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A modified Michelson interferometer in which one of the mirrors is driven by a piezoelectric
crystal connected to a Gaussian random-noise generator has been used to phase modulate a
light beam from a Spectra Physics 119model laser. The recombination of the modulated and
the unmodulated beam reflected by a stationary prism generates a randomly varying interfer-
ence pattern whose intensity distribution has been analyzed by means of a standard photon-
counting technique. The experimental data agree with the theoretical semiclassical predictions
in the range of linearity of the piezoelectric crystal. Deviations from the theory have been
detected and correlated with the hysteresis of the crystal for large root-mean-square voltages
applied to it.

I. INTRODUCTION

Photon-counting experiments have been widely
discussed in recent literature as a means of an-
alyzing the statistical properties of various elec-
tromagnetic fields. '

It has been observed, in particular, "~"that
phase modulation of a light beam cannot be detect-
ed by a standard photoelectron detection measure-
ment, owing to the fact that the photodetection
process is only sensitive to the absolute magnitude
of the electric field.

It is clear, on the other hand, that if an inter-
ference pattern is formed by superimposing a ref-
erence beam and a phase-modulated beam from
the same source, and if a detector is placed in the
interference region, information on the phase
modulation can, in principle, be decoded from the
photoelectr on statistics.

An experiment has been performed where a laser
beam passing through a Michelson interferometer
is reflected along one arm by a randomly vibrating
mirror and then recombined with the unmodulated
beam. A counting apparatus suitable for the mea-
surement of photoelectron probability distributions
has been built to detect and analyze the intensity of
the randomly varying interference pattern.

A semiclassical model of phase modulation due
to Glauber" is proposed in Sec. II to predict the
probability distribution of photon numbers. In
Sec. ID, a detailed description is offered of the
experimental system, followed in Sec. IV by the
analysis of the experimental results and the com-
parison with the theoretical description. Excel-
lent agreement has been found between the exact
solution of the model and the experimental results

up to a certain degree of phase modulation. Some
disagreement between theory and experiment for a
higher degree of phase modulation is explained by
a careful analysis of the piezoelectric driving de-
vice used to phase modulate one beam. A number
of control experiments, performed to check the
reliability of the operation, are also discussed.

II. THEORETICAL MODEL

In this section, we propose a semiclassical cal-
culation based on the experiment shown schemati-
cally in Fig. 1.

With reference to Fig. 1, consider a laser
source operating in a single longitudinal mode of
the cavity and generating a radiation field which
we assume to be in a coherent state. The laser
beam is divided into two parts, one of which is
randomly phase modulated with respect to the
other. This is accomplished by mounting the mir-
ror M on a piezoelectric crystal which is driven
by an electrical Gaussian noise source. When the
crystal is driven in its linear operating region,
the resulting time-of-flight difference provides a
phase difference between the two beams which is
Gaussianly distributed. " The recombination of
the two beams creates an interference pattern
which is detected by a photomultiplier connected
to the photoelectron counting system.

For a mathematical model of our experiment,
we imagine the phase modulation to be an energy
conserving process which causes random frequency
shifts in the original beam. Ignoring the quantum
aspects of the modulation device, we postulate the
energy- conserving inter action Hamiltonian
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Continuing with the calculation, our program is
to derive an expression for the density matrix of
the modulated beam and to linearly superimpose
it on the unmodulated beam. The density matrix
of the mixed fields will yield the probability dis-
tribution for the photon occupation number as seen
by the detection device.

The formal solution of the Liouville equation in
the interaction representation

8
ih —P=[xi, P]

FIG. 1. Block diagram of the modified Michelson in-
terferometer and of the modulation device used in the
experiment. The letters refer to the following compo-
nents: L, laser; P, prism; B, beam splitter; M, mir-
ror; C, crystal driver; N, Gaussian noise generator;
S, slit.

is given by the well-known expression

xr =Sf(t)a a,
x [x (t ), [x (t ), . . . ,] [x(t ), p]. . .]. (6)

where a and a~ are, respectively, the annihilation
and creation operators of the field mode and f(i) is
a random C-number function whose stochastic
properties are assumed to be Gaussian.

Inserting the Hamiltonian (I) into the above equa-
tion, the density operator of the modulated beam
becomes

More specifically,

&f( )" f( „)&=o,
(2)

x [a a, ... , [a a, p(0)] .].

(f(i ) f(i )) =
1 2n all

per mutations

x(f(i.)f(iI)&(f(iI)f(t )) .

