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An investigation is made of the extent to which the binding energies and wave functions for
some states of the nm e, G.'& e", and +Pe" atoms are affected by the dipole and higher multi-

pole interactions of the electron with the meson or the antiproton. The meson or antiproton

is treated as a classical point charge. Perturbation theory is employed to determine the ad-

mixture of discrete excited states of the unperturbed electron Hamiltonian. The unperturbed

electron Hamiltonian takes into account only the monopole interaction of the electron with the

meson. A variational method is employed to determine approximately the change in the bind-

ing energy as well as some of the more important features of the distortion of the electron
wave function. It is found, in particular, that the binding energies of those states of the e& e

atom in which the meson is in a circular orbit with principal quantum number n = 27, 28, or 29

are lowered by slightly less than 1 eV. The maximum relative change in the amplitude of the

electron wave function for one of these states is found to be roughly 20%.

I. INTRODUCTION

In the preceding paper, ' the wave functions and
binding energies are estimated for a large num-
ber of states of the nm e, nE e, and ape at-
oms. In each of these instances the meson is as-
sumed to be in a circular or nearly circular orbit,
and the electron is assumed to be in a 1s orbit.
The calculations which are presented in Ref. 1 do

not, in effect, take into account the dipole and
higher multipole interactions of the electron with
the meson.

The purpose of the present paper is to estimate
the effects which these multipole interactions
have on the atomic wave functions and binding en-
ergies. The estimates made here of the extent to
which these interactions distort the electron wave
function are used elsewhere' ' to ascertain that
the effects of the interaction of an nK e atom
with a nearby helium atom, which are calculated
in Ref. 2, and the Auger rates for circular or-
bits of am e, aK e, and ape atoms, which
are calculated in Ref. 3, are determined with suf-
ficient accuracy. The calculations made here of
the correction to the binding energy provide the
basis for the estimate made in Ref. 1 of the extent
to which the dipole and higher multipole interac-
tions of the electron with the meson affect the en-
ergy difference between a circular orbit with
principal quantum number n and a nearly circular
orbit with the same principal quantum number,
but with orbital angular momentum (n —2). Since
all of the effects of these interactions are found
to be relatively minor in the instances which are
of any interest, some of the calculations which
are presented here are limited to those states of
the aK- e- atom in which the K meson is in a

H 4 (r, r )=E 4 (r, r ), (1.la)
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In Eq. (1.1) the positions of the electron and the
meson with respect to the n particle are denoted
by rl and r&, respectively, and the reduced mass
of the meson and a particle is denoted by M. If
only the monopole interaction between the electron
and the meson is considered, Eq. (1.1) takes the
form

H e (r, , r ) =Z e (r, , r ),c c 1' p, c c 1' p
(1.2a)
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The calculations which are given in Ref. 1 are
to a considerable extent concerned with finding

circular orbit with n=27, 28, or 29. These are
the states which are studied in considerable de-
tail in Ref. 2.

Energy is expressed in rydbergs throughout
this paper. Likewise, the unit of distance is the
hydrogen Bohr radius, and the unit of mass is the
electron mass.

The calculations which are presented here are
based on some of the results which are obtained in
Ref. 1. These results may be summarized as fol-
lows. The mesonic atom is found to be adequately
described by solutions of the wave equation
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approximate solutions to Eq. (1.2). It is shown
there that the rms velocity of the electron is at
least an order of magnitude larger than that of the
meson if the principal quantum number of the me-
son is fairly large, as it is for the three levels of
the nE e atom which are being given relatively
detailed consideration in the present paper. It is
also shown that a circular meson orbit with a fair-
ly large value of n has a rather well-defined radi-
us, since its wave function is sharply peaked. In
particular, it is shown in Ref. 1 that for some
purposes the meson may be regarded as a station-
ary point charge which is situated a distance r
from the n particle. The distance 7'& for a cir-
cular orbit is defined to be the value of the mean
separation between the meson and the n particle
if the solution to Eq. (1.1) or Eq. (1.2) is ap-
proximated with a two-parameter variational wave
function which is the product of two hydrogenic
functions, the variational parameters being the
effective nuclear charges for the electron and the
meson.

