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We have used the atomic-beam magnetic-resonance technique to improve and extend the mea-
surements of Title and Smith on the hyperfine structure of the (6p ) $3/2 ground state of Bi
(I= 2 ) . We measured the three zero-field hyperfine intervals and computed the octupole inter-
action constant. Our experimental results are P~(&= 5 &= 6) = 2884.666(2), &2(&=4—+=5)
=2171.419(2), and v3(F =3-&=4)=1584.502(2) MHz. From these values, we obtain for the
hyperfine-interaction constants, corrected for the pseudo-octupole interactions due to pertur-
bation by neighboring fine-structure levels A = -446.937 (1), B= -305.067(2), and C = 0.0183
(1) MHz. The assigned errors include only the experimental errors in the measurement of
the three hyperfine intervals, and no estimate of the errors in the theoretical corrections has
been made. We have also corrected the data of Lurio and Landman for the (6p ) P3~2 meta-3 2

stable state of bismuth for these octupolelike interactions and have deduced a fairly consistent
value for the one-electron octupole-interaction constant. From the average value of the octu-
pole-interaction constant c3~2-—0.0206 MHz we find that the nuclear magnetic octupole moment
is 0.0086@&b. This value is compared with the prediction of the shell model.

I. INTRODUCTION

In the course of a series of experiments designed
toobserve thehyperfine structure of the metastable
electronic states of the (6p') configuration of bis-
muth we found that, due to the focusing properties
of our atomic-beam apparatus, we could observe
directly at least one transition in each of the &I"

=1hfs intervals of the 8„,ground state. We mea-
sured the frequencies as accurately as possible in
order to observe the octupole interaction in this
state of bismuth. The results of these measure-
ments are presented in this paper.

The hyperfine structure in the ground state of
Bi' was studied by Title and Smith, ' who were
able to observe two of the direct transitions and
were able to assign values to the hyperfine-inter-
action constants A. and B. We have decreased the
uncertainty in their values and have been able to
obtain a value for C. This has been possible pri-
marily because of our signal averaging system
which allows the resonances to be observed with a
good signal-to-noise ratio and, thus, allows the de-
termination of the transition frequencies with small
uncertainties.

Lurio and Landman' have made precise measure-
ments of the hfs and g factors of metastable states
in the ground electronic configuration of bismuth.
We have freely used the results of their analysis of
this configuration in our own work.

In this paper, we give a brief introduction to the
theory of hfs, a description of our apparatus, and
our results and interpretation. In the Appendix we
presentthe matrixelements requiredto remove the
octupolelike contributions of the dipole and qua-
drupole interactions to the hyperfine structure.

II. THEORY

In order to fix our notation, we summarize the
main formulas used in the theory of hyperfine
structure. The relevant Hamiltonian, valid for
matrix elements diagonal in J, L, and S, is

3C =Af ~ J+BQ + CQ
hfs op op

gzu~B&, —glP, +—I

where I and J are the nuclear spin and total elec-
tronic angular momentum operators, respectively;
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(k)(.)] (u)
hfs k i e n

(4)

Since the dipole- and quadrupole-interaction en-
ergies in second-order perturbation theory are
comparable in magnitude to the first-order octu-
pole energy, the off-diagonal matrix elements of
these operators must be calculated in order to ob-
tain the true octupole-interaction constant. This
is done best by expressing the hyperfine-structure
Hamiltonian (without an external magnetic field) in
terms of tensor operators of rank k:

Te(~)(i) and T~(&) operate on the spaces of electron
and nuclear coordinates, respectively. The sum-
mation on i is over all the electrons. The index k
takes on values 1, 2, and 3 for the dipole, quadru-
pole, and octupole interactions, respectively. The
identification of the tensor operators with the con-
ventional interaction constants A, 8, and C is made
explicitly by Schwartz. ' If we write the energy of
a state F to second order as 5'F= WF&"+8'F"',
then the second-order term becomes

J

W c' = Q i(PfnZP~iZ i
Pfn'Z'PM)i'[W(n~)- W(n V')]-'

hfs

(~'z') -u=&

x [W(nZ) —W (n V')]-'

where [W(aZ)- W(a'8')] is the energy difference
of the fine-structure states o.J and n'J'. The
zero-order wave function [PIc/JEM) is character-
ized by the quantum numbers I, J, F, and M, and

by any other nuclear (P) or electronic (o) quantum
numbers needed to specify the state completely.
The prime on the summation means that e 'J' tv J.
The reduced matrix elements of the operator T~(&)
are proportional to the nuclear moments, while
the reduced matrix elements of Tc(&)(i) are pro-
portional to one-electron hyperfine-interaction
constants which are identified by lower-case let-
ters: a for the dipole constant, b for the quadru-
pole, and c for the octupole. The definitions of the
single-electron reduced matrix elements are given
by Lurio, Mandel, and Novick. 4