Since the detected properties of the modulated
beam are ensemble averages over the stochastic
process f (t), we define the average density ma-
trix R(t)

Relating f(t) to our experiment, we note that the
phase difference 4 between the two beams can be
written

C = f f(t ') dt '.t

Making use of Eq. (2), we find that the average
phase difference is zero and that the variance in
the phase is given by

R(i) = (p(i)j, R(o) = p(o) .

Utilizing Eq. (7), the averaged density matrix
R(t) is given by

R(t)= Q (-i) f dt. "f"Idi-
0

'
0 1 0 n

x(f(t ). ~ f(t ))[a a, . . ., [a a, R(0)]. . .].

(6)

= f dt, f dt, (f(t, )f(t, )& .
0 0

The Gaussian assumptions summarized by Eq. (2)
and a standard change in the variables of integra-
tion lead to
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R(t) = Z, '-„", (-.'")"
n=O"

(10)

where o' is the variance in phase given by Eq. (4)
and [a a, . . ., [ata, R(0)] ]; ~represents the2nth-
order commutator (e. g. [ 2 =[a%, [ala, R(0)]]}.
It is worth noting that for the purpose of carrying
outfuture calculations the commutator ala, [ala, . . .,
[a~a, R(0)]...]2„can be put in the convenient form

[a a, .. .[a a, R(0)] ]

directly on the phase-modulated beam would not
record any effect of the modulation. (Data sup-
porting this statement are given in Sec. IV. )
However, a mixing of the phase-modulated beam
with the reference beam will show amplitude mod-
ulation on the mixed beam which can be detected
in a photon-count distribution experiment.

In order to calculate the theoretical value for the
photon distribution function of the mixed beam, it
is convenient to introduce the well-known P rep-
resentation for the mixed density operator p~(t)"

p (t) = fP (n, t) in)(n id'n,

where the P function Pt(d(n, t) for the combined
beams, is

P (n, t) = fP (o. —n, t) P (n ') d'n ' (16)

so that Eq. (8) finally becomes

The functions P, and P, are, respectively, the
P distributions for modulated and unmodulated
beams. Substitution of Eq. (16) into (15) yields

p (t)=fP (n )

x[fd'PP (P t) P+n )(P+n 1]d n (17)

—1 aa AO aa . 12

Using Eq. (12) the expectation value of the an-
nihilation operator a(t),

where we have inverted the order of integration
and introduced a variable P for n —n .

Explicit calculation of Eq. (17) is made tractable
by the introduction of the coherent state displace-
ment operator defined by

D(n) =exp(na+ —n a),

(a(t)) = Tr(R(t)ae D(n) ~k) = ~k+n&.
(is)

is easily calculated to be

(a (t)) = exp [- —,
' g (t) ]Tr(R (0)a e },

(13)

With this transformation, Eq. (17) becomes

p (t)= fP (n')D(n')R(t)D (n')d'n,

where we recognize that

(19)

=exp[——,'o (t)](a(0)) e R(t)= fP, (p, t) ~p)(p~d'p. (20)

As expected, the modulation process does not
affect the average intensity of the input beam since

(a a(t)) =Tr(R(t)a a}

With the specification that the initial state of both
modulated and reference beam is a coherent state
of amplitude ~cy„we have

g (-1) a'(t) "
nt 2

= Tr(R (0) a a}= (a a (0)) .
(14) 2n

x L q")(-)) (a a)
"

~-,'a, )(la, (a a),
0=0

Hence, a photon-counting experiment performed (21)



STATISTICAL ANALYSIS OF RANDOMLY MODULATED ~ ~ ~

and P, (n ') = &'(n '- —.
' n, ). (22)

The evaluation of the photon probability distribution
I

p„(&) =(n I p (t) In) is now only a, matter of a few
algebraic manipulations which are reported in
Appendix A. The result of the calculation is

OO

e»(--'I~. l') ~ e»l- (~-s)'-'o'«)~, "
'(-'1~0 I')I," (-'I~0I'),

t', S

(23)

where Ls is the associated Laguerre polyno-
mial. Equation (23) can be readily checked in the
limit of no modulation. For o'(t) equal to zero
Eq. (23) becomes

Eq. (24) becomes

2 Ã

P„(t)= „', exp(- I o., l'),

p„(t)= ', ' exp(-4la0I )

~EL"
x', s

Making use twice of the identity

(24)

which is just the Poisson distribution for the com-
bination of the two beams constructively interfer-
ing with each other E.quation (23) represents the
central result of our analysis. Some typical com-
puter generated distributions are shown in Figs.
2 and 3. The comparison of the theory with the
experimental data is presented in Sec. IV.

i. (x) z = exp(- xz)(1+a)
nn=0

III. DESCRIPTION OF EXPERIMENTAL SYSTEM

A. Optical System

,6.

