
PHYSICAL REVIEW A VOLUME 1, NUMBER 3 MARCH 1970

Emission versus Absorption in Resonance Pressure Broadening*

William D. Lyons and C. Alden Mead
Chemistry Department, University of Minnesota, Minneapolis, Minnesota 55455

(Received 2 September 1969)

For a transition in a monatomic gas, it is shown that certain processes in which excitation
is transferred from one atom to another lead to different resonance-broadened line shapes in
emission and absorption. The absorption line shape is determined by an averaged diagonal
matrix element of the resolvent operator (in the representation of the unperturbed states),
while in emission some off-diagonal elements contribute. The differences are exhibited
formally in terms of resolvent-operator theory, and also worked out explicitly for the case
of pure impact broadening with the classical path approximation. In this case, the main ef-
fect is a shift of the emission line toward the red, relative to the absorption, by an amount
of the same order of magnitude as the width. In the case where the lower level in emission
is the one undergoing resonance broadening, the line shapes for emission and absorption
(with the same final states) are the same.

I. INTRODUCTION

Although the distinction is frequently ignored in
line-shape theory, there are important differences
between absorption and emission processes, which
in some cases can cause an absorption line shape
to differ from the (supposedly) corresponding emis-
sion shape. There are two chief causes of this dif-
ference.

The first difference is that absorption is in gen-
eral a much more precisely defined process than
emission. In an absorption problem, one can start
with an initial state (photon moving toward absorb-
ing medium, which is in its ground state or some
other well-defined state) which is asymptotically an
eigenstate of some readily identifiable zero-order
Hamiltonian K,. One then calculates the electric
field and polarization in the medium as the state
evolves under the interaction, arriving at a fre-
quency-dependent complex susceptibility, and hence
a formula for the absorption line shape. Essen-
tially the same thing can be done in a time-indepen-
dent formalism, by forming a dressed (scattering)
photon state which approaches the eigenstate of $Cp

in the limit of zero interaction. The problem is
thus as well defined as an ordinary scattering prob-
lem, and can be treated in principle by the same
methods. In emission, however, the situation is
different. If one wishes to assume that the initial
state (e. g. , a single atom of a gas excited, no pho-
ton present) is an eigenstate of some K„ then there
is no unambiguous way of choosing X„as there is
no 3C, whose eigenstates asymptotically approach
those of $C and include the assumed initial state.
Thus, different ways of dividing the Hamiltonian up
into zero-order and interaction parts correspond to
different assumptions about the initial state, and
hence, in general, different line shapes. To settle
this unambiguously, one must consider the way in

which the initial excited state was actually created
in the physical problem under study. An elemen-
tary example of this is considered in the well-known
textbook by Heitler, ' where it is shown that an iso-
lated atom excited by a band of radiation narrow
compared with its natural linewidth will emit with
a linewidth the same as that of the exciting radia-
tion,' while if the exciting radiation is very broad,
the emission will have the natural linewidth. Thus,
any theory of emission must start with some as-
sumption about the initial state, and the results in
general will depend on this assumption.

Even after one has chosen an initial state, how-
ever, there remain differences in the treatment.
In absorption, one is normally measuring a suscep-
tibility, i. e. , a relation between polarization and
field; while in emission, one is interested directly
in a transition probability: Given an initial state,
what is the probability that a photon of given fre-
quency will be present at a later time? The two
problems are not obviously (and, in view of the
above, not in fact) identical. In particular, con-
sider the effect of processes in which the excitation
is transferred from one atom to another in a gas
prior to emission (or subsequent to absorption).
Such processes certainly play an important role in
resonance-broadening problems in gases. In
emission, it is certainly clear that, if the initial
state has the excitation localized on a single atom,
these excitation transfer processes will contribute
substantially to the propagation of the excitation
from the interior to the surface of the sample, and
hence presumably to the line shape. In absorption,
such processes contribute both to electric field and
polarization in the gas. Their contribution to the
susceptibility, therefore, is not easy to determine.
A Priori it is possible that it could be zero due to
cancellation (and in fact, something like this does
apparently happen). In resonance broadening,
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therefore, one might expect that the contribution
of excitation transfer will be different for absorp-
tion and emission. For nonresonant broadening,
where excitation transfer plays no appreciable role,
one would not expect this problem to arise.