It therefore seems reasonable to suppose that
the effects of the dipole and higher multipole in-
teractions, which are given by

H =H —H
bc b c'

4 p,
'

d8
1 p,

1 p.

(1.4)

can be determined to a satisfactory degree of ac-
curacy by treating the meson as a stationary point
charge which is a distance 7& from the n particle,
since the perturbation Hbc surely distorts the elec-
tron wave function far more than it does the wave
function for the much more massive and rather
more slowly moving meson. The problem is there-
by reduced to determining what changes occur in
the ground-state electron eigenfunction and eigen-
value if the interaction Hbc is added adiabatically
to the unperturbed electron Hamiltonian

In order to determine the effects of Hbc it is
necessary to have reasonably accurate estimates
of the eigenfunctions and eigenvalues of the opera-
tor Hde, particularly for the ground state. The
ground-state eigenfunction and eigenvalue of Hde,
which are denoted here by ude(ri, 7~) and Ede(~&),
respectively, are calculated approximately in
Ref. 1, although for a different purpose. Although
it is possible to compute ude and Ede exactly by
numerical integration of the differential equation,
it is assumed in Ref. 1 that it is sufficient to em-
ploy a 1s hydrogenic function with an effective
charge z~, which is determined by minimizing the
expectation value Ede& of the Hamiltonian Hde.
Values of z~ are shown in Fig. 3 of Ref. 1. It is
assumed that these ground-state variational wave
functions and energies are accurate enough to be
employed in the present paper.

The perturbation Hbc introduces components of
other eigenfunctions of Hde into the ground-state
electron wave function. It is convenient, for two
reasons, to consider the contributions from the
discrete part of the spectrum of Hde separately.
One reason is that these contributions may be
readily estimated using perturbation theory. The
other reason, as explained in more detail in Ref.
3, is that some of the low-lying excited states,
even though they have very small amplitudes, are
likely, because their wave functions have a large
degree of overlap with the rather steeply rising
wave function for the ejected low-energy electron,
to affect the Auger rates to an appreciable extent.
On the other hand, the interaction of the mesonic
atom with a nearby helium atom might reasonably
be expected to be affected significantly only by the
distortion at points where the unperturbed ground-
state wave function is not negligibly small. This
contribution to the distortion, which is surely com-
posed predominantly of eigenfunctions of Hde from
the continuum, is estimated roughly in Sec. III
with a variational method. The contribution from
the discrete part of the spectrum of Hde is esti-
mated in Sec. II.

For the sake of mathematical simplicity, the me-
son is assumed to be on the positive z axis. The
interaction Hbc can then be written in the form

II. COMPONENTS OF DISCRETE EXCITED
STATE EIGENFUNCTIONS OF Hde

where VEL is defined by

L, L+1
1

V = 2P (cos 81)
p, P

(1.5)

Since the ground state of the unperturbed Hamil-
tonian Hde is a 1s state, and since the meson is as-
sumed to be on the z axis, the only eigenfunctions
of Hd with nonvanishing components in the
ground-state eigenfunction of the operator (Hde
+Hf,c) are states with magnetic quantum num-
ber m =0. The amplitudes for the 2p and 3d states
with m = 0 are the only ones which are computed in
this section. These amplitudes are denoted by

b2~ and b3d. As explained in more detail in Ref.
3, it suffices to compute only these two ampli-
tudes in order to be able to estimate roughly the
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effect of the discrete excited-state eigenfunctions
of Hde on the Auger rates.