5

.2.

FIG. 2. Theoretical photon-counting distributions for
superimposed phase-modulated and unmodulated laser
beams. The mean number of photons entering the inter-
ferometer during the integration time is 1. The variable
parameter is the mean-square deviation of the phase
measured in radians.

The apparatus (see Fig. 1) used to generate the
phase modulation and to combine the phase modu-
lated with the unmodulated light is basically a
Michelson interferometer. The beam splitter is
a piece of clear glass and the stationary mirror
has been replaced with a prism. With this arrange-
ment, we have been able to superimpose two beams
of the same intensity thus obtaining very nearly
100/p modulation. The movable mirror was re-
placed with a mirror coated for maximum reflec-
tivity at 6328A mounted on a piezoelectric crystal
(modulator unit from a Spectra Physics Model 119
laser).

The light source is a Spectra Physics 119 helium-
neon laser. Periodic checks of its stability were
made by testing the unmodulated laser beam to
verify that the photon counting distribution re-
mained Poisson to within the experimental ac-
curacy.

B. Photoelectron Counting System

The photon counting system is shown schemat-
ically in Fig, 4. The photomultiplier is an Xp
1021 Amperex unit with an $-11 type photocathode
which has a quantum yield of 1/p at 6328 A. The
output is of the 50 Q matched type with a rise time
of 2 nsec. When the photomultiplier is run at
1800 V, a single emitted photoelectron produces a
pulse with an average height of 1 mV. The pulse
is then amplified using a LeCroy No. 134 ampli-
fier with a rise time of 2 nsec and a gain of 100.
The resulting 100 mV pulse is sufficient to drive
the LeCroy No. 161 dual discriminator (dual dis-
crimination is used to insure better pulse uni-
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FIG. 3. Theoretical photon-
counting distributions for super-
imposed phase-modulated and

unmodulated laser beams. The
mean number of photons entering
the interferometer during the in-
tegration time is 3. The variable
parameter is the mean-square de-
viation of the phase measured in
radians.

0
0

formity). A fast gate on the discriminator is used
to shut off incoming pulses during the time the in-
tegrator is discharging. The integrator itself was
built in house and is capable of integration times
from 1 p. sec to 1 msec with sampling rates ranging
from 10000/sec to 1/sec. The total dead time of
the system (time needed to resolve two incoming
photoelectrons) is less than 10 nsec.

The output pulse of the integrator has a height
which is proportional to the number of photoelec-
trons recorded in the particular integration period,
and is recorded on a gammascope multichannel
analyzer. The information stored in the analyzer
is periodically dumped onto computer cards so
that experiments of very long duration can be eas-
ily handled. This is necessary, for instance, to
determine a reliable count distribution of the
noise photoelectrons.

The integration times used in our experiment
were selected on the basis of dead time consider-
ations and the requirement that the integration

time be shorter than the coherence time of the in-
tensity fluctuations of the combined beams. The
times used were 50 p, sec for small modulations
and 1 p, sec for large modulations.

IV. ANALYSIS OF EXPERIMENTAL RESULTS

In this section we present the results of the ex-
periments described in Sec. II. After measuring
the statistical distribution of photoelectrons for
different degrees of phase modulation, the signal
information was separated from the noise (see
Appendix C) by performing a separate counting ex-
periment for the photomultiplier dark noise.

The signal mean number of photoelectrons n and
its second moment can now be determined from
the corrected experimental distribution. A com-
parison with the theory is then performed by eval-
uating the parameters [o,, (' and a'(f) appearing in
the theoretical probability distribution Eq. (23) by
means of the expressions:
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2(2n'+n -n'
2n +n[2(n -n —n)]

c
S
M

S

MCA

FIG. 4. Block diagram of the photoelectron counting
system used in the experiment. The letters refer to the
following components: L, laser; P, photomultiplier;
A, amplif ier; D, disc riminator; C, clock; S, s lave
clock; M, master clock; I, integrator; 0, oscilloscope;
MCA, multichannel analyzer. The numbers refer to the
following connections: 1, disc riminator fast gate; 2,
signal input to integrator; 3, integration start input; 4,
output command; 5, oscilloscope output; 6, integrator
output.