In this article, we shall make the customary
choice of initial state (excitation shared incoher-
ently between atoms of the gas, thermal equilibri-
um with respect to other degrees of freedom), and
concentrate on the different effects of excitation
transfer. It will be shown that this choice of ini-
tial state leads to an emission line shape different
from that for absorption. However, the question of
the choice of initial state can never be completely
ignored. The reader should bear in mind that our
results, like those of any emission theory, depend
on the choice of initial state; and, no doubt, there
exists a choice which would emit a line identical to
the absorption.

Among the standard treatments of pressure
broadening, those of Baranger, ' and Fano' are set
up in terms of emission (though the distinction is
not stressed), but are difficult to apply directly to
resonant broadening since they consider the auto-
correlation function for the dipole moment of a sin-
gle emitting atom rather than of the whole gas.
The treatment of Ross, 4 based on modern many-
body theory, is formulated in terms of absorption,
as is the many-body treatment of resonance broad-
ening by Bezzerides. ' Zaidi' has given a treat-
ment of resonance broadening in emission, but
concentrates mainly on a case in which the two
are essentially the same (to be treated in Sec. IIIB
of the present paper).

Resonant broadening in absorption has been
treated in terms of resolvent-operator theory by
Reck, Takebe, and Mead. ' There, it was shown
that the frequency- and wave-number-dependent
susceptibility E(v, K) could be expressed in terms
of an averaged diagonal matrix element of the re-
solvent operator R(v), as follows:

E(vq K)

= —4vstp'c. (A. , K(A)i R (v)iA, K(A))e, (1)+

where p,
' is A ' times the square of the usual

transition dipole matrix element; R is the density
in atoms/cm'; e is a polarization unit vector per-
pendicular to K; and (A&, YK(A)) denotes a state in
which atom A has become excited, with polariza-
tion along the j direction, and has acquired a mo-
mentum Sv in addition to what it had before absorp-
tion. The bar denotes averaging, the Hamiltonian
is in angular frequency units (so that R has the di-
mensions of time), and repeated indices are
summed over (notation will be explained more fully
in Sec. II). If the wave-number of dependence of E

is negligible, then the refractive index n(v) is given
by

n'(v) 1—= 4n y(v) = E(v, v, /c)

where v, is the isolated atom resonant frequency.
The imaginary part, of course, gives the absorp-
tion. It should be noticed that only diagonal ele-
ments of the resolvent appear in (1). In a sense,
therefore, some of the contributions of excitation
transfer to field and polarization do indeed cancel
out in this case,' although one needs to take such
processes into account in evaluating the diagonal
matrix element of R, they do not lead to the appear-
ance of off-diagonal elements. As we shall see
presently, excitation transfer causes off-diagonal
elements of A to appear in the expression for the
emission line shape. Subsequently, Eq. (1) has
been applied, together with various types of ap-
proximations, to the calculation of resonance-
broadening line shapes and comparison with experi-
ment. '~ '

In the present paper, we show that the emission
line shape contains contributions from off-diagonal
elements of R which do not appear in (1), and their
contribution is explicitly calculated for a special
case. The plan of the paper is as follows.

In Sec. II, the notation and Hamiltonian are dis-
cussed, and it is shown how emission line shapes
are to be expressed in principle in terms o& resol-
vent-operator theory. Also, a preliminary trans-
formation is carried out to eliminate the necessity
of considering virtual photon states in evaluating
resolvent matrix elements.

In Sec. IIIA, the case of emission is considered,
and it is shown that off-diagonal resolvent matrix
elements do indeed appear. Section IIIB considers
another type of emission, in which the lower state
(final state of atom after emission) is the one sub-
ject to resonance broadening. Here, it is shown
that, as in absorption, only diagonal elements of A
appear.

