F ( —iv, iv, 1, X) (29)

(q) = —, ~ [fy, (r, )y, (r,)dr,
q

and
2 ~E+ q~

X 2 gE~3q2 (30) xf y, (r, )e ' y, (r, )dr, ] 2 (36}

~ =[0 +v'(2U )] (31)

C. Generalized Oscillator Strengths

The expression (11}for the cross section re-
quires the generalized oscillator strength &f&0„(q).
We used two sets of P (q) for our calculations.
The first set was computed by Kim and Inokuti"
using Weiss's 52- and 53-term Hylleraas type
wave functions. " These $0„are probably accurate
within a few percent. " The second set was com-
puted by us using SCF wave functions in the opti-
mized-exponent-double- & approximation for both
the ground and excited states. These wave func-
tions' are of the form

We use the transferred VPS exchange amplitude
with the Born direct amplitude as the Born-trans-
ferred VPS approximation. Equation (31) includes
their correction for a real (not complex) "effec-
tive charge. """ Crothers made a suggestion"
which is equivalent to replacing G by the prior
OR approximation for G in Eq. (28), but we do not
use that approximation. We do not attempt to
justify the severe mathematical approximations in
the VPS formalism except to test empirically how

good are the results of the transferred VPS approx-
imation (where some of the errors cancel} for
integral and differential cross sections.

TABLE IV. Parameters and coefficients for SCF wave
functions for 1 S and 2 P states.

g

~2z.

n1;
k2z

0.835 188
0.189650
1.446
2.870

1.010 481
—0.010 996

2.012
2.874

1.019323
—0.027 347

0.493
1.037

The first integral equals 0.S83277, and the second
integral is evaluated analytically at each desired q.
In this expression we used the theoretical &E
= 0. 739220.

The calculations of generalized oscillator
strengths are known to be sensitive to the accuracy
of the description of the bound charge distributions
by the approximate wave functions "~" To illus-
trate the accuracy of the wave functions used here,
we have calculated the diamagnetic susceptibilities
from some of them and list these values in Table
III. This property is proportional to (r,'}, and
Table DI shows that the present SCF wave func-
tions give fairly accurate values. The use of a GF,
instead of a Hartree-Pock, ground-state wave func-
tion would have changed the SCF values to y =
—1.915x10 6 ccjmole and AE =0. 7555 hartree. ~2

It is expected that correlated wave functions
should not be necessary for the description of elas-
tic scattering because the Born elastic cross sec-
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tions depend on a property (the Fourier transform)
of the electron density, and SCF wave functions
predict the diagonal matrix element of such one-
electron operators correct through first order
(Brillouin's Theorem). '~ Another approximate
wave function, which accounts for only part of the
electron correlation, does not necessarily improve
the description of the electron-density property.
These expectations have been confirmed numerical-
ly by Hurst, and Kolos and Pecul. " Inelastic scat-
tering depends, however, on the transition electron
density Icf. Eq. (7)]. This is an off-diagonal el-
ement of a one-electron operator, and its accuracy
is not insured by Brillouin's Theorem. Neverthe-
less, we expect that the accuracy of the descrip-
tion of the stationary charge densities will general-
ly be an important indication of what accuracy to
expect in the scattering calculation, and that is
why we consider (r22) to be relevant. "

Since the calculations require many values of

Qp„(q) at irregular values of q, we found it most
convenient to fit Qn(q) to an analytic expression as
a function of q. Lassettre" noted that a Maclaurin
power series in q is not convergent in the whole
range of physically attainable q. He introduced~ a
power-series representation of Pp (q) in the vari-
able x/(1+x), where

D. Comparison of Results Obtained with
Different Wave Functions

At an impact energy E and scattering angle 8, the
momentum transfer is given by

q=(2k ' —4E —2k k cos8)'~'0'- —
0 ~

(40)

puted the differential cross section using a com-
pletely independent program which used pp„(q) di-
rectly. The agreement between the two procedures
was excellent. Note that the Cp obtained in our
least-squares fits over a finite range of q with
finite %may not be good approximations to the the-
oretically calculable values in the exact expression
with N=.

We would like to point out the advantages of this
procedure for calculations on larger atoms and on
molecules. In that case, a considerable effort may
be required to calculate Qp„at one q. Then one
should calculate a set of Ppn(q) at evenly sPaced
values of q over the range from q2=0 to the high-
est q' of interest and fit this set to a series such
as (38). Then the series can be used to obtain (t)pn
at all the other q's needed to calculate differential
cross sections.

x =q'/o. ' (37)
with & =(4 ' —&E)'"

n 0 (41)

and o =(2P )'»+(2P )~&~ .
0 n (38)

(0) — N(q)=, 1+ Ec (~ (Ã)
v=1

where N=~ for the exact result. We found that
Eq. (39), with N=4 —6, was a very convenient and
accurate expression for fitting (t)pn(q) over a finite
range of q. It is perhaps not surprising that the
series is rapidly convergent, since Lassettre~
noted its relation to the Euler transformation,

.which is sometimes used to speed convergence.
The fitting procedure with this expression was very
well behaved. Also, the fits were found to have the
property that a fit to data in the range q = 0 to qf
gave good $0„(q) even for q )qf; i.e. the fits
could be used to extrapolate. However, this does
lower the accuracy. The parameters for three
such fits, which we used to compute the differen-
tial cross section, are givenin the Appendix. For
the (t) (q) calculated from Eq. (36}, we also com-

A. q

This series is convergent in the entire physical
domain. The details of the application of this expan-
sion to S-P transitions in atoms were worked out
by Vriens. "In this case, "

