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A simple modification of the Thomas-Fermi statistical model for electrons in atoms and ions
is presented, which corrects one of the model's major deficiencies, namely, its overestimation
of the electron density near the nucleus. Exploiting the fact that near the nucleus the potential is
nearly Coulombic, boundary conditions are derived from wave mechanics and incorporated
into the model equations. The resulting equations are expressed in integral form and solved
by a straightforward iterative technique. Results for total atomic energies show marked im-
provement over the corresponding results obtained from. the Thomas-Fermi model, with only
a slight increase in the required computational effort. The procedure is extended to obtain a
relativistic statistical model of the atom. Numerical results show good agreement with wave
mechanics in total energy calculations and in the form of the density near the nucleus. The
relativistic effects are of greater magnitude than exchange or inhomogeneity corrections to
the Thomas-Fermi model for large Z atoms.

I. INTRODUCTION

Because accurate solutions of the Schrodinger
equation for many-electron atoms are so difficult
to obtain, it is of considerable interest to develop
simplified models for the description of electrons
in atoms. ' This is particularly true if one is not
interested in all the details of the electronic struc-
ture, but only in certain gross features such as,
for example, an effective one-electron potential
for use in calculations on single-particle excited
states, for a description of the ion core potential
in electron energy-band calculations in solids, or
in certain moments of the electron charge density.

For these reasons the Thomas-Fermi (TF) mod-
el of the atom continues to attract widespread in-

terest. This model is based on the crudest of ap-
proximations, namely, that the potential acting on
the electrons may be replacedlocally by a constant,
and therefore that the electrons in a small volume
elementbehave as "free" fermions, in a constant
potential, with wave functions of the form e~k
This plane-wave approximation leads to a well-
known expression for the kinetic energy density,
which is proportional to the &power of the electron
density. Since the model electron density becomes
infinite at the nucleus, the kinetic-energy density
also becomes infinite, whereas from wave mech-
anics it is known that the electron density is con-
stant, and that the kinetic-energy density ap-
proaches zero near the nucleus. This is perhaps
the most serious defect of the TF model; among
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other defects may be mentioned the facts that the
electron density does not approach zero sufficient-
ly rapidly for large radii and that no details of

. the electronic shell structure can be seen in the
TF electron density. Consequently, results calcu-
lated from the TF model are rather disappointing
except in a few specific cases. '

The problem of correcting the divergence of the
kinetic energy density as x-0, that is, of obtain-
ing the so-called "kinetic-energy correction, "has
been studied by a number of investigators. 4 In
1935, WeizsKcker' first derived a correction based
upon the assumption that the wave functions of the
electrons are modified plane waves of the form
(l+o, ~ r)e&~ r, where o, is a constant. A modi-
fied TF equation was derived which gives a con-
stant electron density near the nucleus, in good
agreement with the results of wave mechanical
calculations. However, the agreement between
energies is not correspondingly improved. ' Re-
cent work by Yonei and Tomishima' has shown
empirically that if the WeizsKcker correction is
reduced by the factor of 5, then excellent agree-
ment with wave mechanical energies is obtained.

The rigorous calculations of Kirzhnits, ' Golden, '
and Baraff and Borowitz" use perturbation ex-
pansions to obtain quantum corrections to the TF
model in a formal way. Kirzhnits has shown that
the factor by which the Weizsacher correction
should be reduced is —,'. The work of Baraff and
Borowitz is based on an expansion of the many-
electron Green's function in a series in powers of
h; the lowest-order term gives the TF model. The
pext-higher-order terms arise from exchange and
znhomogeneity effects. Schey and Schwartz" have
studied these higher corrections by numerical
methods and have shown that the corrected den-
sities and potentials do not give significant im-
provement over the simple TF model; in some
cases, poorer results are obtained. Thus, these
attempts to improve the TF model have achieved
only limited success; it is not clear whether im-
provements to the TF model have in fact been ob-
tained.

Plaskett and March, "~"using a model adapted
from application of the WKB approximation to the
Schrodinger equation, included the centrifugal
barrier in the potential. Greatly improved ener-
gies were obtained by replacing the factors l(l+ l)
which occur in the wave equation by (l + —,')'. This
causes the radial density 4''n(r) to become zero
at some inner cutoff radius. The presence of this
inner cutoff, which reduces the normally high TF
model density, is the principal reason why ener-
gies are improved in this model.