Once the eigenfunctions and eigenvalues of Hde
are known, the calculation of b2p and b3d be-
comes, in principle, straightforward. Some as-
sumptions are now made concerning these states
in order to simplify the calculation. As men-
tioned in Sec. I, the ground-state eigenfunction
is assumed to be a 1s hydrogenic function which is
characterized by the effective nuclear charge zv,
and the ground-state eigenvalue is assumed to be
equal to the function Edz„(ri&). Values of z„and
Edev are calculated in Ref. 1. The eigenfunctions
of Hde for the discrete excited states are assumed
to be given accurately enough by hydrogenic func-
tions which are characterized by unit effective
nuclear charge, because most of the values of r&
which are considered in this paper are, at most,
not much larger than a hydrogen Bohr radius. The
eigenvalues of Hde for the discrete excited states
are assumed to be given accurately enough by
(-ne ), where ne is the principal quantum num-
ber of the electron. If the mean radius T, of the
electron orbit in the ground state is appreciably
larger than 7&, as it is in many of the instances
which are considered in this paper, including the
circular orbits of the nK e atom with n =27, 28,
or 29, then the overlay of the 1s wave function
with either the 2p or the 3d wave function is prob-
ably given fairly accurately, and no very large
error should be introduced into the calculation.

The amplitude b2p is calculated using first-
order perturbation theory. Therefore, only the
dipole part of Hb~ has to be taken into account.
It is easily shown that b2& is given by

3/2 S -5
=32(2z )

2p v V

x [l —(l+y +-,y +-, y )e ']2

x (E +4)
dev

where y =(z + —,)r
1 v p.

There are two significant contributions to the

amplitude b3d, which it is convenient to write as

(1) + b (2)
3d 3d 3d

The contribution b3d'" is calculated using first-
order perturbation theory. Only the quadrupole
part of Hb has to be taken into account in the cal-

bc (1)culatlon of b3d(1). It ls easily shown that b3d( ) ls
given by

(&& (3 )3~g (
&

Z }3/2 2 4y -7
3d ' v p

2 1 3 1 4 1 5$ 32)x[1—(1+y + y +-y + y +&44y2 )e

x(Z +-,') ',
dev

(2.4)

where y =(z + —, )7"
2 v p.

2(r /r )2cos8
p, 1

since the mean radii of both the 2p and the 3d
states are, in every instance which is being con-
sidered, several times larger than T&. It is
easily shown that b3d (') is given by

p, 2P dev

Figures 1 and 2 show the probabilities ) b2p L

'
and Ib3dl' for circular orbits of the ng e,
nK-e-, and ape atoms. These probabilities are
given in Figs. 1 and 2 as functions of the meson
principal quantum number n. It should be re-
marked that the ratio bgdt»/bgd~2& is found to vary
from approximately —1.5 to approximately -3.5
as 7& increases from 0.25 to 1.5. Although the
probabilities jb2p(' and ( b3d)' are quite small,
it is shown in Ref. 3 that the components of the
2P eigenstates of Hde may very well account for
an appreciable fraction of the Auger rate.

The presence of components of the discrete ex-
cited eigenstates of Hde has only a very slight ef-
fect on the energy levels. To first order in Hb~
there is no correction to the binding energy of the
electron. If the 2p state is the only excited eigen-
state of Hde which is taken into account, the sec-
ond-order correction to the energy is

«, +-,)Ib„l

This correction is found to lower the binding en-
ergy by only about 0.008 Ry at the very most.
The correction to the binding energy which is

The contribution b3d") is calculated using second-
order perturbation theory; but the only interme-
diate state which is taken into account is the 2p
state. It is assumed that taking into account the
3p state and other intermediate states would not
change the value of b3d significantly, because
there is good reason to believe that the 3p-3d di-
pole matrix element is anomalously small, and
because the first-order amplitudes for other pos-
sible states should be negligible, since their wave
functions do not overlap to a very large extent
with the 1s wave function. Only the dipole part
of Hb~ is considered in the calculation of b3d('),
since the octupole contribution to the 2p-3d matrix
element should be negligibly small. For the pur-
pose of calculating the 2p-3d matrix element, it
is assumed that the dipole part of Hb~ is given
accurately enough by
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8XIO-
cx. K e Exp e

have to be considered. The Hamiltonian for the
electron may then be regarded as being given by

H =H +V +V (3.1)

6XIO

Ib,j'
4XIO-

where Hde is the operator defined by Eq. (1.4),
and where V&1 and V@2 are defined by Eq. (1.6).