In bismuth, the coupling of the P electrons is in-
termediate between LS and jj, and the three states
with J = & are expressed as linear combinations of
the LS-coupled states. The LS-coupling coeffi-
cients, az, ap, and ay, are obtained by fitting the
experimental fine-structure energy separations to
theory, as explained in the Appendix. The a's are
transformed then to the jj-coupling set of coeffi-
cients czj for use in evaluating the single-electron
matrix elements. Both sets of coefficients are in-
cluded in Table I and are the ones given by Lurio
and Landman,

Finally, we list for completeness the diagonal
elements of the hyperfine-structure interactions in
terms of the one-electron constants. These ex-
pressions appear in Lurio and Landman, ' and we
have verified their correctness:

.&(~= ~2) = a '(&+ 5c ') - -,'a "c .''
2z

'
2z

—4(-', )'"c .(c .-c .)a"',
2z 1z 3z

a('D„,)=a('P, )=P

&(J= 2) =b3]2 [e3.'-cl.' —2c2.(e .+ c3.)(-', )"'r/],3 2 3i li 2i li 3i

( 5/2) 2C3/

TABLE I. Intermediate coupling coefficients. The
c's are the coefficients in jj coupling, while the a's are
the I S-coupling coefficients.

S3
2D„, 2

+3/2

c1z
c2z

3E

tz~z

~di

aPz

0.1733
—0.3 104
—0.9345

0.7536
0.3769

—0.5382

—0.0655
0.9430

—0.3264

—0.5799
0.7662

—0.2772

0.9826
0.1184
0.1433

0.3074
0.5213
0.7961

C(Z= j)=c3i2(c .' —4c .'//5+c .') .32 1z 2z 3z

The contribution of the dipole and quadrupole terms
in second order can be obtained from the matrix

A('D, z) = —',a + —',a 2( Py/2) a Values shown are taken from Ref. 2.
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elements given in the Appendix. Second-order ef-
fects of the octupole operator are assumed to be
negligible.

III. APPARATUS

The atomic-beam magnetic-resonance apparatus
employed for this research uses a six-pole A mag-
net and a two-pole B magnet, which are similar in
design to the magnets used by the atomic-beam
group at Princeton University. ' The A magnetpro-
duces a magnetic field that has radial symmetry
and a large gradient which increases outwards from
the axis of the apparatus. Atoms with an effective
magnetic moment p, eff & 0 are deflected toward the
axis, while atoms with a positive effective moment
are deflected outward. This magnet is adjusted so
that most of the atoms that pass through it and can
enter the entrance slit of the B magnet must have

jeff & 0.
The B magnet has the property of deflecting atoms

with p, eff & 0 downward in Fig. 2 and atoms with

P, eff &0 uPward. Thus, most atoms entering the B
magnet, which have not been disturbed in the C-
magnet region, are deflected into the pole tips and

cannot pass through the B-magnet exit slit. The
exit slit forms the only stop that lies on the axis of

the apparatus. Both the A and B magnets are per-
manent magnets and are located within the vacuum
envelope .of the machine. This procedure results
in a less complex, as well as a more stable, sys-
tem than one using electromagnets. The magnetic
field has a maximum value of about 8 kG in each
magnet. The C magnet is a 4-in. electromagnet and
is located outside the vacuum envelope.

A typical trajectory through the apparatus is
shown in Fig. 2. Here the solid lines represent
atoms that have undergone a "flop-in" transition.
For most atomic-beam machines, the focusing con-
dition for a flop-in transition requires that, for an
odd Z atom, the high magnetic-field quantum num-
ber Mgchange between the states Mg= —,

' and My= ——,
'

in the C-magnet region. In our apparatus, atoms
which enter the A magnet with Mg=+ 2 can be over-
focused toward the axis of the apparatus. In such
a case a transition to MJ =+ —,

' induced in the C-
magnet region will force atoms to be driven away
from the poles of the B magnet and through the exit
slit into the detector. This behavior has been veri-
fied both experimentally and through detailed nu-
merical calculations which show an appreciable ef-
fective solid angle for transitions of the type M~
= —,