In Sec. IV, the contribution of various final
states to the over-all emission line shape is ana-
lyzed, especially with regard to their behavior as
functions of the gas density. In an expansion of the
emission line shape in powers of the density, it is
shown at which order (of &) each type of final state
makes its first contribution. Even to first order
in X (and in all higher orders), the off-diagonal
terms contribute.

Section V contains an explicit calculation of the
emission line shape in the classical path impact
limit. For this case, it is shown that the effect of
the off-diagonal terms is to shift the line toward
the red, by an amount of the same order of mag-
nitude as the resonance linewidth.

There is some discussion in Sec. VI.
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II. PRELIMINARIES

A. Notation and Hamiltonian

The notation to be used is essentially that of
Refs. 7 and 8. The system is a gas of N atoms of
mass m enclosed in volume t/" with periodic bound-

ary conditions. We are interested, of course, in
the limit N, V- ~, with Sl = N/V constant. We ne-
glect effects of quantum statistics, treating the
atoms as distinguishable, though identical. Each
atom has a nondegenerate S ground state, and a
triply degenerate P excited state with energy sep-
aration Av, . In addition, a higher excited S state
is considered in Sec. IIIB. The atoms do not in-
teract in the ground state, and interact through res-
onant dipole-dipole forces in the excitated state.

The symbol I0) denotes a state in which all atoms
are in their ground state, with each atom A having
a designated momentum pA, these being distrib-
uted according to a Boltzmann distribution. The
symbol Aj within a ket indicates that atom A has
become excited, with dipole polarization j. v(A}
means that A has momentum k~ in addition to what
it has in I0). z by itself means that one or more
atoms (unspecified) have acquired excess momen-
tum. A Greek letter, e. g. , X, denotes the pres-
ence of a photon of wave vector vy and polarization
ey. Thus, for example, IAj, Pcl(A), v2(B}& denotes
a state in which A is excited with j polarization,
atoms A and 8 have excess momentum Sv, and Sv„
respectively (in addition to their initial momenta

pA, pB), no photons are present, and all atoms
other than A and B are in the same state as in I 0).

Since we are considering resonant effects, we
can restrict our attention to states close to each
other in energy. Thus, we consider only states in
which either one atom is excited, or one photon is
present, with frequency close to v„ in addition to
arbitrary changes in momentum distribution.
Thus, only states of the form IAj,Pc& and I X, z & are
considered.

The Hamiltonian (in angular frequency units) may

be written as follows:

R = T + 'V +K + 3C .int

—
~IA &e. xp(iT& ~ r )&z~ ]

We have subtracted gp'/2mb + vo from K so that
the (zero-order) energy of IA ) is zero. Operators
such as &, xA, etc. , operate only on the transla-
tional degrees of freedom, while IAf&(B~I, IAj&(XI,
etc. , affect only the internal and/or photon degrees
of freedom. In arriving at (t), we have used the
assumption that v~ is close to vp, by assuming

I p I
&& vp. Otherwise there would be an additional

factor v0/v~ in each term.

B. Resolvent and Asymptotic States

For any scattering problem with Hamiltoni3n

K=X 'X tint'

with zero-order eigenstate l&&, 3C, I &&= ~ I &&, the
corresponding scattering state I &u ) (such that
~ I ~ ) = ~ I &u )) is given by" "

~(~u = ~(o&+R ((u)X,„t~~&

where B is the resolvent operator

R((u)= ((u-X} ',
R ((u) = lim ((u +is -~) ' .

~-0+

The + sign corresponds to the "retarded" solution:
I~)+ approaches I~) for large negative times. If
the minus sign is chosen, l~& is the state that
would approach I&a& in the distant future. (More
accurately, nearly stationary wave packets made
up of I e ) + will approach I ~& in the remote past/
future).