The normalized ground-state eigenfunction of
He is now approximated with a variational wave
function of the form

u (r, r)='u (r,F )(I+ag)/(1+Ca')'~', (3.2)

2XIO-

where ude ls the normalized ground-state elgen-
function of Hde. In Eq. (3.2) the quantity g is the
product of P, (cos8, ) and some suitable function of
x„. g is defined by

g= j(u g('dr; (3.3)

l0
I I

20 50 40

and a, which is a measure of the distortion, is a
parameter which is determined by minimizing the
energy

FIG. 1. The probability I &2@i as a function of the

meson principal quantum number n.
E =Ju*Hu dr

e e ee 1' (3.4)

It is convenient to put the expression for Ee in the
form

due to the Sd state is several orders of magni-
tude lower than that which is due to the 2P state.
It seems reasonable to assume that the energy
correction which is due to the 2s eigenstate of
Hde is also entirely negligible, because, to first
order in By~, the 1s state is the only s state which
has a nonvanishing component in the ground state
of Hde+Hg&. The energy correction which is es-
timated by a variational method in Sec. III, and

which is shown there to have an absolute value
which is an order of magnitude larger than that
of the correction which is due to the 2P state,
is therefore due predominantly to the presence of
components of continuum eigenfunctions of Hde.

720XIO-

I5XIO-

2

b~~

ac K e.

III. VARIATIONAL CALCULATION
tOXt(P-

A. Estimates of Distortion of Nave Function
and Correction to the Binding Energy

In this section, the distorting effect of the inter-
action H~~ on the electron wave function is esti-
mated with a variational method. As in Sec. II,
the meson is assumed to be a stationary point
charge which is situated on the positive z axis a
distance T& from the origin. It is also assumed
here that the distortion of the electron wave func-
tion is adequately described by a term with the
angular dependence P, (cos8,). In this approxima-
tion, only the dipole and quadrupole parts of Hy~

-7
5X)O—

IO 30 40

FIG. 2. The probability I &3dl as a function of the

meson principal quantum number n.
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8 =[Ed +2aT +a'(7 +7 )]/(1 i/a'), (3.5)
e de

where Ede is the ground-state eigenvalue of Hde,
and where

(3.6a)

(3.6b)

(3.6c)

It is easily shown that the parameter a is given by

-2z r
3 -1 p,16z r e

v p,

The evaluation of the contributions to these inte-
grals from the regions with ) r1 —r&) & 4 is
straightforward. Explicit expressions for f, T„
T„and T, for this choice of g are given in the
Appendix.

The other choice of g, which is denoted by g„
is

g, =2P, (cosa, )

a=7ill —[I+(Cn') ']' ]. ,

where q=(T +T —CE )/(2$T ) .de

(3.7)

(3.8)

r
' 1 —3r 5r, r &r

V P (3 11)
((r /r ')[1 —(3i )/(5r )], r )r )

The correction to the binding energy which arises
from taking into account the interaction Ky~ is
given approximately by

E~ ——E —E (3.9)

g =v, lr —7E1' 1 p,
(3.10)

where b, is exceedingly small. Because V@1,
which is defined by Eq. (1.6), has a discontinuous
gradient, it cannot be equated to g, in the immedi-
ate vicinity of the points r1 = r&. For ) r1 —r& )

~ 6, it is only necessary to assume that g1 is
some finite and continuous function which has a
continuous gradient. As 6- 0 the contributions
to the integrals 4, T„and T, from the region
) r1 —r& ) ( 4 become vanishingly small, and the
contribution to T, approaches

It is now assumed that the approximations to

ude and Ede described in Sec. I are accurate
enough to be employed in the computation of a and

Eyc The e.nergy Ed~ which appears in Eqs. (3.5),
(3. 8), and (3.9) is replaced with the approximate
energy Edev, and the eigenfunction ude which ap-
pears in Eqs. (3.6a)-(3.6c) is replaced with a Is
hydrogenic function which is characterized by the

effective nuclear charge zv.
The variational wave function ue, which has the

general form specified by Eq. (3.2), should satis-
fy several requirements. It should become
spherically symmetric as r, -0 and also as r, -~;
for a given value of cos8„ the distortion should
be largest near the Points r1 =r&, and 7'1ue must
be continuous and single-valued at all points r, 40.
Calculations are described here for two choices
of g which have somewhat different functional
forms, but which are both such that these require-
ments are satisfied.