For the calculations with very accurate wave func-
tions, the use of either the experimental or theo-
retical ~E will give the same results. In order to
obtain correct thresholds, etc. , when using inac-
curate wave functions, the experimental ~E is usu-
ally used to compute q'. For our calculations with
the SCF wave functions, we computed the cross
sections using both the experimental and theoret-
ical &E (see Table III). Some results in the Born
approximation computed each way are shown in
Table V. The differences are quite large, espe-
cially at small angles. It is probably more con-
sistent to use the experimental &E because this
corresponds to using trial functions (plane waves)
with the same asymptotic behavior as the exact
wave functions for the actual physical process.
The small q generalized oscillator strength is ex-
pectedto be too large when &E (theoretical} is used,
because the 2'P wave function is too expanded (cf.
TableIII). Table III shows, however, that using
&E (expt) is inthe right direction to correct this.
Similarly, this argument predicts that the Kennedy-
Kingston calculation I"would be corrected for
small q since the 2'P wave function is too contract-
ed but &E (theoretical) is too large (cf. Table III).
We will use only the experimental &E in the rest
of this paper.

Also shown in Table V are some Born cross sec-
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TABLE V. Born differential and integral cross sections (ap ). (Number in parentheses is power of ten by which

value given is to be multiplied. )

&on

E (eV)
25

50

See Appendix.

& (deg)

0
60

120
180

integral

0
60

120
180

integral

0
60

120
180

integral

SCF
theor

2.17(- 1)
3.26(-2)
3.O2(-3)
1.23 (-3)
3.60 (- 1)

2.00
5.14(-3)
5.45(-5)
1.3O(-5)
5.55 (- 1)

9.32
4.V3 (-5)
1.12 (-7)
1.94 (-8)
4.06 (- 1)

SCF
expt

1.3O(- 1)
2.64(-2)
3.13 (-3)
1.37(-3)
2.64(-1)

1.58
4.95 (-3)
5.4v(-5)
1.32(-5)
4.vs(-1)

7.79
4.55(-5)
1.o9(- v)

1.88 (- 8)

3.65(-1)

KKB
expt

1.56(- 1)
3.16(-2)
3.69(-3)
1.6O(-3)
3.17(-1)

1.89
5.82(-3)
5.9O(-5)
1.34(-5)
5.V3(- 1)

9.28

4.84 (-5)

8.92(-8)
1.46 (-8)
4.36(- 1)

a

expt

1.44 (-1)
2.86 (- 2)

3.24(-3)
1.4O(-3)
2.88 (- 1)

1.79
5.11(-3)
4.S2(-5)
1.ov(-5)
5.32(- 1)

8.84
3.93 (-5)
6.80 (-8)
1.10(-8)
4.10(- 1)

tions computed from the Kennedy-Kingston-Bell
(KKB) and Kim-Inokuti (KI) generalized oscillator
strengths (see Appendix). The differences are
larger than expected, but the Kennedy and Kingston
results" are about 4% higher than the more accu-
rate (KI) calculations" and the Bell et al . results"
are even higher. Also, Kennedy, Kingston, and
Bell do not give $0+(q) for high enough q for us to
get a good fit over the whole rangeneeded for these
calculations. This explains the differences and we
will not consider our calculations with the KKB set
of $0„(q) in any more detail. Our fit to the gener-
alized oscillator strengths of Kim and Inokuti is
quite accurate, and they claim an accuracy of 1%
for their generalized oscillator strengths. An
interesting comparison is that our computed Born
integral cross sections computed from the KI gen-
eralized oscillator strengths agree with those com-
puted and published by Kennedy and Kingston" to
within 3 —, % up to the highest energy they consid-
ered, 245 eV. Above this energy our integral cross
sections computed from the KI generalized oscil-
lator strengths agree with the less accurate ones
published by Bell et a/. "within 8/o up to 1000 eV.

A comparison of the generalized oscillator
strengths from the SCF calculation with those of
Kim and Inokuti" shows that the SCF $0„ is 12 %
too low at q' = 0 (see Appendix) but falls less rapid-
ly with increasing momentum transfer. Thus, for
example, the SCF $0„are S % lower at q' =1.0,
about correct at q' = 4. 6, 10 /o too high at q' = 7.3,
and 53% too high at q'=40. Thus, the answer to the
question about the comparison suggested by Kim
and Inokuti" is that our SCF results are apparently

not quite as accurate as the results of Altshuler"
for small q. This must be due to some fortunate
cancellation of errors in Altshuler's calculations,
since his wave functions are less accurate.
[Altshuler used the same wave functions as used
by Kingston and Kennedy" in their calculation III
(see Table III)j. The differences between the SCF
and accurate results means the SCF will predict
a differential cross section falling too slowly with
angle compared to the exact Born result (see, e.g. ,
Table VI, and an integral cross section, which is
everywhere too small, compared to the exact Born
result (this is because the integral cross section
is sensitive to small angles where the differential
cross section is large). The integral cross sec-
tions are compared more quantitatively in Sec. IV.

The direction of deviation of the SCF result is
expected (cf. Hurst" ). SCF wave functions are
usually too large for large x and too small for
small r. Thus, because the r derivative of the
wave function is larger for small x, the general-
ized oscillator-strength Fourier transform is gen-
erally too large for small q and too small for large
go

IV. INTEGRAL CROSS SECTIONS

Figures 8-10 compare the integral cross sec-
tions Q(E) computed in the various approximations
with the experimental results of Jobe and St. John.
At intermediate energies all our theoretical inte-
gral cross sections are too large. For all our sets
of Q0„, we find that the following sequence of the
theories puts the cross-sections in decreasing
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TABLE VI. Comparison of differential cross section (in ao ) for excitation of 2 P state as computed with different
wave functions. E=60 eV. (The number in parentheses indicates the power of 10 by which the number is to be
multiplied.