' -Mg= —,'. This behavior is illustrated by the
dashed trajectory in Fig. 2. Hence, we have been

0.3 '-

0.2-

O. I

-O. I

cm

FIG. 2. Typical flop-in trajectories
through our apparatus. The solid
lines indicate the paths of atoms which
undergo the conventional ~g=+ y
-M J= —2 transition. The paths of
atoms which undergo the ~g=+ 2

-MJ=+ y transition are shown by
the dashed lines.
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able to detect the additional transition (v, in Fig. 1)
required to measure all three )&I' ) =1 hyperfine
intervals in bismuth. Incidentally, our experimen-
tal observation of this transition (v, ) is further
verification that the hyperfine structure in the
ground state is inverted. '

The beam of atomic bismuth was produced in a
snouted tantalum oven similar in design and di-
mensions to that used by Title and Smith. The
electron-bombardment current used to heat the
snout was electronically regulated in both voltage
and current to stabilize the bismuth beam. A sat-
isfactory beam was produced with an input power
to the oven of about 65 W. At this power, the snout
temperature was approximately 1500 'C.

The bismuth beam is detected by means of elec-
tron-bombardment ionization followed by mass
analysis with a Paul mass filter and an electron
multiplier. Details of the ionizer and mass filter
have been described by Brink. ' The output of the
electron multiplier is amplified by means of a
Keithley Model 41V picoammeter. The signals are
enhanced by repeatedly scanning through the reso-
nance condition and accumulating the data in a
Nuclear Data 1024-channel pulse-height analyzer
used in the time-sequence scaling mode. The
mode of operation and expected signal enhancement
are similar to those described by Klein and
Barton. ' Either magnetic field or frequency can be
swept in our system.

The radio frequency equipment consists of a Fre-
quency Electronics, Inc. , Model FE101A, fre-
quency standard driving a General Radio Model
1164-A frequency synthesizer capable of a maxi-
mum frequency of 69.9 MHz. This frequency is
then multiplied up to a factor of 8 by appropriate
combinations of Hewlett-Packard Model 10515A
passive doublers and Instruments for Industry
wide-band amplifiers. The output of this system
is then amplified by a Hewlett-Packard type 230A
tuned amplifier capable of 4-W output. The final
microwave frequencies are reached by using var-
actor diodes to multiply the frequency in order to
drive an appropriate microwave travelling-wave
amplifier. Tuning stubs were inserted in the line
wherever necessary to select the proper harmon-
ics. The region 1-3 GHz was scanned with a
cavity wavemeter to guarantee that the equipment
was tuned to the desired frequency and that spuri-
ous harmonics had been suppressed. Thus, the
frequency of the signal fed to the hairpin was known
to approximately 1 part in 10', and was stable to a
few parts in 10'. When frequency was swept, the
output of the synthesizer was monitored with a
Hewlett-Packard Model 524C frequency counter.

The hairpin, a U-shaped copper strap similar to
the design illustrated in Fig. 1 of the paper by
Woodgate and Hellwarth, ' can be turned through
90 to excite either m or 0 transitions. The same
loop was used both for the microwave transitions

and for the low-frequency field-calibrating transi-
tions.

IV. EXPERIMENTAL PROCEDURE

In our apparatus there is at least one focusable
4I'=1, &M=0 transition between each of the four
zero-field levels of the ground state of bismuth.
From the data of Title and Smith, who measured
two of these transitions, we estimated the loca-
tion of the third transition v, .

The frequencies of all three transitions were re-
measured in magnetic fields ranging from 1.3 to
5. 1 G. In each case the current through the C
magnet was set to some value, and the magnetic
field was calibrated by measuring the frequency of
the low-frequency resonance in the I' = 5 state. At
low fields the two transitions vp and vo are unre-
solved. The field dependence of the observed
resonance was set equal to the average value of the
two transition frequencies obtained from pertur-
bation theory carried to second order. Title and
Smith's value' of the electron g factor (gg
= —1.6433) was used in this analysis. A series of
measurements was then made sandwiching the
high-frequency ~I =1 measurements between a
pair of field-calibrating low-frequency measure-
ments. The magnetic-field strength was held fixed
while the frequency was swept through resonance.
In the worst case, field drifts amounted to 20 mG
over the entire time of the measurements made at
a given field and, typically, were approximately 5
mG.