The purpose of this paper is to present a model
for the atom which gives the correct form of the
density near the nucleus in a natural way and which
gives the correct form of the kinetic energy den-
sity in this region. The importance of obtaining

such a model has been emphasized by Gombas. 4

The model which we propose here is based on
the observation that the TF approximation —treat-
ing the potential locally as a constant —is extreme-
ly poor very near the nucleus, precisely in the re-
gion where the model suffers from its most serious
defect. But near the nucleus, the electron density
is known to be approximately constant —the ma-
jor contributions to the electron density in this
region arise in wave mechanics from K-shell elec-
trons, and for sufficiently small x the approximate
form of the R-shell electron density can be easily
obtained from wave mechanics.

The semistatistical model consists of retaining
the TF model for radii x greater than some small
radius x0, but of using a wave-mechanical density
pW(r) for radii r &rO. From the density p~(r),
boundary conditions on density, slope of the den-
sity, and on the kinetic energy density at r0
(which are required to fit continuously on the cor-
responding quantities obtained from the TF model)
equations for x &~0 are obtained. In a 'sense, this
patches up the TF model by building in wave
mechanical information which is known to be rel-
atively accurate for small radii. Because of the
self-consistent manner in which the model equa-
tions must be solved, the modifications near the
nucleus have the effect of slightly reducing the
model density at large radii and result in a more
realistic one-electron potential.

In Sec. II, we reformulate the TF equations in
terms of an integral equation rather than a differ-
ential equation; the integral equation is much
easier to solve numerically and allows in a sim-
pler way for the inclusion of the semistatistical
density for x &x,. The integral equation also
greatly simplifies the numerical solution (which is
required for the calculation of effective one-elec-
tron potentials) of the TF equation for atoms of any
degree of ionization. In Sec. III, the nonrelativ-
istic semistatistical model is developed in detail
and applied to the calculation of total atomic en-
ergies for selected ions.

The considerations leading to the semistatistical
model may be easily extended to obtain an accept-
able relativistic model of electrons in heavy atoms.
They are discussed in Sec. IV.

II. INTEGRAL EQUATION FOR TF MODEL

In this section, we develop a method of solution
of the TF model equations which increases the ease
of obtaining self-consistent solutions for ions.

In Sec. III, this method of integration is used in
the development of the semistatistical model, in
which solution of the equations in differential form
would pose extreme difficulties.

The basic equation of the TF theory for an atom
or ion is '~4
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V'P(x) = (4e/3zk')(2m[@—, V(x)])'~' —4mZe5(r), (1)

where Q(v) = —e 'V(r) is the TF potential and p, is
the Fermi energy (or chemical potential), which
can be interpreted approximately as the minimum
energy required to add another electron to the sys-
tem. Solutions for the neutral atom (p. = 0) are
easily obtained in a straightforward way; however,
it is not simple to obtain accurate solutions to this
equation for positive ions (p &0). '~" This is be-
cause the quantity p —V(r), which appears on the
right-hand side of Eq. (1), vanishes at some finite
distance s from the nucleus; then the TF ionic
potential is Coulombic past the point x~, and the
density of the core electrons vanishes at x . The
difficulty is that the termination point x~ is deter-
mined through a condition on the value of the slope
of the density that the desired solution is to have
at x~. This method is accurate for high degrees
of ionization because the density curves cut the
axis at a fairly large angle at x . For smaller
degrees of ionization, the curves are nearly tan-
gent at xm; hence, the tangential slope and x~
cannot be accurately determined. Kobayashi~4 was
able to remove this uncertainty in the solutions for
ions of low degree of ionization by the adoption of
a complex inward numerical-integration technique.

These solutions for TF ionic potentials can be
accurately obtained if we choose not to use the dif-
ferential form of Eq. (1) for the TF potential, but
use instead an integral equation. The TF particle
density is

(2)

Expressing the potential energy V(r) in terms of
the density gives

V(x) = —Ze'/y + e fd'x 'n (x ')/
~

r —r '
~

.

Inserting this potential into Eq. (2) gives a self-
consistent integral equation for the TF density,

eter p. is adjusted to meet the normalization con-
dition.

In order to facilitate numerical solution we take
advantage of the assumed spherical symmetry of
n(r) and write

d'x 'n(r ') 1,2

I r —r'f 0

4''n(x')Ch'
(6)

Furthermore, we define the unitless quantities
p(x) and x by x = aox and p(x) = 4ma, 'x'n (x), where
a, =k'/me' is the Bohr radius. Equation (3) can
then be expressed in terms of the radial density
p(x):

x 3/2
px dx (6)

where $ is a constant defined by

& = p, a,/e' —f [p(x')/x'] dx'.