Method
0 SCF a

Born
KI a

prior Born-Ochkur-Budge
SCF KI

p 0

100
20'
3P0

6po

so'
100'
140'
180'

aSee Appendix.

2.27

1.18
3.4V(-1}
e.4s(-2)
2.36(-3)
3.06(-4)
6.oe(-5)
7.82 (-6)
4,o4(-6)

2.56
1.33
3.sv(- I}
I.O4(- I)
2.4O(-3)
2.g2(-4)
5.3S(-5}
6.14(-6)
3.05 (-6)

2,25

1.16
3.38(- I)
e.Io(-2)
2.32(-3)
3.46(-4)
8.6V(-5)
I.V6(-5)
1.08 (-5)

2.54
1.31
3.vv(- I)
e.e6(-2)
2.35(-3)
3.3O(-4)
v.65(-5)
1.3S(-5)
8.2o(-6)

order at al1 energies: prior Born-Ochkur-Budge
(BOR) approximation, Born-transferred Kang-
Foland (BTKF) approximation, post Born-Ochkur-
Rudge (BORP) approximation, symmetrized
(BORB.I) approximation, Born tra-nsferred Vain-
shtein-Bresnyakov-Sobelman (BTVPS) approxima-
tion, and prior Ochkur (0) approximation. There
is a larger gap between the BORP approximation
and the BTKF approximation than between the
others. In addition, the Born (B) approximation
integral cross section fits into this scheme
around the BTKF approximation and BOR approxi-
mation results. (The last four cross sections in
the list will be called the group i, . The post
Ochkur (OP) approximation is also included in
group i„and group i, comprises the Born, BOR
and BTKF approximations. )

That these Born-like a.pproximations predict
cross sections that are too large might have been
expected due to the lack of back coupling of the fi-
nal state to the initial state. It was a],so previously

recognized that the Born a,pproxima, tion for z'P ex-
citation in helium predicted an integral cross-sec-
tion curve which disagreed with experiment in that
it looked too much like the experimental curves for
n'P excitation (i.e. , it was peaked too close to
threshold). ' " However, these conclusions were
tempered by doubts about the validity of the approx-
imate helium wave functions. " Figures 8-10 show
that this error is still there when the accurate KI
generalized oscillator strengths are used and also
when Qchkurlike corrections are made to include
exchange effects. However, the group i, approx-
imations give considerable improvement over the
Born approximation in the shape of the cross sec-
tion curve. The agreement in magnitude is also
better; in the most favorable case, the peak of the
post Ochkur approximation integral cross section,
as computed from the SCF generalized oscillator
strengths, is only 28% higher than the experimen-
tal maximum q.

Moiseiwitsch and Smith" noted that for excitation

0.6

OJ

0.3—
C3'

0.2—

O. I—

20

I I li l i

I ( I l I I I

40 60 80 IOO

E {eV)
200

I I I I I

—SCF

I I I I I I

400 600 800 l000

FIG. 8. Integral cross sections
for excitation of the helium 2 P state
computed from SCF wave-functions
set of generalized oscillator
strengths. The OP curve is not
shown below 30 eV, where it has a
peak which would put it off scale on
this plot (see text). The BTVPS ap-
proximation is not shown because it
is within about g% of the 0 curve.
Above 125 eV, where all these ap-
proximations give similar results,
only the Born approximation is
shown. The figure also shows the
distorted wave plus exchange re-
sults (DE) of Massey and Mohr
(using simple wave functions) as
a dashed line (from Ref. 77).
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0.6 I I I I I I I

0.5—

0.4—

CU

0.3—
(3

0.2—

O. I—

BTKF-

20 40 60 80 100

E (eV)

200 400 600 800IOOO

FIG. 9. Comparison of integral
total cross sections for excitation
of the helium 2 P state computed
from the SCF and KI sets of $0~.
The experimental cross section
(Ref. 2) is also shown up to 450
eV. The BTKF results are not
shown above 175 eV where they are
within 1.3% of the symmetrized
Born-Ochkur-Rudge (BORB.I) cross
sections. The asterisks show the
theoretical results of Vainshtein
and Dolgov (Ref. 75) at the two

highest energies they considered.

of the 3'P state of He the cross sections deter-
mined by the method used by Miller, St. John, Lin,
and Jobe are "characterized by smaller initial
slopes and. ..lower peaks shifted to higher ener-
gies than. . .the results of other workers. " If this
represents a systematic error, then the agreement
of our theoretical results with experiment is bet-
ter than it appears here.

The post Ochkur approximation predicts a large
peak at threshold. This is shown by Eg. (17) and
Table VII. Although experiments with good inci-
dent-energy resolution have shown"~" that the ex-
citation function for helium 2'P lines does have a
small narrow maximum near 22. 5-23. 8 eV, the

peak predicted by the post Ochkur approximation

is much too large and appears to be spurious. It
is analogous to the too large elastic cross sections
predicted by the prior Ochkur method near zero
energy. " As in that case, the difficulty is alle-
viated by the Rudge modification of the exchange
amplitude (cf. integral cross sections computed
from the post Ochkur and post BOR approximations
in Table VII).

Figures 8-10 confirm the conclusion of Bell
et al. "that the prior Ochkur approximation is
better than the (prior) BOR or Born approxima-
tion for Q(E) in this case. Of all the cross sec-
tions examined here, the prior Ochkur and
BTVPS approximations give best agreement with
Q(E) over the whole energy range.