In this article, we will be interested in states
I vX&, i.e. , states which in the remote future will
have a photon X and the gas in some altered mo-
mentum distribution. This is the situation which
corresponds to emission.

where T =
2m & ~ arne

(4)
C. Preliminary Transformation of Resolvent

", fA. &~~.,—3,' [&B„/, (5)
AB

/

y ..p Z e .[(X&exp(-iP( ~ r )(A.
(Xj

In the succeeding sections, we will have to cal-
culate resolvent matrix elements such as (A I R I B),
and it will be convenient for this purpose to trans-
form the resolvent somewhat so as to formally
eliminate the photon states. Consider then the
problem of calculating the resolvent of a Hamil-
tonian coupling two manifolds of states (in our case
g, the manifold of excited atom states, and X, the
manifold of photon states). The Hamiltonian and
resolvent (to be solved for) may be written as
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(K x. ) (R p

$C, t ~ p R
(10)

where each entry is, of course, a matrix. From
(10) and (~ —X)R=1, we find

dominant mechanism in excitation transfer. This
is admittedly an approximation, but it is one that
is nearly always made in line-broadening theory,
so it is appropriate to make it in order to compare
our results for emission with previously derived
absorption results depending on the same approxi-
mation. With this approximation and (15), we now
see that((u-x )R -x. p'=1

g g int

(&u-K )p —x. R =0
g int

R +(~-x )p'=0
'int g (11c)

(~)=(~+i& -x )-'
g+ 0 g

(18)

Hence, the radiation field is taken into account
simply by adding +i&0 to + in the resolvent. Ac-
cording to (3), Xg= x+1).

p+ (4) —K )R
int

Solving (11c), we find

(11d)
III. GENERAL FORMULAS FOR

EMISSION INTENSITY

A. Upper State Broadened

p =((0 —x ) x.int g

Now one can substitute (12) into (11a), obtaining

[~-x -x. (~-x ) x. ]Rg int X int g (13)

Since we are only interested in R&, (13) is the re-
lation we desire.

The diagonal part of the additional term in (13) is
given by

&A. ix. (~-x ) x. iA &

p~ ~ Aj xk

y (14)

where we have made use of (7) and omitted the ki
netic energy contribution. To evaluate (14), one
replaces the sum by an integral in the usual way,
and takes a contour below or above the pole at v
= ~~, according to whether we are evaluating 8+ or
8 . The real part is essentially a self-energy term
which can be eliminated by standard proce-
dures. " " The imaginary part (if [&u [«v, ) is just
the natural linewidth ~,. Hence, the right-hand
side of (14) becomes

2v 3
+i~ 5. =+i 3, 5.0 p,

0 jk 3c' jk

The off-diagonal part of Kint(&u -K~) 'K tnt" rep-
resents processes in which excitation is transferred
from one atom to another via emission of a virtual
photon. %e will omit these terms, assuming that
the electrostatic dipole-dipole interaction is the

Here we assume an initial state in which one
atom is excited, and attempt to calculate the prob-
ability of final states. As pointed out in the atro
duction, there is some arbitrariness in choice of
initial state. Our choice will be probably the most
natural one: excitation shared incoherently and
with equal probabi1ity between all atoms, thermal
equilibrium with respect to translational degrees
of freedom. The assumed initial state is therefore
just [Aj), and the intensity must be averaged over
A. ,j. This seems to be the most natural choice,
and is certainly the one usually made, tacitly or
otherwise. However, it should be borne in mind
that the subsequent results do depend on this
choice. Before applying them to any experimental
situation, one should first convince oneself that the
choice of initial state is appropriate for the prob-
lem under study.

The final state after emission will consist of a
photon A., and perhaps an altered momentum dis-
tribution in the gas, i.e. , it will be of the form
i A. w ). The probability amplitude that the final
state will be a particular [Az) is clearly just the
amplitude for [Aj) being a state that will become
[Ak) in the distant future, in other words &Aj [&f) —.
To get the total probability that a photon I will be
emitted, we must square this, sum over z (since
we are only going to observe the photon, not the
final momentum distribution), and average over
A, j. Hence, the total intensity (probability) for
emission of a particular photon A. is given by

s(~)= Z ~&A. ~K)
~'"A, j, K

From (7) and (8), we have for [ qy)
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x R [&& +K(k)] 5 lB~ ~+~~B) ~ (18) X = vie A. )&A
X 1 A X (20)

Here, K(z) is just the added kinetic energy asso-
ciated with g:

K(~)=KB ~ p /m+@~ '/2m

=K'v+8K /2m

where v =p/m, and the last equality represents
simply shorthand notation. . By denotes polariza-
tion in direction of Zy, and e+ &~ 8 indicates that
the excited atom 8 has acquired an additional mo-
mentum key in addition to whatever momentum it
may have in v. From now on, the subscript on ~
will be omitted.