The definite integral in Eq. (7) represents the
potential energy of an electron at the nucleus due
to all the other electrons, and has been separated
off so that the remaining terms in Eq. (6) depend
only on values of the density at radii x'&x.

A method for integrating Eq. (6) is discussed in
the Appendix. The method allows one to obtain
numerically accurate self-consistent solutions for
the density p(x) for all degrees of ionization in a
rapid manner. The procedure is to guess a value
for $, integrate the density, and check for proper
normalization. Normalization is achieved by ad-
justing $. The general behavior of the numerical
solutions is illustrated in Fig. 1.

For the neutral case, in which the density is
normalized to Z electrons, i. e. ,

n(r) = 1 Ze
2@i, p. + —8

372k3-

d'r 'n(~ ')

]Ir'- r')
(3)

p(x) dx=Z,

the solution for p(x) approaches the x axis asymp-
totically for large x and

The solution n(z) of this equation is subject to the
boundary condition

lim V(~) = —Ze'/y + C,
0

(4)

where C is the constant potential at the nucleus due
to the electrons, and the normalization condition

& = —f p(x)/xdx;

hence p, =0.
For ions, the argument in the brackets of Eq.

(6) becomes negative beyond some value xm, where
p(x~) =0. This determines the cutoff for the ion
density, i. e. ,

f d'xn(r)=N, 0 = pa, /e'+ (Z —N)/x (10)

where N is the number of electrons. The param- where N &Z zs the normalxzatxon of the density.
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Results of the numerical integration of Eq. (6)
are presented in Table I. The values of the cutoff
radius x for singly ionized atoms, as well as the
density curves, agree with those of Brudner and
Borowitz, "who use the integration technique of
Kobayashi.

III. SEMISTATISTICAL-MODEL KINETIC-ENERGY
CORRECTION

The well-known expression for the kinetic en-
ergy in the TF theory is easily obtained from the
plane-wave approximation,

2 3
5'k2KE:

( )g J
d Y

2
d

2/3
n x '~'d'x-=dxe x . j.1

0

lim V(x) = —Ze'/x+C,
x-0

(13)

where C is the constant potential at the nucleus due
to all the electrons. Since we can easily solve the
Schrodinger equation for a potential of form (13) to
obtain the density, we can couple this wave-me-

are the potential energy densities). In the TF
theory these densities diverge. The comparisons
clearly illustrate the gross deficiencies of the TF
model for small radii.

We shall now show that the statistical density can
be greatly improved without the use of the contro-
versial WeizsKcker correction, but rather with a
correction based on known approximate wave-
mechanical results.

Near the nucleus, in the limit as ~-0, the po-
tential for any atom or ion behaves as follows:

We define here, in terms of the unitless quantities
p(x) and x, the radial kinetic-energy density cTF(x)
for the TF theory,

TABLE I. Boundary radii and chemical potentials f'or
I various ions.

243p2 p x1 3

'TF"= a0
(12)

Figure 2 is a comparison of the TF radial density
p(x) and the self-consistent-field (SCF) wave-me-
chanical radial density near the nucleus. The TF
model density approaches zero as x' ', whereas
the wave-mechanical density approaches zero much
more rapidly as x'. More profound (see Figs. 3
and 4) are the comparisons in the TF and SCF
theories between the respective kinetic-energy
densities and between the functions p(x)/x (which

Ion

L0+

Na+

K
Cu
Rb+

Ag
Cs
Au+

Fr'

See Ref. 15.

p. (eV)

—7.78
—5.89
—5.23
—4.86
—4.69
—4.54
—4.46
—4.27
-4.24

2.815
4.617
5.199
5.596
5.804
5.997
6.120
6.380
6.434

a
xm

2.817
4.621
5.204

5.812

6.127
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FIG. 2. Comparison of the TF radial density with

that of the Hartree SCF for singly ionized copper. TF,
solid line, Hartree, dashed line.

FIG. 4. Comparison of the TF and Hartree SCF
potential-energy densities for singly ionized copper. TF,
solid line; Hartree, dashed line.

40—

30—

o 20

chanical density to the TF density in order to give
the correct behavior for the density near the or-
igin. As a first approximation, we shall assume
that very close to the nucleus, for x less than some
radius x, which is not yet specified, the density is
due to electrons in the K shell only. By examina-
tion of the wave functions, one may see that this is
a moderately good assumption because the next
most significant contribution to the density is due
to 2s electrons, which contribute less than 12.5%%up

to the density. Hence, from the form of the K-
shell wave functions in the Hartree approximation,
we may expect, approximately,

2 -Px
p (x)=nx e, x&x (14)

for the radial density. Here, n and P are constants
which are yet to be determined.