One choice of g, which is denoted byg„ is

TABLE I. The values of z~, r1, and Ede~ for the un-
distorted 1s electron wave function which is associated
with a circular orbit of the G.'& e atom with principal
quantum number n and mean meson orbital radius &&.
The unit of distance is the hydrogen Bohr radius, and the
unit of energy is the rydberg.

ZV

29
28
27

0.569
0.514
0.465

1.51
1.43
1.36

0.993
1.049
1.103

—1.4170
—1.3362
~ 1g2713

This function has a continuous gradient at r1 = r&.
The maximum of g„which occurs at rl =57&/6,
is 4%larger than its value at el =r& The e.xpres-
sions for the integrals f, T„T„and T, obtained
with this choice of g are also given explicitly in
the Appendix.

Some numerical results are presented in Tables
I-III for those states of the nE e atom which are
also studied in Ref. 2. These states are the cir-
cular orbits with principal quantum number n = 27,
28, and 29. The quantity r, is the estimate of the
mean radius of the undistorted electron orbit
which is determined in Ref. 1. The values of r&,
which are relatively small compared with the val-
ues of r„ favor, to some extent, the validity of ap-
proximating the distortion of the wave function with
a dipole term. Depending on whether g, or g, is
employed, the parameter a is denoted by a, or a„
and the energy difference Ey~ is denoted by Eg~, 1
or Ey~, 2. The values of Eg&, 1 and Eg~, 2, which
are rather small compared with the values of Edev,
suggest that varying simultaneously both the param-
eter a and the effective nuclear charge for the un-
distorted hydrogenic wave function, instead of
varying only a and employing the values of z
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a1 g1
2 2a1/F~

29
28
27

-0.0611
-0.0526
—0.0453

-0.0662
-0.0575
—0.0486

0.0041
0.0030
0.0022

-0.215
-0.205
—0.195

TABLE II. A summary of the results which are ob-
tained for several circular orbits of the eK e atom by
using an electron wave function with a distortion which
is proportional to the function g~. The unit of energy is
the rydberg, and the unit of distance is the hydrogen
Bohr radius.

B. Calculations to First and Second Order in the
Strength of the Distorting Interaction

In Ref. 2 an estimate is made of the effect which
the distortion of the electron wave function has on
the interaction of an nK e atom with a helium
atom. This estimate is carried only to first order
in the strength of the dipole interactions of the me-
son with the electrons. It is, therefore, appropri-
ate to make a suitable modification of the preced-
ing calculation of the parameter a.

Because it can be shown numerically for each of
the three cases being considered that (fq') '« I,
the expression for a given by Eq. (3. 7) can be ex-
panded in the rapidly converging series

which are calculated in Ref. 1, would not lead to
results which are substantially different. The ap-

proximatee

inequality

dE
p 2p P Ac &

0 ]4dr'p (3.12)

TABLE III. A summary of the results which are ob-
tained for several circular orbits of the &K e atom by
using an electron wave function with a distortion which
is proportional to the function g~. The unit of energy is
the rydberg, and the unit of distance is the hydrogen
Bohr radius.