Since &A& [YpX &
= 0, we have, from (17) and (18),

27Tvop,

3NV A, B, C, T(

and K'. =ip ' Z & . [[A q)
2nv, 1/2

int 1 V
g

x exp( —i z ~ rA) &A
g A

.) exp(i2 ~ rA)&A. , ril]X n A j' (21)

We use q to denote a photon in the frequency range
around v, and p, , for the transition dipole matrix
element. As before, we assume that the initial
state is just [Ax). In the final state after emis-
sion, a photon g has appeared and the rest of the
system is in one of the eigenstate of BC» the
Hamiltonian of Eq. (3). These are presumably of
the form i eX&, but we don't need their explicit form
for this subsection, so they are denoted simply by
n. Our final states, therefore, are of the form
i', n), where

x&A. lR [&u+K(k)]
l B&, ~+~&B)

x&C, k+7; R [~+K(~)]lA.& (19)

x, ln&=E ln&;

The reader's attention is called to the presence of
the off-diagonal elements in (19), representing fi-
nal emission by an atom other than the one initially
excited. Note also that there are cross terms.
That is, different atoms may interfere with one
another in emission, as long as the final state (in-
cluding z) is the same.

The presence of the off-diagonal terms in (19),
which are absent in (1), indicates that the resulting
line shape will be different. In Secs. IV and V
some of the effects of this will be analyzed in more
detail. First, however, we pause to consider
another emission problem, in which the final state
is the one subject to resonance broadening.

B. Lower State Broadened

Here we consider the case where each atom pos-
sesses an additional excited state X (assumed to be
an S state for definiteness) with energy 5(v, + v, )
relative to the ground state, which is coupled to
our excited I' state, but not to the ground state.
We consider emission from X down to the P state,
with photons emitted with frequencies close to v, .
Since X is not coupled to the ground state, there
will be no resonant broadening of the upper state.
The emission line will be affected, however, by the
resonant broadening of the lower (P) state. Even-
tually, a second photon will be emitted with fre-
quency near v, as the gas returns to its ground
electronic state. We can embody all this in our
Hamiltonian by adding the terms

The emission intensity in this case is given by

s (q) =g
l
&A l~~& l' .

From (8), (21), and (22), we have

(22)

(23)

1 2
inn& =lan&-ip '"

R (v +E )1 V
™

g a

xZB IB, Pc+Pc )&B p([n&X' (24)

Now since )Ax& is not coupled to anything except
the manifold of photon states, we find after doing
the transformation of Sec. IIC,

R —(v +E )lB
'g

= (v +E —i& —v ) 'l B,Tc&n X 1
(25)

where ~X is the natural linewidth of X. Using
(24) and (25), and introducing &o' =

v&
—vl, we now ob-

tain

x &A, ~ (A)l &nq' (28)

12
(A

l
Xn& = —ip, l

'
(ur '+E —i &)'.

n
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since of all the terms in the sum in (24), the only
one that contributes (because of 25) is the one with
B=A, ~ = —Pc&(A).