A total of 33 observations of the three direct
transitions at four different magnetic-fieM
strengths was used to determine the zero-field
hyperfine intervals. A computer program, adapted
from the Berkeley program" hyperfine 4-94 for
our CDC 6400 computer, was used to provide abest
least-squares fit to the data by varying the three
hyperfine parameters A, I3, and C. The resonance
v„(3,0) -(4, 0), is displayed in Fig. 3 as an exa.m-
ple of our data. The average line width was about
40 KHz for the two field-independent transitions
(3, 0)-(4, 0) and (4, 0)-(5, 0), which is the width
expected from our 1-cm-long rf hairpin. The
(5, 4) - (6, 4) transition (v, ) is broader, probably
due to magnetic-field inhomogeneities. The error
in the frequency measurement was chosen as the
uncertainty in locating the line center. This un-
certainty was caused by irregularities (noise) in
the line shape and usually amounted to not more
than 3 KHz. Errors in the magnetic-field mea-
surements were arbitrarily assigned between 0.1
and 1% of the field value itself. This variation in
field error produced no change in the values of the
computed hyperfine-interaction constants to within
the errors quoted below. The data were also fit in
the least-squares sense to polynomials of first and
second degree in H. Values of the zero-field hy-
perfine intervals read from these polynomials
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~35 k Hz~
FIG. 3. Resonance corresponding

to the (4, 0) —(5, 0) transition (&2)

observed at a field of a few gauss
and a frequency of approximately
2171 MHz. This record was made
with a sweep width of about 350 KHz

to show the full pattern. The sweep
width was reduced to 100 KHz during
actual measuring runs to improve
accuracy.

agreed with the more elaborate calculations to
within a few tenths of a kilohertz.

V. RESULTS AND DISCUSSION

The zero-field hyperfine intervals in the (6p')4S»,
state of Bi'~ were obtained from the ~F =1, bM= 0,
observations by computer analysis. The results
are ( in MHz):

v, (F= 5 -F= 6) = 2884. 666 (2),

v, (F= 4 -F= 5) = 2171.419(2),

v~(F = 3 -F= 4) = 1584. 502(2).

Hyperfine interaction constants deduced from these
values are (in MHz):

A = —446. 942 (1), B= —304. 654(2)
C= 0. 0165(1).

The computer was programmed to make a simulta-
neous least-squares fit to the experimentally mea-
sured field and frequencies with A. , B, and C
treated as free parameters. Electronic and nucle-
ar g factors were held fixed with g~ =-1.6433 and

g1-4, 889x10-', and the value" for gl is used with-
out diamagnetic correction. Our values for the
transition frequencies agree with those measured
by Title and Smith, In addi, t&on, we have obtained
a value for the magnetic octupole-interaction con-
stant.

A. Dipole and Quadrupole Interactions

Previous measurements of the dipole- and quad-
rupole-interaction constants were sufficiently ac-
curate, so that essentially no new information about
these interactions is contained in our improved
values. Lurio and Landman' discuss the results
available in 1966 for all states of the (6p') configu-
ration.

B. Octupole-Interaction Constant

as corrections to the measured zero-field hyper-
fine-structure intervals. We have evaluated the ef-
fects caused by the other states within the (6P') con-
figuration. When the corrections are applied, Eqs.
(3) can be solved again for new values of A, B, and
C. Although the second-order corrections require
a knowledge of the one-electron hyperfine constants
a', a", a'", and b, which in turn are derivedfrom

A, B, and C via Eqs. (6), the effect of the second-
order terms is negligible on the dipole and quad-
rupole constants. Hence, a set of a and b values
is found with corrections ignored. Then this set
is used to calculate the corrections and a new set
of A, B, and C values is found. This last set is
called the corrected set in Table II, where the re-
sults are listed. We have applied similar correc-
tions to the data of Lurio and Landman' for the
P3 / 2 state of this conf igu ration and have inc luded

both the corrected and uncorrected values in Ta-
ble II.

We have used for the one-electron interaction
constants the values given by Lurio and Landman,
who obtained them by treating a ', a ", and a "' as
three independent parameters and fitting them to
the five A values of the five fine-structure states
in this configuration. Usually the ratios of these
parameters are considered determined by theory,
and thus there should be only one free parameter.
A value for the quadrupole constant was obtained
from data for the entire configuration (only three
states should show a quadrupole interaction), and
the relativistic correction q was taken to be 1.55, '
The values of the interaction constants used in
evaluating the second-order corrections are (in
MHz): a'=363, a"=11310, a = —681, and 5 =
—801. The significance of this method of choosing
these constants is discussed by Lurio and Land-
man.