The TF equation (6) for the density is assumed to
be valid for x &xp and may be written as

0'
0

I I

.OI .02

X (BQHR RADII)

I

~03 p (x)= x'$ +—(Z —Z )
892 2 I 1

FIG. 3. Comparison of the TF and Hartree SCF

kinetic-energy densities for singly ionized copper. TF,
solid line; Hartree dashed line.

x -8/2
p x dx (x&x ) (15)
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where $'=)+ f '[p (x')/x']dx',
0

c(= [p(x,)/x, ]e (21)

Z = f '
p (x')dx',

0 (16)

C -=e'f [p(x)/x] dx,
0

where p(x) =—p, x &x

and x, is the boundary between the inner and outer
regions where the wave-mechanical [Eq. (14)] and
TF [Eq. (15)] densities apply, respectively. In
Eq. (15), the radial integral has been broken into
two pieces, one extending between the limits 0 and

x, in which the wave-mechanical density appears,
and one from x, to x in which the TF density ap-
pears. The integrals in ( and Z~ represent the
contributions to potential and normalization from
the inner region. The constant potential at the
nucleus is

The numerical technique is the following: Guess
x0, Z~, and $, then integrate the TF density from
x0 to infinity while adjusting $ to achieve the
proper normalization for the remaining N —ZW
electrons:

p dx=N —Z
X0

P and n are then determined from Eqs. (20) and
(21). Since p~(x) is now determined [from Eq.
(14)], it is checked to see if it is a solution to the
second of Eqs. (16), i. e. , that a consistent value
of ZW is obtained. If it is not, guess another
value of ZW and repeat the procedure until all con-
ditions are satisfied for the chosen x,.

In order to determine the boundary point x0, we
note that the radial kinetic-energy density due to
the K electrons near the nucleus is

p(x) -=p, x &x0
(x) = —(h /m)q*(x)V'y (x), (22)

PTF(x0) P~(x0)
dp (x0) dp (x0)

and hence is uniquely determined by the self-con-
sistent solution for the density p(x).

In order to determine o, , P, and g we use the fol-
lowing procedure. Because wave functions and
their first derivatives are continuous, it is natural
to assume that the density and its slope are con-
tinuous. Hence, it is necessary to specify the den-
sity and its slope at the initial point x, of the in-
tegration. We obtain these boundary conditions in
terms of o and P from the wave-mechanical form,
Eq. (14). Therefore, atx, we have from Eqs.
(14) and (15)

where the assumed form of the wave function is
from Eq. (14):

( )
( a) -))x/2

Hence, e (x) = (e'/a )(p/2x p'/8) p (x)w (23)

We choose x0 to be the point where the kinetic-
energy density [Eq. (23)] fits continuously to the
TF kinetic-energy density [Eq. (12)]. This corre-
sponds in a sense to requiring second derivatives
of the wave function to remain continuous. Thus,
by requiring

(x ) —e (x ), (24)

p (x ) dx x (18)

2/3
I TF 0 2 3 8m 2

p (x0) dx x 2 3)T

&&[x0pTF(x())] "'(Z —ZW) (19)

(Z —Z )3' x '[~'+(Z-Z )/x ]
(20)

Furthermore, from Eq. (11) we have

Equating (18) and (19) and using (1'I), we find

we uniquely determine the matching point x,. If
Eq. (24) is not satisfied, another value for x, is
chosen and the calculation is repeated. The entire
iterative procedure converges very rapidly.

In Figs. 5-7, the density p(x), the kinetic-ener-
gy density e(x), and potential energy density p(x)/x
are plotted for the copper ion Cu+ near the nucleus.
The improvement of the semistatistical method
over the TF model, in comparison to the wave-
mechanical approach, is clearly displayed. In
Table II, results from the semistatistical model
are compared to the TF and Hartree SCF treat-
ments of the alkali ions and the related subgroup
of copper, silver, and gold. SCF results arefrom
calculations by Snow et al. " and by Dickinson. "
The TF and semistatistical results are calculated
using the numerical techniques described in this
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FIG. 5. Comparison of the nonrelativistic semistatis-
tical (SS) TF, and Hartree SCF radial densities for singly
ionized copper. SS, solid line; TF, short dashed line;
Hartree, long dashed line.
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FIG. 6. The nonrelativistic semistatistical kinetic-
energy density for singly ionized copper. xp=0.032.
~TF(x), solid line; e(x), dashed line. (See Fig. 3.)

work.
A characteristic of the solutions to the present

model is that the boundary point x, increases rapid-
ly for smaller Z. In fact, it is not possible to find

FIG. V. The nonrelativistic semistatistical potential-
energy density for singly ionized copper. (See Fig. 4. )

a point of intersection of eW(x) and eTF(x) for Li+.
This is to be expected because Li+ consists only of
K electrons, hence, the function pW(x) is the de-
sired solution over the entire region.