From (23) and (26), we now find for the intensity

&(q)=
" ' p 'Q (A, — (A. )~1 n

IV. ANALYSIS OF CONTRIBUTIONS

A. Diagrammatic Notation

According to (4), (5), and (16), a matrix element
of R between two states in which an atom is excited
may be formally expanded as follows:

x [((u'+E )'+& ']-'(o, ~A. , —~ (A)& . (27)

But since
(A R~B&= +—(a~V~B&

~

a&(-(u' —Z +i& ) '&n~=R(-(u'+i& ),n n X X
+ —Z (X~z~c& „&C~~~B& ', + ~ ~ ~

(29)

with the resolvent taken with respect to K3, (27) be-
comes

&(g)= — '
p,

' Im(A, —g (A)16 q' q

xR(-~'+i& )~A, —x (&}&X g' 'g

or, since

2vl 2x= c

xR( '+'+ )I& -~ (&)&X (26)

In the limit 4X -0 (negligible broadening of upper
state), this becomes identical with the imaginary
part of (1) except for trivial constant factors and
the change in the sign of ~ ', which corresponds to
the fact that high frequency emission corresponds
to a lower final state, instead of a higher one as in
absorption. The conclusion, therefore, is that re-
sults for absorption, involving only diagonal resol-
vent matrix elements, may be taken over bodily
for this kind of emission. A similar result has
been obtained by Zaidi. ' This case is of interest
because the many careful experiments of the Ox-
ford group'4 on resonant broadening in rare-gas
emission are of this type.

We will not pursue this further, since it has been
treated in detail by Zaidi, ' and since the main re-
sult is simply to justify the usual practice of com-
paring theoretical line shapes derived for absorp-
tion to emission problems of this type. ' We now
return to the emission from the P state, where the
results are different.

where the Ws are energy denominators. Thus,
the matrix element (A [R lB& may be pictured as
consisting of a sum of contributions of various
paths by which the excitation is transferred from
the initial state IA& to the final excitation state [B),
from which emission occurs. Each step represents
a transfer of momentum as well as excitation. If
an intermediate atom [such as C in (29)] has the
same momentum in initial and final states, then
different C will lead to the same final state and C
is to be summed over. On the other hand, if the
specification of the final state includes an altered
momentum for a specific atom C, it cannot be
summed over. It is convenient to represent this
state of affairs by a diagrammatic notation similar
to that used in Ref. 7. We use a circle with a cap-
ital letter inside to represent an atom, and a line
connecting two circles to denote a single step in an
expansion such as (29), in which the excitation is
transferred from one atom to another. An asterisk
( +) by an atom means that that atom is required to
have the same momentum in initial and final states,
and hence can be summed over. Thus, Fig. 1
shows some of the diagrams which contribute to the
matrix element (A& [R ~B&, p7(B), —w(A)&. We are
interested in the dependence of the contributions of
the various diagrams on N, V, and the density ~
=N/V. For this purpose, we do not have to con-
sider the factors of p, ', energy denominators, etc.

One easily arrives at the following rules for the
contribution of a particular diagram.

(i) The Fourier transform of Eq. (5) leads to

&LG. 1. Some of the
diagrams contributing
to (A~ I RI J3p, p7(B),
—Fg) ).
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K.K

(A. v B„, -T(A)k(B)&=k' V

Hence, each line in the diagram contributes a fac-
tor V ', and if there are l lines in all, this makes
V-t. (ii) The final momentum of each of a atoms
appearing in the diagram is specified. Since total
momentum is automatically conserved, however,
this leads to only (a- 1) restrictions on the mo-
mentum transfers. The remaining (if any) (I —a
+ 1) transfers can be summed over; each of these
contributes a factor V, giving an over-all factor
Vt - ~+ 1. (iii) Starred atoms are summed over,
giving a factor N~, where s is the number of
starred atoms.

Putting all this together, one sees that the con-
tribution D of the diagram goes as

{a)

QA

{b

{c

»

Some of the
diagrams contrzbutxng
to (A I X, »1(A), Y»2 (B)) .

er A. also has altered momentum or not. Similar-
ly,

D N~V ~+ ~ =~ ~V-q+1 (30) (A.IRIB, ~ & v "
o-(st)

(31)

&A. IRIA. , -. &-v "0:(~),j j'n (32)

where v„means that n atoms other than A. have
altered momentum. According to our rules, q= 1
in (31) and q = n+ 1 in (32), independently of wheth-

A I IIB
)

j

/@Q

I,
'c,'I

FIG. 2. Some of the diagrams contributing to

(A ( A, , —Ic~(A))

where q= a —s is the number of unstarred atoms.
It is easy to see that q is a property only of the
initial and final states, being the number of atoms
which either are excited in the initial and/or final
state, or have their momentum altered between
;nitial and final state, ox both. For given initial
and final state, one can write diagrams with any
number of starred intermediates from zero to in-
finity. Hence, summing over all diagrams will
give some function F(~&), where in general P(0) IO.
Of course, P will be different for different initial
and final states, but we need not indicate this spe-
cifically in our notation.