0.6—

I I I I I I

KI

0.5—

0.2—

O. I—

FIG. 10. Integral total cross sec-
tions for excitation of the helium 2 P
state computed from the KI set of

Qpz. The experimental cross sec-
tion (Ref. 2) up to 450 eV is also
shown. The prior Ochkur approxi-
mation cross section (not shown) is
within 2% of the BTVPS. The post
Ochkur approximation cross section
(not shown) is below the BTVPS at
energies more than 6 eV above
threshold.

20 40 60 80 IOO

E(eV)
200 400 600 800 1000



TRUHLAR, RICE, KUPPERMANN, TRAJMAR, AND CARTWRIGHT

TABLE VII. Some total excitation cross sections (in ao) computed from Kim-Inokuti generalized oscillator strengths.
(The number in parentheses indicates the power of 10 by which the number is to be multiplied. )

E (eV)

21.6
22, 0

25.0
27.0
30.0
35.0
80.0

Born
approximation

(B)

e.2e(-2)
1.33 (- I)
2.88(-1)
3.48(-1)
4.11(-I)
4.V4(-1)
5.O2(-1)

Ochkur
approximation

(prior)
(O)

2.5e(-2)
4.0e(-2)
1.35(- I)
I.se(- I)
2.5e(- I)
3.3e(- I)
4.63 (- I)

Ochkur
approximation

(post)
(OI)

6.3V(1)
I.e4(1)
6.e2(- I)
2.O3(-1)
1.1e(- I)
2.ov(- I)
4.5O(- I)

Born-Ochkur-Budge
approximation

(post)
(Boa.P)

5.2e(-2)
7.73 (- 2)

I.se(- I)
2.41(- I)
3.O2(- I)
3.V4(- I)
4.68 (- I)

Born-transferred
KF

approxunatzon
(BTKF)

I.ov(- I)
1.51(-I)
2.e5(- I)
3.5O(- I)
4.07 (- I)
4.66(- I)
4.e2(- I)

V. DIFFERENTIAL CROSS SECTIONS

A. Comparison of Calculations with Experiment

Vriens et al . ' reported some small-angle dif-
ferential cross sections at 100-400 eV (see Table
I). At energies 175 eV and lower, they found devi-
ations in shape from their semiempirically deter-
mined Born cross sections. We compared their
data to the cross sections we computed from the
KI generalized oscillator strengths and find the
same conclusions still hold. The Born-approxima-
tion differential cross section falls less rapidly
with angle than the experimental one. However,
inclusion of exchange via one of the Ochkurlike
relations (their predictions are all similar in this
case) makes little difference at the higher of these
energies (above 200 eV), but at least halves the
discrepancy in the shape of the lower energy dif-
ferential cross sections. For examp1e, the shape
of the (prior) BOR differential cross section is
within their experimental error at every point.
Above 49 eV the BOB differential cross section
falls more rapidly with angle than does the Born
approximation differential cross section. Below
49 eV this situation is reversed.

Figures 3-6 compare the theoretical differential
cross sections using the Kim-Inokuti set of gener-
alized oscillator strengths with our experimental
ones in the energy range 34-81.63 eV. At each
energy are shown the experimental differential
cross section and the four or more (out of eight
considered) theoretical cross sections which agree
best in shape (except as indicated otherwise in the
captions). In each figure the experimental cross
section (normalized as explained in Sec. II 8) is
renormalized at 10 to the BORP cross section.
At the lower of these energies the theoretical dif-
ferential cross section has the right shape out to
about 40, and after that it falls too rapidly. At
the higher energies the theoretical differential
cross section begins to fail at even smaller angles.
This is discussed in more detail in Sec. V B. As

discussed in Sec. IIID, the differential cross sec-
tions computed from the SCF set of generalized
oscilla, tor strengths do not fall as rapidly with an-
gle. Thus, these approximate results are in bet-
ter agreement with experiment than are the results
computed from the KI generalized oscillator
strengths. This is illustrated by Table VIII.

The conclusion that the Born approximation pre-
dicts a cross section which falls too rapidly with
angle in this energy range could also have been
drawn from the work of Jusick, Watson, Peterson,
and Green. " However, their analysis is based on
old (1932-1933)data which is inaccurate (see Sec.
I and Ref. 1) and the validity of their results is
thereby questionable.

Of all the theoretical methods we are considering,
the (prior) BOR approximation gives the differen-
tial cross section which is in best agreement with
the shape of the experimental one in this energy
range (34-82 eV). Further, only this method of
inc1uding exchange improves the Born approxima-
tion (no exchange) for the shape of this intermedi-
ate energy differential cross section.

At high enough energies (above about 26 eV), the
prior Ochkur total amplitude, proportional to

2/q' —I/O, ',
has a zero. As the energy is increased, this zero,
which causes a sharp dip to zero in the predicted
differential cross section, moves in from 180' un-
til, in the high energy limit, it is at 90 This dip
is shown in Figs. 11 and 12. This dip in the differ-
ential cross section is a peculiarity of the prior
Ochkur approximation not only for this transition
but for all electron scattering processes which in-
volve both direct and exchange scattering. A very
similar dip occurs in the BTVPS and symmetrized
Born-Ochkur-Rudge (BORB.I) a,pproximations. "
In the post Qchkur approximation there is an anal-
ogous dip which comes in from small angles and
moves out to 90' in the high-energy limit. This
dip can be seen in Figs. 5, 11, and 12 and is re-
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FIG. 11. Theoretical differential total cross sections
for excitation of the 2 I' state of helium at E=34 eV.
These are computed from the KI set of generalized os-
cillator strengths. The curve labels for Figs. 11-15 are
defined in the first paragraph of Sec. IV. (The logarithm
is to the base 10.)