The potential at the nucleus,

& (0) = J [p(x)/x]dx,e

when calculated from the TF model (when compared
to the wave-mechanical result) is too large by 16%
for large Z to 25% for smaller Z. When calculated
by the present model, we see that it varies, re-
spectively, from 3 to 14% too large. It is to be
expected that the results should be better for
larger Z, where the statistical model is more ap-
plicable.

The total energies in the semistatistical model
are improved considerably over the TF results.
If we calculate the total energy using the wave-
mechanical kinetic-energy density [Eq. (30)j up to
x, and the statistical kinetic energy density [Eq.
(18)] beyond x„we find that the nonrelativistic en-
ergies are too high by 6'%%uo for large Z to 18% for
Na+. This cuts the error roughly in half over that
attained in the TF model. If one assumes that the
semistatistical density is a corrected statistical
density such that all physical quantities are cal-
culated strictly from formulas of the TF statisti-
cal theory, there is further improvement in total
energy calculations. In this case, the energies are
low by 1.5% for large Z to 1. 5'%%uo high for Na+, as
compared to nonrelativistic SCF energies.

Barnes and Cowan" have calculated atomic bind-
ing energies based on cutting off the radial density
at some inner radius. The advantage of the pres-
ent approach is that good energies are obtained
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TABLE II. Specific results from the Thomas-Fermi nonrelativistic and semistatistical models, and the Hartree SCF.
All energies are in keV.

v (0)e
v (0)

SCF
v (0)

Semistatistic al
c d

T W

87
79
55
47
37
29
19
11

3

691.8
608.3
375.1
304.3
221.2
159.7
90.8
43.7
7.6

701.9
560.3
240.6
166.83
95.4
54.05
20.15
5.62

0.268

323
262
187.5
133.5
73.91
34.8
5.3

611.4
486.03

205.63
141.5
80.02
44.65
16.34
4.42
0.203

586.2
512.3
308.2
246.9
175.7
124.0
67.2
29.8

623.05

495.32
208.96
143.56
80.94
45.08
16.23

4.28

573.6
454.7
189.5
129.44
72.28

39.86
14.06
3.59

0.0098
0.0108
0.0159
0.0189
0.0245
0,0320
0.0515
0.0978

See Ref. 17. v (0) is the potential at the nucleus due

to the electrons.
bSee Ref. 16.

This energy is calculated using the expression eTF(x)
for x&xp [Eq. (12)].

This energy is calculated using the expression e~(x)
for x&xp [Eq. (23)].

along with basic improvement in other properties,
such as radial density, effective potential at the
nucleus, etc. , without the use of ad hoc cutoffs.
Furthermore, this approach is directly applicable
to the relativistic ca,se which we shall now discuss.

obtained by assuming that the potential is Coulom-
bic in a small interval about x. The resulting
statistical density is

n(r) =(Sm'c'5 )
'

IV. RELATIVISTIC SEMISTATISTICAL MODEL
OF THE ATOM

dV' 3/'
x [p —V(r)]' —m'c'—

A Ch
(29)

The nonrelativistic relation

5'k '(r)/2m-V(r) = p, , (26)

[8'c'0 '(r)+m'c']'" —V(r) = p = p, +mc', (27)

which leads to a relativistic statistical density of
the form

which determines the maximum momentum an elec-
tron can have in the TF model, forces k~(r) to ap-
proach infinity near the nucleus. This reflects the
fact that innermost electrons can have very large
velocities and hence, especially for heavy atoms,
relativistic-mass corrections are important. A
relativistic relation corresponding to the above
can easily be written by analogy as

and has been discussed by Gilvarry. The addition-
al term [r(dV/dr)]' removes the nonintegrable sin-
gularity at x = 0, and the density then approaches
zero as ~'+, just as in the nonrelativistic model.
This statistical density will therefore have the
defects of the nonrelativistic model in this region.

The model of Plaskett" is obtained from the
Klein-Gordon equation; the density divergence is
still present but is eliminated by replacing the
factor l(l + 1) by (l + —,)' in the centrifugal term of
the effective potential. This introduces an inner
cutoff in the radial density.