Ve note that the corrections to C are approxi-
mately 10% of the uncorrected values. These cor-
rections are relatively small in the case of bis-
muth, owing to the large fine-structure energy dif-
ferences within the configuration.

C. Magnetic Octupole Moment

Second-order terms in the perturbation-theory
expansion of the hyperfine energy may be treated

The magnetic octupole moment 0 of the Bi'" nu-
cleus can be obtained from the following relation-
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TABLE II. Uncorrected and corrected values of the observed hyperfine intervals and the interaction constants. AQ

units are MHz. The quoted errors are deduced from the experimental errors in the measurement of the zero-field
hyperfine intervals. No estimate of the errors in the theoretical corrections has been made.

Vg

V2

V3

A
B
C

C3/2

Uncorrected

2884.666 (2)

2171.419 (2)

1584.502 (2)
—446 ~ 942 (1)
—304 ~ 654 (2)

O. O165 (1)
o.o20o (1)

(6P3) 4S
&2

Corrected

2884.900 (2)

2 171.326 (2)

1584 ~ 188 (2)
—446.937 (1)
—3o5.o6v (2)

0.0183 (1)
0.0221 (1)

Uncorrected

3598.647 (6)
225 1.038 (19)
1311.93O (1O)

491~ 026 (2)

9VS.569 (1O)

0.0207 (10)
0.0212 (10)

(6P ) &3n
Corrected

3598.694 (6)

225 1~ 057 (19)
1311.8V2 (1O)

491.028 (2)

978.638 (10)
o.o 1s6 (1o)
0.0191(10)

The values in this column are from Ref. 2.

ship given by Schwartz, with relativistic correc-
tion T added:

e3/2=+, p n ~R(r)/r~' 0r

In this expression, R(r) is the normalized radial
part of the electronic wave function. For the 6P
electrons in bismuth, we have used the nonrela-
tivistic hydrogenlike radial wave function given by
Pauling and Wilson'2 to obtain

r ooo'ooo=(.,)
where ao is the Bohr r adius . Ramsey' suggests
the use of the full unshielded value for the nuclear
charge Z, because the octupole interaction occurs
chiefly when the electron is near the nucleus.
Thus, we find that 0 = 0.0086 p,~ b, when Z = 83 and
T = 1~ 6765 ~ However, the derived value of the oc-
tupole moment is very sensitive to the choice of Z.
If Z = 77, as suggested for Bi by 8 ames and Smith'4
from an analysis of quadrupole- interaction data,
then 0 becomes 0. 0135p~b. Both of these values
are smaller than the single- particle model predic-
tion' of 0.127 ',~b for an h, &, proton. We have
used the electron scattering value" for the nuclear
mean square radius (r') = 0. 304 x10 '4 cm' in the
single-particle- model prediction. On a plot of oc-
tupole moments versus nuclear spins, similar to
the Schmidt plot for magnetic dipole moments, our
experimental value of ~ lies outside the single-par-
ticle -model limits .

Note added in Proof. We have recalculated the
value of g(0) —=

( R(r)/r I r 02by using the numerical
wave function for bismuth as given by Herman and
Skillman. " From their wave function we obtain
g(0) =3.9 x 104' cm ' with an uncertainty of a 10%,
which depends on the number of tabulated values
used in evaluating g(0). The calculated octupole
moment is 0 = 0.43 p.~b, which value lies inside
the single-particle model limits and closer to the
proper limit.
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APPENDIX

In order to obtain the second- order corrections to our measured hyperfine-structure intervals, we use the
wave functions and coupling coefficients given by Lurio and Landman. ' The three J= 2 wave functions are
expressed as

g.(J= ~2)=a .g('S3/2)+a .(('P3/2)+ad. g('D3/2)
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in terms of the pure LS wave functions. The coefficients are obtained by fitting the experimental fine-struc-
ture energy separations to theory. The values appearing in Table I were obtained with I', = 990 cm and g
=10100 cm, where the quantities I", and P are the electrostatic and spin-orbit parameters, respectively.
The jj basis wave functions are given by Crawford and Wills":

(
3 3 3) 3/2 (5) 1/2(p 3/2p 1/2p -1/2)

( ) 3/2 (3Q) -1/2(P 3/2P -1/2P 1/2) 2/(3Q)1/2(p 3/2p 1/2p 1/2)

(
3 1 1) 3/2 (5) 1/2(p 3/2p 1/2p 1/2)