2n'+n '[2(n' n' -n)]-"'

(25)

which are derived in Appendix B.
Table I shows both theoretical and experimental

results for a small average number of photoelec-
trons. For this situation, the combination of a
small mean number of photoelectrons and a long
integration time results in a very small dead time.
The agreement in this case is excellent. Table II
shows some distributions with higher average num-
ber. These were taken with the short integration
time and again the fit is very good.

Table III shows a distribution with very large
modulation. It can be seen that the experimental
results do not fit the theoretical predications with
the same degree of accuracy as in the preceding
case. We attribute this deviation to hysteresis in
the driving crystal. Figure 5 displays the photo-
current of a photomultiplier which detects the light
from the interferometer when the crystal is driven
by a periodic triangular voltage. For a linear
crystal this curve should be a sine squared func-
tion. It is seen that for large driving voltages
the crystal exhibits considerable hysteresis. The
position of the mirror is then no longer Gaussianly
distributed and, as expected, the experiment no
longer fits the theory. As a further check of the
theory, we performed an experiment with the ref-

TABLE I. Experimental and theoretical photoelectron distributions for mixed phase-modulated and unmodulated beams
for a small mean number of photons.

P (n) experimental

0.494 +0.003
0.348 +0.001
0.122 7 ~ 0.000 7

0.029 7 +0.000 3

0.005 3 + 0 ~ 000 1
0.000 77 + 0.000 05
0.000 11 +0,000 02
0.000 006 +0.000 005
0.000 003 +0.000 003

I c OI =0.764 ~ =0.312

P (n) theoretical

0.494
0.347
0 ~ 123 0

0,029 5

0.005 3
0 ~ 000 77
0 ~ 000 09
0 ~ 000 01
0.000 001

P (n) experimental P (n) theoretic al

0.589
0.294
0.091 7
0.021 0

0.003 9
0.000 55
0.000 11
0.000 005

I Qp I
= 0.804

+ 0,002
+ 0 ~ 001
+0.000 7
+0.000 3
+0.000 1
+0.000 05
+ 0.000 02
+ 0.000 005

0 = 1.87

0.590
0 ~ 292
0 ~ 092 6

0.021 1
0 ~ 003 7
0.000 55
0.000 07
0.000 007
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TABLE II. Experimental and theoretical photoelectron distributions for mixed phase-modulated and unmodulated
beams for increasing mean number of photons.

A

P(n) experimental P(n) theoretical
B

P(n) experimental P(n) theoretical

0

1
2

3

4
5

6

7
8

9
10

0,276
0.316
0.226
0.116
0.046

0.015
0.003
0.000
0.000
0.000
0,000

I apl
2

+0.003
+0.003
+0.002
+ 0.002

4 +0.000 7
1 +0.000 4
9 +0.000 2

95 +0.000 06
15 + 0.000 03
03 +0.000 01
015 + 0.000 009
1.80 o = 1.15

0.274
0.318
0.226
0.115
0.045 8

0.014 9
0.004 1
0.000 99
0.000 21
0.000 04
0.000 007

0.400
0.338
0.170
0.065
0.019
0.005
0.001
0.000
0.000
0.000

+ 0.004
+0.007
+0.004
+ 0.001

5 +0.000 5

1 +0.000 3
2 +0.000 2

21 +0.000 05
04 + 0.000 01
007 + 0.000 005

I&pl =1,35 o =1.55

0.404
0,331
0.174
0.066
0.019 6

0.004 8

0.001 0

0.000 18
0.000 03
0.000 004

C

P(n) experimental P(n) theoretical
D

P(n) experimental P(n) theoretical

0.365
0.311
0.189
0.089
0.032
0.010
0.002
0.000
0.000
0.000

I &pl
2

+0.003
+0.002
+0.002

1 +0.000 7
3 +0,000 4

8 +0.000 3

7 +0.000 1
56 +0.000 05

08 + 0.000 02
02 +0.000 01
1.71 o = 2.08

0.366
0.307
0.191
0.089 3
0.033 0

0.010 1
0.002 6
0.000 59
0,000 11
0.000 02

0.474 +0.003
0.304 +0.005

0.145 ~0.003
0.055 3 ~0.000 8

0.016 3 +0.000 4
0.004 3 +0.000 3
0.000 89 + 0.000 05
0.000 15 + 0.000 03

0.000 022 + 0.000 01
0.000 004 + 0.000 004

I o.'pl =1.38 o =2.84

0.476
0.299
0.148
0.055 3
0.016 4
0.004 0

0.000 84
0.000 15
0.000 024
0.000 004

erence beam blocked. The result of this experi-
ment given in Table IV verifies that the statistics
of the photoelectrons are not altered by a simple
phase modulation of the beam.