29
28
27

—0.1468-0.1316
—0.1167

-0.0836-0.0760
—0.0668

a2 g2
2

0.0067
0.0055
0.0043

4a2/(sr„)

—0.206
—0.205
-0.201

which is seen from the results listed in Tables
I-III to hold for the three cases being considered,
is referred to in Sec. V of Ref. 1, where the ener-
gy differences between some pairs of almost de-
generate states of the O.K-e atom are estimated.
The very small values of a'f would seem to indi-
cate that the distortion of the electron probability
distribution is probably not large enough to cause
the actual values of the mean radius of the meson
orbit to differ very much from what they would be
if there were only a monopole interaction between
the electron and the meson. Also given in Tables
II and III are the values of 2al/r& and 4a2/(5i&),
which are the expressions for a&g& and asg~ at
r&= r& on the positive z axis. Figure 3 shows the
behavior of a&g& and a&g~ on the negative z axis
for the circular orbit of the nK e atom with
n= 28. Apart from the differenceinthebehavior of
a,g, and a,g, as r, becomes very large, none of
the results given in Tables II and III and Fig. 3 de-
pends dramatically on the choice of g.

T (T - t;E ) '(& I, (3.14)

O
I-
C3

~ 0.20-
UJ
O

o O. I5
0

0.10

O

O
cn QO5a

I—

LJJ
CL

I

&K e ATOM

n=28, )=27, B,=n

0.5 1,0 l.5

I, tN HYDROGEN BOHR RADII

FIG. 3. The relative distortion of the electron wave
function on the negative z axis for a circular orbit of the

atom with n=28, as estimated using functions
which are proportional to g~ or g2. The meson is situated
on the positive z axis.

Of the five quantities f, Eye~, Ty, T2, and T3
which determine a, only T, and T, depend on the
distorting interaction (V@I+ V@2). The integral
T, is proportional to the strength of the dipole
interaction, and T, is proportional to the strength
of the quadrupole interaction. Because it can also
be shown numerically in each of the three instances
being considered that
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TABLE IV. The relative accuracy of the first- and second-order values of the distortion parameter a for several
circular orbits of the e& e atom.

29
28
27

(1&ya~ a&

1.059
1.054
1.049

(ag +a) ')/a(

1.001
1.001
1.000

a /aa2 a2

1.068
1.064
1.060

( (l&+ (2&)g

1.003
1.002
1.001

the quantity &7 which is defined by Eq. (3.8) may
be computed rather accurately using the relation

&) '=2LT (T —fE ) '[1 —T (T —t:E ) '].
(3.16)

t =y0 J y e dy, P =1,2, 3, . . . . (A3)
P 0 y0

Values of the integrals sp and tp for fixed yp and
successive values of P may be calculated using the
relations

It then follows that to first order in the strength of
(VE1+ VE2) the parameter a is given by s =Py0 s

1
—e o, P=l 2 3, . . . , (A4)

a"&=—T (T —LE ) ',
2 1 dev

and to second order it is given by

a&'&+a&'& = —T (T —gE )
'

2 1 dev

x[1—T (T —LEd ) '] .

(3.16)

(3.1V)

tp =y0(e —t 1)/(p —1), p=2, 3,4, . . . .
(A6)

If g =g„where g, is the function defined by Eq.
(3. 10), the integral 0, which is defined by Eq.
(3.3), and the integrals T„T„and T„whicharede-
fined by Eqs. (3.6a)-(3. 6c), are denoted by 0„

T2 1 and T» and are given by

The effect of the quadrupole interaction first ap-
pears in the second-order expression. A compari-
son of the values of at'& and (at'&+a&'&) with the val-
ues ofIa calculated using Eq. (3. t) is given in Ta-
ble IV for bqth choices of the function g. The first-
order results are accurate to within 7%. The rela-
tive unimportance of the interaction VE2 in deter-
mining the distortion parameter a is interpreted as
indicating that including a quadrupole term in the
trial wave function and taking into account the mul-
tipole interactions V@3 and VE4 would not lead to
significantly improved results.