B. Theoretical Discussion of Calculations

1. Distortion

Rothenstein calculated the cross sections for ex-
citation of the 2'P state of helium by using a clo-

sponsible for the fact that the post Ochkur approx-
imation disagrees so violently with our experi-
ments (cf. Table VIII). There are no dips like this
in the Born, prior or post BOR, or BTKF approx-
imations. This is illustrated by Figs. 11-15. The
comparison with our experiments at 10'-80 sug-
gests that the dip is an artifact of these approxi-
mations, and that the prior and post Ochkur, sym-
metrized OR, and transferred VPS Ochkur-like
relations cannot be used with the Born amplitude
to predict angula, r distributions which are accurate
over the whole angular range.

The experimental 2'P cross section has a peak
at 23' at E = 26. 5 eV, as shown in Fig. 7. Seven
of the theoretical cross sections we computed are
monotonically decreasing from 0'-150' at this
energy (the post Ochkur approximation has a ridic-
ulous shape at this energy for reasons already dis-
cussed). Therefore, these first-order calcula-
tions do not appear to be as useful so close to
threshold.
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FIG. 12. Theoretical differential cross section for
helium 2 P excitation at E= 125 eV (computed from the

KI set of generalized oscillator strengths) . (The loga-
rithm is to the base 10.)

tion, the BO approximation, and the post Born-
Oppenheimer (BOP) approximation. He used sim-
ilar simple wave functions. Massey and Mohr,
and Fundaminsky found that the BO approximation
leads to a cross section which rises too rapidly at
threshold and is fairly constant in the range 25-45
eV. Fundaminsky found that the BO and BOP ap-
proximations are much too large below 30 eV and
are about two and three times bigger, respective-
ly, than the Born approximation at energies near
threshold. Fundaminsky found the BO agreed well
with the Born approximation at 32 eV and the BOP
was only 17 /p larger there. The BO approxima-
tion appears to be better for S-P transitions than
for S-S transitions. '

The distorted wave plus exchange calculation of
Massey and Mohr'7 gives such a large integral
cross section that it goes off scale in Fig. 8 in the
region 37-69 eV. Massey and Mohr also calcu-
lated the differential cross section at 33 and 50
eV in the Born approximation, a distorted wave
approximation without exchange, and the distorted
wave plus exchange approximation. " They pre-
sented these in arbitrary units. We have normal-
ized all three of their 33 eV calculations by nor-
malizing their 33-eV Born-approximation cross
section to our Born-approximation calculation of

sure relation to approximate the second Born ap-
proximation (82)." The B2 approximation does
not include exchange. His integral cross section
shows a smaller peak shifted to higher energies in
comparison with the first Born approximation. He
also showed that the first Born approximation over-
estimates the small angle scattering. Thus, both
his integral and differential cross sections are in
better agreement with experiment than the first
Born approximation. Unfortunately, it has been
pointed out'4 that the use of the closure relation
this way does not lead to a good approximation to
the second Born approximation.

Vainshtein and Dolgov" calculated the 1'S —2'P
excitation cross section in the two-state close cou-
pling approximation without exchange. The energy
dependence of their cross sections is unusual.
Their values for the integral cross sections at
25. 11 and 34. 81 eV are shown in Fig. 9. The good
agreement with experiment is probably fortuitous.

Massey and Mohr calculated the integral cross
sections for excitation of the 2'P state using the
prior BO approximationv' and using a distorted
wave method with exchange. " They used the sim-
plest Hylleraas wave function for the ground state
and the simplest Eckart-type wave function for the
2'P state. Fundaminsky"~ "also calculated the
excitation cross section in the Born approxima-

0
O

4O

90
8(deg}

I 80

FIG. 13. Theoretical differential cross sections for
helium 2 I' excitation at E= 34 eV (computed from the KI

set of generalized oscillator strengths) . (The logarithm
is to the base 10.)
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our calculations with those of Burke, Cooper, and
Ormande is presented in Table X because this
comparison is particularly sensitive to errors in
the exchange cross sections and shows that some
of our calculations are not even approximately ac-
curate near threshold. For the integral cross
section prediction near threshold, the prior
Ochkur, BORB. I, and BTVPS approximations are
probably the most useful of the theories we used.

2. Success of First-Order Approximation at
Small Momentum Transfer

O

-8 I

45 90
8(deg)

135 180

The fact that these first-order approximations
are approximately valid to higher scattering an-
gles at lower incident energies than higher ones is
an indication that the Born approximation is not
only a high-energy approximation but also a small
momentum- transfer approximation. " The angular
range over which the Born or (prior) BOR approxi-
mation predicts the correct shape of the DCS is ap-
proximately the same and can be quantitatively as-
certained by normalizing theory to experiment in

FIG. 14. Theoretical differential cross sections for
helium 2 I' excitation at E= 55.5 eV (computed from the
KI set of generalized oscillator strengths). (The loga-
rithm is to the base 10.)

I (33 eV, 10') = 0.494a, '/sr from the KI set of
generalized oscillator strengths. The three dif-
ferential cross sections are then presented in Fig.
16 for comparison with our 34-eV experimental
results. Their distorted wave plus exchange
calculation at 50 eV is compared with our calcu-
lations in Table IX. Figure 16 and Table IX both
show that inclusion of distortion and exchange
change the shape of the predicted large-angle dif-
ferential cross section in the right direction for
better agreement with experiment. The correction
for exchange is different in the presence of dis-
tortion, and this is an important part of the
change. " Since Massey and Mohr made many nu-
merical approximations in their calculations, it
would be very worthwhile to do accurate distorted
wave and distorted wave plus exchange calculations
now.