V. CONCLUSIONS

The feasibility of analyzing the effects of phase
modulation on a coherent light beam by means of

photon counting techniques has been demonstrated
for Gaussian phase modulation.

The comparison of the experimental and theoret-
ical results seems to indicate that, in our case,
the semiclassical description of the phase modu-
lation discussed in Sec. II is adequate.

An interesting result, in our opinion, is the ex-
perimental verification of the often quoted state-

TABLE III. Experimental and thedretical photoelectron distributions for large phase modulation.

0

1

3
4
5
6

7

8

9
10
11

P(n) experimental

0.372 +0.003
0,274 +0.003
0.179 + 0.002
0.101 +0.001
0.047 4 +0.000 8

0.019 0 +0.000 5
0.005 9 +0.000 2

0,001 8 +0.000 1
0.000 47 +0.000 05
0.000 09 +0.000 02
0.000 02 +0.000 01
0.000 004 +O.000 004

I apl =2.21 o' =3.78

P(n) theoretical

0.377
0.264
0.183
0.103
0,047 1
0.018 1
0.006 0

0.001 7
0.000 44
0.000 10
0.000 02
0.000 004
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ment that simple phase modulation of a light beam
does not alter the statistical distribution of photo-
electrons. It seems difficult to anticipate whether
or not our method could be successfully used to
deal with unknown phase modulation processes;
that is, to discover properties of the modulation
system from the experimental knowledge of the
photoelectron statistics. The difficulty is of the
same nature as the one encountered in light scat-
tering experiments where from some experimental
properties of the scattered radiation one tries to
characterize the scattering mechanism.

Further studies of this problem are currently
under way.
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APPENDIX A

In this Appendix, we derive the expression for
the photon occupation number given in Eq. (23).

In Sec. II, it has been shown that the density
operator describing the mixed beams can be ex-
pressed in the following form:

TABLE IV. Photoelectron distribution for phase-modulated beam alone and large phase modulation.

P(n) experimental P(n) theoretical

0
1
2

3
4
5
6
7
8
9

10
11
12
13
14

0.038
0.127
0.205
0.223

0.180
0.116
0.062
0.028
0.011
0.004
0.001
0.000
0.000
0.000
0.000

9 +0.000 7
3 +0.001
9 +0.001
0 +0.001
7 +0.003
1 +0.000 9
1 +0.000 9

+ 0.001
75 +0.000 2

+0.000 7
36 +0.000 03
394 +0.000 03
114+0.000 02
030+0.000 01
007 +0.000 002
n= 3.23

0.039 5

0.127 6

0.206 2

0.222 1

0.179 5

0.116 1
0.062 5

0.028 9
0.011 67
0.004 19
0.001 35
0.000 398
0.000 107
0.000 027
0.000 006
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p~(t) = Jp, (n ') D(n ')R(t) D (n ') d'n,

where P, (n ) =5'(n —~no),

D (n ') = exp(n 'a —n '*g),

(Al)

(A2)

(t) =&m ID(-'n0) Z, [-,'g'(t)]"
0

0
nf

2n„p (,) (2n) (
t )2m-a(,

&=0

and
2n

Rtt)= E l. *&r*tt)P r ~)(-1)
x=0 0=0

x(-.n0I(a a) D (-.'n )lm). (A4)

x (a a)
I
pn, &(2n, l(a a) . (A3)

2n-k

Using Eqs. (A2) and (A3) in (A1) and carrying out
the integration over ~, the probability distribution
for the photon occupation number becomes

By expanding the coherent states in terms of num-
ber states

CO

x=0

the relevant matrix elements (m ID(2n, )(a ta) Ir& and (s [ (ala)&Dt ( ,'n, ) tm)—areeasily evaluated

SZ ~ 'V-Pl -I I'8
(A5)

1/2
(s l(aiba)&DT(x ) Im&

s&(x s )m -s s! I, m -s(i I2)
— lnol'/8

mt s
(A6)

Using Eqs. (A5) and (A6) in Eq. (A4) and performing a few algebraic manipulations, we have

OO

exp(--'ln0I') ~ exp[-(~-s)'-'g'(t)« '(-'ln() I')&
g, S

(A7)

where, in order to achieve a more symmetrical
form, we have used the identity"

aP and R(t). Making use of Eq. (12), it is easily
verified that

(&) = (-x) —I (&)
n l En nt l-n

E LI n
(AS) &mlR«) l~& =e»[- (~-m)'-.'+(t)]&m R(0) In& .