For example, we see that

where here n is the number of atoms other than A.
and B with altered momentum. Here q = n+ 2, re-
gardless of the initial and final momentum of A. and
B. We now proceed to apply this analysis to the
contributions to the emission intensity.

B. Contributions to Emission

According to (17) and (18), the emission ampli-
tude to a particular final momentum distribution
(A& IZA& is proportional to a, sum of matrix ele-
ments (A& IR IBy, v+ yyB&. Their contributions to
emission can be indicated diagrammatically by
simply appending an arrow to a diagram to indi-
cate final emission of a photon. If the emitting
atom 8 @A is left after emission with the same
momentum as in the initial state, then the final
state after emission is independent of B, so B can
be starred and summed over, giving a factor of N.
Otherwise, the dependence on N and V is the same
as for the diagram without the arrow. Figure 2
gives some of the contributions to (Aj IX, —Pcy(A)&.
It is of interest to note that the contribution of Fig.
2(b) is actually zero, since the momentum transfer
to B must be exactly I{:y, causing B to be polarized
along I(:~, hence perpendicular to e~ and unable to
emit. This would not be true if we had kept the
virtual-photon excitation transfer terms dropped
in Sec. IIC, and is not true in any event for Fig.
2(c).

Consider then the contributions to the amplitude
(A& IA. , Zn& (where n is the number of atoms other
than A with altered momentum) from the various
(A IR IB&. One finds the following. (a) The term
with B=A goes as P(K)V ", from (32). An exam-
ple of this with n= 1 is the diagram of Fig. 3(a).
(b) If B gA is one of the n, as in Fig. 3(b) for n
= 1, the contribution goes as & (K)V n, according
to (33). Recall that n in (33) is the number of



666 W. D. LYON AND C. A. MEAD

atoms other than A and B with altered momentum.
(c) If B is different from A and not one of the n,
as in Fig. 3(c), we get 6:(X)V-+-I from the resol-
vent and Ã from summing over B, in all Ot6'(K)V ".

Thus, the entire amplitude goes as 6' (X)V &. To
get the intensity, we must square this and sum
over K. Squaring gives V . Summing over the
final momenta of the n atoms plus A, with the re-
striction of over-all momentum conservation gives
V", and summing over the n atoms gives N&. The
total contribution to the intensity of final states in
which n atoms other than A have altered momentum
is, therefore,

The main difference is that there only diagonal
matrix elements of 8 were considered, while we
must now be concerned with the off-diagonal ones.
We will not discuss the limitations on the main ap-
proximations made, since that has already been
done in Ref. 8.

As shown in Sec. II C, we can evaluate A with
respect to the gas Hamiltonian Kg ——T+g only, as
long as we add + i~p to the argument. To obtain a
differential equation for a resolvent matrix ele-
ment, we write explicitly the integration over
translational coordinates. With the aid of (3)-(5)
and (9), we obtain

& (z) ~x"s(z)
n

(34) &A. .
i
B(7l)

i B,Pc+ Pc &
= V

[Remember that 6: is just some function of St which
is finite at 91= 0, not necessarily the same function
ineachof Eqs. (31)-(34).] Thus, if the intensityis
expanded in powers of K, the lowest order to which
states v~ will contribute is the nth. Note that A.

must also be permitted to have an altered momen-
tum. The expansion of 5 may be related to that of
the width ~ and shift S by writing the normalized d

as

6I(7i) = exp ——'p ~ r q+ v '+
2m 2mS

~ p + + + ++ exp g,
—+ /f ~ r + g5 8

(35)

(36)

1
T (tu —S)'+&'

Hence, the same conclusion applies to expan-
sions of ~:&p+ X&y+ and S:KSy+ If
(or S) is desired only to the nth order in %, then
we can restrict our attention to final states in
which no more than n atoms (other than A) have
their momentum altered.