Burke, Cooper, and Ormande" made close-cou-
pling calculations on He including the ground state
and all single excitations from the ground state to
n =2 levels. One of the possibly important as-
sumptions in this calculation is the approximate
nature of their bound-state wave functions. Un-
fortunately they made no calculations at energies
more than a. volt above threshold for the 2'P state.
While we do not expect our first-order calculations
to be valid at such low energies, a comparison of

0 -7

F

-13
0

e(deg)

135 180

I'IG. 15. Theoretical differential cross sections for
helium 2 I' excitation at 8=400 eV. These are computed
from the KI set of generalized oscillator strengths. At
this energy, the prior BOR approximation (not shown) is
similar to the BTKF for 0-105' and similar to the B for
135-180'. The prior and post Ochkur and symmetrized
BOR approximations need not be shown because they are
very similar to the BTVPS over the whole angular range
at this energy. (The logarithm is to the base 10.)
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the region where the shapes agree (about g = 20'
«r the data in this paper} and determining the an-
gle at which they deviate by 50%. Equation (39)
can then be used to determine an upper limit
qmax for the momentum transfer for which the8
Born or BOR approximation is approximately val-
id at this energy. (Other criteria for choosing
qmaxB that we have tried yield qualitatively the
same results and conclusions. ) Figure 17 shows
a plot of qm~+ versus (E —&E). The figure also
includes lower limits for qm~B in the range
100-400 eV determined from the data of Ref. 7
and at 511 eV determined from the data of Ref. 4.
Lines are drawn for qmin and qm~, which define
the physical region of q for any energy. Because
theory and experiment disagree so much at 26. 5

eV, we can only determine an upper limit on q
there. But this does indicate that if we draw a
curve for qm~B (E}it will intersect qmin (E) be-
tween 26. 5 and 34 eV. Although more large scat-

FIG. 16. Comparison of experimental differential
cross section (circles) and Born approximation calcula-
tion using SCF set of generalized oscillator strengths
(dotted curve) at &=34 eV with calculations of Massey
and Mohr at E=33 eV (full and dashed curves: B-Born
approximation; D-distorted wave calculation; DE-dis-
torted wave plus exchange calculations). The experi-
mental differential cross section is normalized to the

experimental integral cross section of Jobe and St. John

(see Sec. IIC) and the Massey-Mohr differential cross
sections are normalized as explained in Sec. V BI.
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TABLE X. Integral cross sections including exchange

for excitation of the 2 P state of helium. (Number in

parentheses is power of 10 by which value given is to be
multiplied.

Calculation

BCO-c.c.
KI -B

0
BOR
OP
BORP
BORB. I
BTKF
BTVPS

BKK-B
BORB. I

SCF-B
BORH. I

E=21.6 eV

1.82(-2)
9.29(-2)
2.59(-2)

1.83 (- 1)
6.37(1)
5,29(- 2)

3.24(-2)
1.07(- 1)
2.60(- 2)

1.03(-1)
3.60(-2)
8.62(-2)
3.01(-2)

8=22.0 eV

2.41(-2)
1.33(- 1)
4.09(- 2)

2.53(- 1)
1.94(1)
7,73 (- 2)

4.98(-2)
1.51(-1)
4.10(-2)
1.47(-1)
5.51(-2)
1.23(-1)
4.60 (- 2)

aReference 82.
bThe first abbreviation indicates the set of generalized

oscillator strengths (see Appendix), and the second in-
dicates the method. The abbreviations are: B Born
approximation; 0 and OP Ochkur approximation (prior
and post); BOR, BORP, and BORH. I Born-Ochkur-
Rudge approximation (prior, post, and symmetrized);
BTKF Born-transferred Kang-Foland approximations;
BTYPS Born-transferred-Vainshtein-Presnyakov-
Sobelman approximation.

20, I I I I I I I

IO

sections in the prior and post Ochkur and prior,
post, and symmetrized OR approximations have ex-
p.ctly the same shape. Some typical exchange cross
sections for excitation of the 2'P state of He are
shown in Figs. 18 and 19. At lower energies all
the exchange cross sections calculated here, ex-
cept the transferred KF one, are peaked off zero
degrees. Above 50 eV, the transferred KF differ-
ential cross section also is peaked off zero de-
grees. Table XI gives the positions of these peaks
pt some of the higher energies. The behavior of
the peaks is quite similar to the behavior of the
peaks for the Qchkur or OR approximation for the
1s-2s excitation in hydrogen. "

Joachain and Mittleman' distinguished two prob-
lems in calculating electron-atom exchange scat-
tering: the dynamical problem and the bound state
problem, ' Joachain and Mittleman used poor bound-
state wave functions. ' Our results are based on
very accurate wave functions, so that we have elim-
j.nated much of the bound-state problem. This
)eaves the dynamical prob1.em, and the differences
among the exchange cross sections calculated here
can be attributed to differences in the theories.
Pince the dynamical problem is far from solved,

tering-angle experiments will be required to com-
pletely delineate the curve, the plot does indica, te
that it is a smooth function. Then, (q, E) are a
better set of variables than (e,E) for expressingthe
range of validity of the first Born-approximation
assumptions. For the intermediate energy range
of most interest in this paper, q a

B is about
1.4-1.8a, '. The discrepancies in other ranges
are not unexpected. It is expected on physical
grounds that first-order theories are not valid
near threshold because distortion is not adequately
represented in these models. Similarly, even at
high energies, the collisions resulting in large
momentum transfer involve large perturbations.
Hence, distortion is again important and first-
order models are not expected to be valid.