APPENDIX 8

In this Appendix, we derive the relationships
given in Eq. (25). We begin by making a useful
preliminary calculation of the function

Recognizing that

(nla a lm)=(nla a lm&5
)

(B4)

and making use of Eq. (B3), we can write Eq. (B2)
as

G =Tr{a a—. R(t)j .
S,P

Performing the trace in the number representation,
Eq. (Bl) can be written

G =exp[- (s -P) —,'o (t)]Tr{a a R(0)). (B5)
S,P

In our experiment, we assume

G = Q (nla a Im&(mlR(t)ln&,'p nm
(B2)

R(0) =
I ,'n)( ,'n, l, —-

and (B5) becomes

(B6)

where the projection of the identity operator in the

number representation has been inserted between p
=exp[-(s-p) kg (t)](-'n0) (-'n0) . (B7)
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In order to derive the relationships given in Eq.
(25), we make use of Eqs. (Al) and (A2) to write
pM(t) as

Finally, Eq. (87) can be used to evaluate the vari-
ous traces in Eq. (814), and we have

(83)

+Bin, i
(3+4e +e ) .

4 -o'/2 -2o'
(815)

Calculating the mean number of photons in the
mixed beam, we have

'n= Tr(a aD( ,'n, )R(—t)D (—,'n, ))

Equations (812) and (815) are easily inverted to
yield Eq. (25).

APPENDIX C

= Tr(D (-,'n, )a aD(-,'n, )R(t)) . (89)

D (—'n )D(—,'n ) =1,
(810)

make it possible to write Eq. (89) in the form

n = Trl(a + 2n 0 )(a + ~n, )R(t)) . (811)

At this point, we can use Eq. (87) in Eq. (811) to
arrive at the result

The following properties of the displacement op-
erator D(-,'n, ),

An important correction that must be performed
on the experimental distributions before attempting
a comparison with the theoretical results is the
separation of the signal from the noise.

The noise consists of dark current photoelectron
pulses whose voltage height is large enough to
clear the dual discrimination process.

A separate experiment on the statistical distribu-
tion of dark current photoelectrons has been per-
formed for every modulation experiment and a
distribution function W(n) obtained.

It is assumed that W(n) is independent of the prob-
ability distribution of the signal~~ P(n) so that the
experimental distribution will have the form

o' 2 (812)

n

p (n)= Z p(m)w(n-m),
exp

(C1)

n' =»/(a a)'D(-'n. )R(t)D (2n.)j

=Tr(D (,'n, )a a—a aD( ,n, )) . — (813)

In order to calculate the mean square of the pho-
ton occupation number, we make use of Eq. (88)

where the distribution W(n) and Pexp(n) are as-
sumed to be experimentally known. From Eq. (C1)
we can derive at once

p(0) =p, (0)/w(o),

and from the knowledge of p(0) we can calculate
Using the relationships in Eq. (810) and the com-

mutation properties of a and a4, Eq. (813) takes
the form

P(1) = [P (1) —P(0)W(1)]/W(0) .
exp

(C2)

n' = Tr([(a + 2n(~&)(a+ 2nD)

+(a +-,'no+) (a+-,'n, ) ]R(t)j . (814)

In general, any value p(n) can be generated from
the knowledge of pexp(n), W(n), and the previous
values of p(n) up to p(n —1). A computer program
has been set up for this purpose.
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The long phase coherence time of the laser source
makes it unnecessary to adjust the average path differ-
ence with a delay line.

Single mode description can be used here since in
performing our experiment we count for a time which is
short compared to the intensity fluctuations of the com-
bined beams and the collecting aperture of the photo-
multiplier is much smaller than a single interference
fringe.

This relationship was obtained from B. R. Mollow,
Ph. D. dissertation, Harvard University, (1966), Appendix
A, p. A-2.

Actually great care must be exercised in selecting a
photomultiplier whose dark current pulses are all inde-
pendent of each other, since correlated pulses, such as
those produced by back-scattered soft x rays, would in-
validate the derivation. We have made a careful verifi-
cation of the independence of the noise pulses. One of
us (JDK) is very grateful to Dr. I. A. Johnson for pointing
this out to him.