Just as in the nonrelativistic case, these diffi-
culties may be surmounted by using the known
wave-mechanical density for small radii. We as-
sume that the radial density near the nucleus is of
the approximate form

/(r) = (gv ca@3) ([p —V(r)]2 m c~]
R (28)

p (x) =Cx re (so)

As r approaches zero, this statistical density
becomes singular. The singularity is much worse
than in the nonrelativistic case —here the density
is nonintegrable. Rudjkobing" and Gilvarry"
attempted to surmount this difficulty by developing
a model based on a second-order form of the Dirac
equation studied by Temple. " This equation is

where r = (1 P~'/4)"', -

o. = 5'/me' is the fine structure constant, and C
and P are constants.

Equation (22) is obtained from the known form of
the Dirac-Coulomb 1s wave functions which for
spin-up is
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where

(x) =Dx e i[(1 —y)/(1+y)] cosa1/2
K

f[(1—y)/(1+y)] sine'

(31)

(Z —Z )

2x '[g'+(Z —Z )/x ]

I + n' [5 '+ (Z —Z )/x ]
1+ gn'[5'+(Z —Z )/x ]

(38)

where D is a normalization constant. "
As in Sec. III, the relativistic semistatistical

radial density for x &x0 is represented by the sta-
tistical form, obtained from Eq. (28) or (29). We
shall develop here a relativistic model based on
Eq. (28); the advantages of a corresponding model
based on Eq. (29) will be discussed in Sec. V. By
defining pR= p+mc', "we obtain, from Eq. (28),

p (x) = x' f($', x) + f'(g', x—), (32)RT 3m ' 2

where

It then follows that Eq. (35) uniquely determines C:

C=p (x )e '/x (s9)

(x) =2x4vx'fd0$* [Cn p+mc'(P —1)](&, (40)

The iterative method for solution of the density is
identical to that discussed in Sec. III.

In order to determine a unique boundary point x„
we again require continuity of the kinetic-energy
density functions. The wave-mechanical radial
kinetic-energy density is determined from

f((,x) =h + p x dx
0

(33)

where the wave function is specified by Eq. (31)."
The factor of 2 accounts for both E electrons. Eval-
uation of Eq. (40) gives

In Eq. (Ss),

Z =f 'p (x)dx.
e (x) = [2mc'a/(1+a')] p (x)(n/x —a),

where a = [(1—y)/(1+y)] ' ' .

(41)

We solve Eq. (32) by integrating from the point
x„with initial conditions specified by continuity
of the density and slope of the density:

The kinetic energy of the relativistic statistical
density is obtained from the statistical phase-space
density

dp (x )/dx = (2y/x —p)p (x0),RT 0

RT 0 RW 0

(34)

(35)
(2w)'

'k [(c'@'k'+m'c4)&n mc&]

(42)

where

RT 0 2 3 8~2
dx x, RT 0 2 3w

nk (x)
S 'e'[(1+X ')"' —1], (43)4X 2nZC2

(x) =
7TQ

where kPx) is determined from Eq. (27). Hence,

When expressed in the units of Eq. (41), Eq. (42)
becomes

k (x) = [(sm/4x')p (x)]'~' . (44)

X 1+@2,+ RW
(se)

From Eqs. (34) and (36) it is straightforward to
solve for P,

~ 1/2
2

p= " —x, + x +n~Gx, 1— 2

(3'I)

Integration of Eq. (43) gives

(x) = (x' cm'/m )n([1 + ' n'k(x) ] '~'
RT f

fx [k '(x)+(1/2a. ')k (x)]

—(1/2n ) In1nk (x) + [1+n k (x))' )). (45)
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TABLE III. Total energies for heavy ions (singly

ionized) from the relativistic SCF and the relativistic
semistatistical model.

Energy (keV)

RWRSCF

87
79
55
47
37
29

661.1
517.6
211.6
144.7
80.90
44.87

616.8
482.5
195.0
132.2
73.26
40.17

727.0
559.9
221.1
149.6
83.07
45.82

This energy is obtained using eR(x) for x&xp and

~RT(x) for x &x,.
bThis energy is obtained using eRT(x) over the entire

range of x.

The boundary point x, is obtained from the condi-
tions eRT(xp) = eRW(xp), using Eqs. (41) and (45).

The nonrelativistic limits (u - P) in all of the

above expressions agree with their nonrelativis-
tic counterparts in Sec. III.