VI. EXCHANGE CROSS SECTIONS AND FURTHER
DISCUSSION OF EXCHANGE

The exchange scattering contribution to electron-
atom scattering provides a sensitive test of the-
ories of rearrangement collisions. '

~
2' In our case

the exchange cross section is computed by retain-
ing only the second term (i~ e. , I G I ') in Eq. (12).
Thus, the exchange cross section is the same in the
prior OR, post OR and symmetrized OR approxi-
mations. Also, the exchange differential cross

0.2-

O. l

I 10
I I I I I I I I I

IOO 1000
(E-hE) (ev)

FIG. 17. The region 8 in which the Born approximation
predicts the shape, i.e. , angle dependence, of the dif-
ferential cross section, approximately correctly for ex-
citation of the 2 P state of helium. The ordinate is mo-
mentum transfer and the abscissa is energy above thresh-
old (21.216 eV). The two curved lines bound the physical
region IO' ~ e~ 180; cf. Eq. (39)t. The filled circles
are q, i.e. , they are on the upper boundary of S .
The open circle is on or above the boundary of . These
circles are derived from the present experiments and
calculations. The triangles and square lie below the
boundary of S . They are derived from the experiments
of Vriens, Simpson, and Mielczarek (Ref. 7) and Silver-
man and I assettre (Ref. 4), respectively, and the pres-
ent calculations. Thus, the vertical lines are wholly in
the region .
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FIG. 18. Exchange differential cross section for ex-
citation of 2 P state of helium as computed from the KI
set of generalized oscillator strengths. E=34 eV. The
curve labels are: 0-prior Ochkur approximation; OR-
prior Ochkur-Budge approximation; TVPS-transferred
Vainshtein-Pre snyakov-Sobelman approximation; TKF-
transferred Kang-Foland approximation; VPS-method of
Vainshtein, Presnyakov, and Sobelman. The VPS curve
1s from Ref. 72.

Table XII gives calculated integral exchange cross
sections that may be compa, red with each other and
with future attempts to trea, t this important prob-
&em.

Because the Ochkur and OR theories for the dif-
ferential cross section have been shown to be in
disagreement with experiment '~ ' and more ac-
curate theory" for the exchange scattering in two
previous cases (H ls-2s and He triplet excitation),
where they predicted differential cross sections
with peaks off zero degrees, ~ it is an interesting
question whether a discrepancy in the exchange
scattering is at least partially responsible for some
of the present disagreement. It would be very in-
teresting to calculate the exchange-scattering dif-
ferential cross section in the BO approximation35
or a first-order-exchangelike approximation (such
as the first-order theory of Bates, Bassel, Gerjuoy
and Mittleman"»" ")for comparison with the
present results. Calculations in the first-order-
exchangelike approximations for helium have so
far been limited to singlet-triplet transitions.

Bates, Fundaminsky, Leech, and Massey ' re-
ported a BO calculation of the integral cross-sec-

TABLE XI. Positions of the peaks (scattered angle ~

in degrees) in the exchange differential cross section for
excitation of the 2 2' state of helium.

E(ev) TKF

75
100
200
300
400
500
700

1000
4000

21
18
13
10

9
8

7
6
3

21
18
13
11

9
8
7

12
12
11

9
8

7
6

5

3

Prior Ochkur-Rudge approximation.
bTransferred Vainshtein-Presnyakov-Sobelrnan

approximation.
Transferred Kang-Foland approximation.

FIG. 19. Exchange differential cross section for ex-
citation of 2 I' state of helium as computed from the KI
set of generalized oscillator strengths; 8=55.5 eV. The
curve labels are: 0-prior Ochkur approximation; OR-
prior Ochkur-Budge approximation; TKF-transferred
Kang-Foland approximation. The transferred VPS ap-
proximation is not shown because it is very close to the
0 curve from 25' to 180 and is between the 0 and OR at
O'. The post Ochkur approximation exchange DCS is
2.6 times higher than the 0 at this energy. (The loga-
rithm is to the base 10.)
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TABLE XII. Integral exchange cross sections (ao ) computed from Kim-Inokuti set of $0„(q). (Numbers in parentheses
are powers of 10 by which given numbers are to be multiplied. )'

E (eV)

22.00
25.00

27.21
30.61
40.00
54.40
81.63

100.00
122.44
175.00
272.10
400.00
700.00

1000.00
4000.00

Q a

2.8V(-2)
3.82(-2)
3.45(-2)
2.73 (- 2)

1.38 (- 2)

5.vv(-3)
1.V5(-3)
9.56 (-4)
5.22(-4)
1.ve(-4)
4.vv(-5)
1.5O(-5)
2.81(-6)
9.62(- V)

1.50 (- 8)

OPb

2.27 (1)
1.6v(o)
7.11(-1)
2.eo(- 1)
6.2V(-2)
1.55 (- 2)

3.19(-3)
1.54(-3)
v.64(-4)
2.32(-4)
5.61(-5)
1.68 (-5)

2.94(-6)
1.00 (-6)

1.52(- 8)

ORc

2.16(-2)
2.9V (-2)
2,73 (~ 2)

2.22 (- 2)

1.vs(-2)
5.12(-3)
1.61(-3)
8.95 (-4)
4.95(-4)
1.V3(-4)
4.66(-5)
1.48 (-5)

2.vs(-6)
9.56(- V)

1.5o(- 8)