The three J= —,
' wave functions in terms of these are

q.(J = —,)=cl.(-„-„-.)3/2 '+c2.(-„-„-,)3/2 + 3. „-„-,)3/2

Reduced matrix elements of the dipole and quadrupole tensor operators Te(i2)(4= 1, 2) operating in the
space of electronic coordinates are given below. The notation is that of Schwartz. The single-electron
matrix elements were taken from Lurio, Mandel, and Novick4:

i ' e j
= (15)'/'[(cl.cl.+ &c2.c2.+ c3.c3.) a ' ——,'c .c .a"

—(cl .c .+ c2.c1.—c2.c3.—c3.c2.)2(-', )' "a"']I/I/I, '
1i 2j 2i 1j 2i 3j 3i 2j

&q.(~= —.')
[ J»&[ [q.(~= —.')&

e j
=[c .c . —c .c . —(2)'/2r/(c .c . +c .c . + c .c .+ c .c .)](5)'/25/Q

z e 5/2

=[(c . —c .)a"'+c .(a'-a")(3)'"](6)"'I/p
1i 3i 2i 7

&4.(~=-')~
~

1" "'~
~

y('D )&= —(21 )1/2r/f/(c .+c .)/q
z e 5/2 ~ 1i 3i

'a'"(c .+c .)I/Ii ' e 1/2 3i r'
&g, (&= 2)~

~

1" "'~
~ p('&1/2)&= (1Q)'"[-'(cl.—c3 )@+2c2.]f /0 ..

The a ', a", and a'" are the magnetic dipole-interaction constants defined by Breit and Wills, "and g is
a relativistic correction. '
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The change in the wave function of an atom or molecule which interacts with saturating inci-
dent radiation is shown to have a time evolution operator U(t, 0) = Q I s) (n'

I B(no, )B (n'o. )

x e ~ " ~ ) ' where the sum over n and n' is over both the (2&e+ 1) values of me and

(2~b+1) values of mb, and the sum over n is over the (2~a+1) + (2&b+1) modes indicated by the

index O'. The eigenvalues $ («) and their eigenvectors &(n&) depend on the intensity and polar-
ization of the incident radiation, produce a modulation term in the electric polarization P of the
molecule, and give rise to anomalous polarization in the stimulated radiation. This unitary op-
erator is used to discuss the radiation stimulated by two pulses or photon echoes. Echoes from
elliptic pulses are discussed for &» 2, and the linear-linear sequence is compared with the theory
of Gordon, Wang, Patel, Slusher, and Tomlinson. Echoes from linear-circular and circular-
linear pulse sequences are discussed in detail.

I. INTRODUCTION

The anomalous response of an atom or mole-
cule to an intense radiation field is of considerable
interest for the anomalous polarization which
occurs in laser radiation, '~' the anomalous polar-
ization which occurs in the cosmic OH emission, '
and in the polarization phenomena which occurs
in photon echoes. '~' The earlier calculations' for
lasers were made using a perturbation approach
and lead to the interesting conclusion that a laser
operating between a J~= 2 J~= 2 transition pre-
fers circular polarization, while a J =2 —J~ —-1
laser prefers linear. ' Photon echoes occur in the
region in which the perturbation approach is no
longer appropriate.

This paper uses an approach which permits the
discussion of radiation fields which are so strong
that a perturbation approach is not appropriate.
The interaction of an atom or molecule with a
single frequency time-dependent potential V(t) for
a finite time interval is considered. If this inter-
action is between energy levels with degeneracies

of (22~+ 1) and (2Jb+ 1), the problem can be dis-
cussed in terms of (2J~+1)+ (2Jh+1) modes. These
modes have eigenvalues which depend on the nature
and strength of the interaction. A time evolution
operator is developed and tables of coefficients
are given for all electric and magnetic dipole
transitions for J & 2. The electric polarization of
the atom or molecule, which is stimulated by the
radiation field, is given in terms of the time evolu-
tion operator. This development permits the dis-
cussion of the intensity and elliptic polarization
of photon echoes with arbitrary polarization for the
first and second pulses. A detailed discussion is
given for linear-linear, linear-circular, and cir-
cular-linear sequence of pulses for J ~2. The
linear-linear effects are in agreement with the
very elegant operator development of Gordon
et al. Linear-circular or circular-linear have
distinctive features in the echo intensities and
should yield an assignment of the J values of the
transitions.

Since the development in this paper treats the
interaction as the addition of a time-dependent