51=-,'z '(s +t ),1 ' v 4 (A6)

-1——,'y t —(1+z )t +3e4 02 v

2ql ~l (A6)

Tl 1=+'z 'y '(2(1-z ')s +[z '--,'y ]s

APPENDIX
TS 1~ „y '(s t ). (A9)

The following definitions are made:

= 28
0 v p (Al)

If g =g„where g, is the function defined by Eq.
(3. 11), the expressions for 0, T„T„and T, are
denotedby f„T», T», and T» and are given by

s =y f y'y e dy, P=O 1 2, . . . , (A2)
f =-,'z '[s +t --,' (s +t )+—,', (s +t )], (A10)

T =» ' '([2(1 —z &)+i~ &] (&7z '- &y —3-—"y ')s
1, 2 ' v 0 5 0 3 5 v 4 0 25 P 4

+—'(18+5y —32z ')s +~ (4z ' —y )s -~&y t —(1+z -' —~y )t50 P v 5 00 v P 6 0 2 v 10 P 3

--', (~y —3 —2z ')t ——5(&+-', z ' —4y ')t -~3y 't }20 p v 4 '' ' v 0 5 '0 6



J. E. BUSSE LL

(A12)

(A13)

~J. E. Russell, preceding paper, Phys. Bev. A 1, 721
(1970).

J. E. Russell, Phys. Bev. 188, 187 (1969); J. E.
Russell Phys. Rev. (to be published),

J. E. Russell, Phys. Bev. Letters 23, 63 (1969); Phys.

Rev. A 1, 742 (1970).

G. Feinberg, Phys. Rev. 112, 1637 (1958); S. Paster-
nack and R. M. Sternheimer, J. Math. . Phys. ~3 1280

(1962).

PHYSICAL REVIEW A VOLUME 1, NUMBER 3 MARCH 1970

Auger Rates for Circular Orbits of nn e, nE e, and nITe- &toms

J. E. Russell*

and
DePa&ment of Physics, University of Cincinnati, Cincinnati, Ohio 45221

(Received 13 October 1969)

Auger rates are estimated for some circular orbits of the o'. 7t e, eE e, and @Pe atoms.
It is found, as conjectured by Condo several years ago, that the Auger rate for a circular
orbit depends sensitively on the multipolarity of the transition. In some instances, the multi-
polarity may be required by energy conservation to be large enough to permit a ~ or a E
meson to decay rather than to eject an electron. In particular, the estimated Auger rates for
those circular orbits of the em e, eE e, and ape atoms with binding energies most nearly
equal to that of a He atom are, respectively, 2& 10, 4&& 10, and -10 sec . Radiative rates
are also computed.

I. INTRODUCTION

Estimates of Auger rates for some states of the
am e, eE e, and nPe atoms are obtained in
the present paper. These atoms are formed when
m and K mesons and antiprotons are stopped in
helium. In the particular states which are being
considered here, the electron is in a 1s orbit, and
the meson or the antiproton is in a circular orbit
with large principal quantum number n. In a circu-
lar orbit, the orbital angular momentum l is given
Qy l= (n —1). For the sake of brevity, the partic-
ular atomic states which are being considered here
pre frequently referred to simply as circular or-
5its, and an antiproton is frequently referred to
loosely as a meson.

The purpose of this investigation is to determine
the extent to which the Auger rate for a circular
orbit depends on the multipolarity of the transition.
The circular orbits are distinguished by the fact
that the magnitude )&n) of the change in the meson
principal quantum number is equal to both the multi-

polarity of the Auger transition and the orbital angu-
lar momentum of the ejected electron. It was ar-
gued several years ago by Condo' that the Auger
rate for a circular orbit would be extremely sensi-
tive to the value of I~n), which in some instances
might be required by energy conservation to be
large enough to allow a m or a K meson to decay
rather than to eject the electron, thereby account-
ing for the large values of the measured mean cas-
cade times' 4 for these particles in atomic orbits
in Liquid helium. Since the antiproton does not
decay, radiative rates are also computed in the
present paper.

The computation of the Auger rates, which is
quite straightforward, is carried out in Sec. II by
making use of some approximate wave functions
and binding energies which are determined else-
where. ' The allowed values of I&nI are also deter-
mined in Ref. 5. The results obtained in Sec. II
are found to be indeed sensitive to the values of
) &n ) . In Sec. III, a detailed investigation is made
of the extent to which inaccuracies in the wave func-