The results for total atomic binding energies for
heavy singly ionized atoms are presented in Table
III. The results are compared to the relativistic
self-consistent-field (RSCF) energies (ERSCF) by
Barnes and Cowan. " The atomic binding energy
from the statistical method may be calculated in
two ways. First, an energy denoted by ERW is
calculated" using eRT(x) for x &xp, secondly, an

energy denoted by ERT is calculated" using eRT(x)
for x &xp. eRT(x) is used in both calculations for
all x =xp. The energies ERW are 6% higher than

ERSCF for Fr+ (Z = 87) increasing to 11%higher
for Cu+(Z= 29). This error range is the same as

the corresponding calculation using the nonrela-
tivistic semistatistical model. The energy ERT
is not as good in comparison to the respective
nonrelativistic case; here the energy is low by
10% for Fr+ and by 2% for Cu+. By comparing
the difference in energy between the nonrelativis-
tic and relativistic semistatistical models to the
corresponding SCF energy difference in Fig. 8,
we observe that EW —ERW is off by 18% to 8%,
depending upon Z, whereas ET —ERT is roughly
100% off. It appears that the relativistic semi-
statistical model (using the wave mechanical for-
mula to calculate the energy for x & xo) gives a good
qualitative account of relativistic effects in com-
plex atoms.

In Table IV, some specific results are listed.
We note that relativistic effects cause x, to de-
crease in comparison to the nonrelativistic cal-
culation, and further, since the charge cloud is
pulled in tighter, the potential of the nucleus is
greatly affected for large Z. In Fig. 9, a compari-
son is made between the relativistic and nonrela-
tivistic radial charge densities for Fr+. This ef-
fect is one order of magnitude greater than the Di-
rac exchange correction to the TF model. The Di-
rac exchange energy for Z = 80 is approximately"
5 keV (Table V) and only slightly influences the
shape of the TF density. "

A problem arises with the relativistic semista-
tistical model for values of Z greater than 86. As
Z increases, the matching boundary point x, gets
so small that pRT(x) goes through an inflection and
the second derivative becomes positive. " As a
result, the boundary conditions obtained by match-
ing to pRW(x) are not compatible. This phenome-
non is reflected in the values of p (see Table IV).
We should expect P to be, roughly, slightly less
than twice the effective nuclear charge seen by a

60—

50—

40~

50—
(keV)

20—

l0—

0
20

I

50 40 50 60
ATOMIC NUMBE R

70 80 90

FIG. 8. The difference of total en-
ergy between nonrelativistic and rela-
tivistic calculations of the semistatis-
tical model. E-ER, solid line
(E~ and ER~ a,re the total energies
calculated from the wave-mechanical
energy densities for x &xo using,
respectively, the nonrelativistic and

relativistic formulas); ESCF -ERSCF
long dashed line. (ESCF and ERSCF
are, respectively, the nonrelativistic
and relativistic self-consistent-field
total energies); ET-ERT short
dashed line (ET and ERT are calcu-
lated using, respectively, the non-
relativistic and relativistic statistical
energy densities for x&x).
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TABLE IV. Results of the relativistic and nonrelativistic semistatistical models for specific singly ionized iona.

87
79
55
47
37
29

0

0.0082
0.0095
0.0151
0.0182
0,0239
0.0316

v (0)

693.2
585.6
327.9
258.2
180.8
126.2

176.2
158.2
106.0
89.3
69.0
63.24

C(x 10 )

7.64

8.91
6.80
4.90
2.67
1.33

162.6
147.4
101.8
86.7
67.8
52.61

C (x10)

44.85
33.29
10.82
6.63
3.13
1.44

See Table II for corresponding nonrelativistic values.
Nonrelativistic.

E electron. This is not the case if Z becomes too
large.

V. DISCUSSION

The possibility of using Budjkobing's density
[Eq. (29)] in place of the relativistic TF density
[Eq. (28)] for the semistatistical model has been
investigated. It was found that the additional term
[x(dV/dr)]' subtracts out most of the relativistic
pffect on the density. The density curves are
very close to those of the nonrelativistic semi-
statistical model. However, as in the nonrela-
tivistic case, the energies ERT and EH~ agree to
the corresponding HSCF calculation, with the error
range being approximately the same as in the cor-
responding nonrelativistic calculation. These re-
sults are presented in Table VI. In this manner
the problem encountered for Z~ 87 is eliminated;
however, here the values of P are too small.

Many authors have proposed modifications of

the equations of the TF theory in order to arrive
at good total energies. Judgment of the quality
of these calculations is based strictly on the com-
parison with wave-mechanical calculations. In
the present work, it is apparent that we can ob-
tain good total energies (both relativistically and
nonrelativistically) depending on the method of
calculation. These energies, even though they
might be reasonably accurate, cannot be con-
sidered as too significant because the energy den-
sities from which they are obtained differ sig-
nificantly from the corresponding wave-mechan-
ical-energy densities. Useful calculations from
the semistatistical theories might involve calcula-
tions of relative differences, such as those com-
pared in Fig. 8.