TKF

2.13(-2)
2.O5(-2)
1.63 (-2)
1.14(-2)
4.90(-a)
1.94(-3)
6.14(-4)
3.52(-4)
2.O3 (-4)
v.vs(-5)
2.38(-5)
8.3V(-6)
1.so(-6)
6.vo(-v)
1.29(-8)

aPrior Ochkur approximation.
Post Ochkur approximation.

cPrior. Ochkur-Budge approximation.
Transferred Kang-Foland approximation.

tion curve for excitation of the 2'P state of helium.
This predicted an even steeper initial rise and a
higher peak at lower energy than the Born approx-
imation, thus making the comparison with experi-
ment even worse. The total cross section might be
improved if some unitarization ~ were performed
in the BO exchange amplitude. In the BO calcula-
tions the cross sections are much worse (larger)
for the post form than the prior form, "which is
just the opposite of the present situation with the
BOR and Ochkur approximations (except for the
post Ochkur approximation near threshold). In the
BO approximation, the post-prior discrepancy is
a measure of the lack of quality of the wave func-
tion. " However, the prior and post BOR approxi-
mations do not become identical even for the exact
bound-state wave functions. Thus, in this case the
post-prior discrepancy is a measure of the scat-
tering approximation itself. We note that
Altshuler" has discerned a preference, on formal
grounds, for the prior formulation of the exchange
amplitude. From the point of view of our numer-
ical calculations, the BOR approximation is in bet-
ter agreement than the BORP approximation with
the shape of the experimental DCS. Perhaps the
better agreement of the latter with the experimen-
tal integral cross section is fortuitous. Or perhaps
we should not trust the conclusions about their rel-
ative merits because neither the prior OR nor the
post OR exchange amplitude has been shown to have
a phase compatible with the Born direct ampli-
tude. Using detailed balance as a criterion for
the phase of the exchange amplitude leads to the
BORB. I approximation, but this leads to a non-
physical zero in the differential cross section. The
problem of finding an appropriate exchange ampli-

tude remains unsolved.

VII. SUMMARY

We have presented five experimental differential
cross sections for excitation of the 2'P state of
helium in the range 10' &8&80, 26. 5 eV &E &81.6
eV. These were found to be in qualitative agree-
ment with our Born-Ochkur -like calculations only
in the range 10' & 0&40', 34 eV &E&81.6 eV. All
of the calculations reported here give differential
cross sections which are too small at larger scatter-
ing angles, evidently due to neglect of distortion.
We have examined the predictions of the first-order
theory for both integral and differential, total and
exchange cross sections for this transition. Of the
three newest calculational methods, the BORB. I ap-
proximation and the BTVPS approximation were
found to have some similarities to the prior Ochkur
method, which makes them useful for integral
cross sections but the BTKF approximation may
have fewer disadvantages (along with the prior BOR
approximation) for large angle scattering.

The BOR approximation in the post arid symme-
trized forms and the Ochkur approximation give
integral cross sections in better agreement with
experiment than the Born approximation. They are
an improvement, in this respect, over some other
methods of including exchange which greatly over-
estimate the cross section. The prior form of the
BOR approximation gives worse integral cross
sections, but gives the angular dependence of the
intermediate energy cross section more accurate-
ly than any other calculaton. Moreover, it is suf-
ficient to explain all the differential cross-section
data available at energies above 82 eV ( at these



800 TRUHLAR, RIC E, KU P PE RMANN, TRA JMAR, AND CARTWRIGHT

energies all the data is for small scattering angle).
We have shown that use of good analytic SCF func-

tions for both the ground and excited states yields a
generalized oscillator-strength curve different
from the one obtained from highly accurate corre-
lated wave functions. Nevertheless, the shape of
the Q(E) curve is not affected much and the differ-
ential cross sections are qualitatively the same.
For any quantitative (i.e. , better than about 20 /p)

comparison of differential cross sections, how-

ever, the differences are too important to be ne-
glected. This will make it difficult to accurately
test the Born approximation for electron-molecule
scattering, for which accurate correlated wave
functions are generally not available. It will also
limit the usefulness of the Born approximation un-
til such wave functions are obtained.
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APPENDIX: FITS TO GENERALIZED OSCILLATOR
STRENGTHS

For all the fits to 1'S-2'P generalized oscillator
strengths, we took a = 3.391 [Eq. (38)]. The other
parameters are given in Table XIII.

TABLE XIII. Analytic fit of theoretical generalized
oscillator strengths.

Fit

y0„(0)

C(
C2

C3

C4

C5

Ce

I
KI

0.2759

0.456266
0.414351

—1.74889
6.87112

—10,0300
4.SS172

2

KKB
0,2882

0.686236
0,334447

—0.312246
—0.797749

3

SCF
0.242

0.73 9273
-1,81866
11.3724

-21.5758
15.0046

The first fit was obtained from 51 values of
$0„(q) in the range q =0.224-4. 47 calculated by
Kim and Inokuti. " The fit is good to better than
0. 1 ~o and has N = 6.

The second fit was obtained from 20 values of
$0„(q)in the range q = 0. 1 —3.0 calculated in the
length formulation by Kennedy, Kingston, and
Bell. "~ " The fit is good to about 0. 1% and has
N=4.

The third fit was obtained from 134 values of
Pp„(q) in the range q= 0.212-6. 54 calculated by us
from SCF wave functions. It is good to about l%%uo

and has N = 5. The actual optical oscillator strength
$0„(0)yielded by this calculation was 0.24234.
Further, in the notation of Ref. 19, these wave
functions give Z„"' = 0.404864.
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