Beck" has used the relativistic semistatistical
potential to study relativistic effects on the optical
levels of Tl II. Excellent results were achieved
for the ground state (i.e. , 0.15% error) and excit-
ed states of the same J and parity values. The

I60—

I20

I
p{x)

l

I

I

40-0
I
I

l
I
I

00 I

.05
I

.l5
X ( BOHR RAI3~ ~)

.2

FIG. 9. Comparison of the rel-
ativistic and nonrelativistic radial
densities for singly ionized francium
(Z=87) using the semistatistical
model. RTF, solid line; RSS,
dashed line.
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results for other excited states were poor (par-
tially attributed to neglecting exchange). This is
not an unusual phenomenon because it is well
known that a universal potential for an atom does
not exist. This calculation was based on the low-Z
Pauli approximation using configuration interac-
tion with the basis set generated by the relativis-
tic semistatistical potential.

We have used the nonrelativistic semistatistical
potential as a given effective one-particle potential
for straightforward solution of the Schrodinger
equation for all the levels in Cu II up to the third
level. Energy eigenvalues for the lowest two
states agree to within 5% with HFS calculations.
The probability density agrees extremely well with
the density obtained from HSCF calculations. This
improvement in the one-electron potential is due
in part to the fact that in this model the electron
density near the nucleus is reduced to a realis-
tic value. The density is then forced by the bound-
ary conditions at xo to peak more highly and then
drop off more rapidly at large ~. This results in
a more compact electron cloud and a better one-
electron potential than in the TF model.

Thus, the self-consistent semistatistical po-
tentials calculated by means of the models dis-
cussed in this paper appear to provide a good
starting point for more sophisticated calculations
of atomic wave functions.
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APPENDIX: NUMERICAL SOLUTION OF THE SELF-CONSISTENT INTEGRAL EQUATION FOR THE DENSITY

In this Appendix we obtain a simple method for integrating Eq. (6). By using a trapezoidal integration
technique, it is easy to show that

P x' dx'=2 P. 1+P. ~.+ — P x' dx',
0

where

f z=l z —1 z 0

hx. =x.—x. , x =c; p =p(x )
z z z1' 0 x =x.

n

(Al )

We choose the lower limit for the numerical integration at e, which is some small finite value of x, in
order to avoid the singular factor 1/x at the origin. The values of the integrals up to e may be analytically
determined because the behavior of the density is known for small x." Subtracting the second of Eqs. (Al)
from the first gives

f 1 1
n 1 n —1 p. . p.

z 1 z 1p(x')dx'= P (p. +P.)b.x. ——g + —Lx. ——,'(Lx )' p +C(g e)
1

x x 2x . i Ii i-2 . x. x. i ' n xx n-1
0 n i=1 i=1 i —1 i n n —1

(A2)

where 4 ($, s) = ( ———, p(x') dx'
J x x (A3)

Substitution of Eq. (A2) into (6) gives

8@2 Z 1
' —1 7 3/2

x '
5 —C'(5, &)+ — Q (P ~ +P.) — —— +k(~x )'- P3m n ' x . x i-1 i x. x. 2 n x x n-1

~n i=1 n z —1 z n n —1
(A4)

The value of p(x) at x=xo is determined by

p, =(8v 2/3w)x '[g —4(&, e)+Z/e]'~' . (A5)

hence p, = (8&2/3m)x, '[h —C (h, e) + Z/x, + 2(n.x,)'(1/x—,x,)p, ]'~', ete. (A8)

The convenience of this method is due to the fact that the interaction integral (A2) is completely deter-
mined by the known density at the Points x„ 1, xn 2, etc. , and the definite integral f [P(x)/x]dx

0

occurs only in the parameter $ which is adjusted for normalization. Since at each point the density is
uniquely determined by the previous values, the self-consistent numerical integration becomes extreme-
ly simple. A value for $ is guessed, the integration for p is carried out, and then the integral 1'pdx is
checked for correct normalization. The correct value for $ is then obtained by trial and error; however,
the process converges very rapidly.

The solutions are insensitive to the choice of e as long as it remains in the region between 10 4 and 10 '
Bohr radii. The reason for this is that for radii less than 10 4 Bohr radii the numerical integration fails
because the function p(x)/x is singular; for the region greater than 10 ' Bohr radii the analytic form
C'(g, e), which is obtained by assuming x is small, is no longer sufficiently accurate.
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