Another important question is where the contri-
butions of the off-diagonal elements of 8 come in.
It is easy to see from the above analysis that they
make a contribution at n = 0 [e.g. , Fig. 2(c)] which,
however, is at least of first order in X, since, for
example, B is starred in Fig. 2(c). They also con-
tribute at n = 1, as shown by Fig. 3(b), and all
higher orders. In the density expansion, there-
fore, they contribute to all orders from the first
on up. Hence, even if one only wants the broaden-
ing (shift) to lowest order in the density, one
should include the off-diagonal terms and should
expect the emission line shape in general to be dif-
ferent from the absorption.

In Sec. V, we calculate this difference explicitly
for a special case.

where 6t(g) is a matrix in the internal coordinates
which is a function of position. We have used the
shorthand notation introduced after Eq. (18).

If we multiply both sides of (36) by exp[(i/h)p ~ r],
apply (g —R) to both sides, and finally multiply by
exp[(- i/S)p r], we obtain the differential equation
satisfied by the matrix 8:

g+ V'+5v V'-'U (R=expi ~ ~ r ~v ~ r~
~

~

(37)
In our case, referring to (19) and (16), we see

that

n=~+v ~+(@/2m)~'+i~, . (38)

The classical path approximation is obtained' by
letting 5 approach zero in (37) and (38). In this
limit, therefore, we have

The differential equation (39) is satisfied by'

6l(r) = —i f U( r
~
r v t) exp i [rit+ ~ ~ ( r —v t)—

(u+v ~ Pc+i&o+iv V —Q}6l = expi(Pc r+Pc r ).(39)
A. B

V. SOLUTION FOR CLASSICAL
PATH IMPACT LIMIT + &&.(rB —vBt)] dt (40)

A. Differential Equation for Resolvent
and Classical Path Limit

The treatment in this section will be closely re-
lated to that of Secs. 3, 4. 1, and 4. 4 of Ref. 8.

where U is a time-displacement operator in the
internal coordinates for a process in which the gas
begins at the position r -vt and moves at constant
velocity v for time t to the final position r. It for-
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i (8/Bt) U(r+vtI r)= 0(r+vt)U(r +vtI r)

from which it follows that

iv ~ vU(rIr —vt)=U(r)U U'U-(r —vt) (42)

mally satisfies the relations

U( r
I
r) = UU t = 1

U(r
I
r —vt)U(r —vtI r -vt') = U(r

I
r —vt ), (41)

i (8/Bf) U(r r —vt = U'0(r —vt) (43)

Using (42) and (43), one can verify (40) directly.
The upper limit in (40) must be chosen in such a

way that the integral converges with the exponen-
tial going to zero, i.e. , it must be —~ for R, + ~
for R+. Also, according to (38), g contains a term
in v ~ K which cancels another such term in the ex-
ponent in (40). Thus, we obtain, from (35) and

(4o),

-N
(A. R [~+K(YP)]I8,Z+v B&

=- . f ~ ~ f d x f

x(A. IU(r r+vt)IB &exp[(-iu&- & )f+iK r +inc ~ (r +v f)]0 X»» (44)

-N
Similarly, &C, 7( R [~+K(z)] IA &= f 'f 'd &' J df' &C, & a' Ir' —vt')IA &

X' XC + Z + xc

x exp[(i&a —& )f' —inc (r' —vf')- i~ r ']
0 A. C

(45)

Combining (19), (44), and (45), we obtain

x &C IU(r'Ir' —vi')IA. &exp[is)(t' —f)-a (t'+t) +inc .(r +v f —r ')+i~ (r-r'+vt')]
j 0 A»» C

(48)

The sum over v just gives the Dirac 5 function VN53 (r —r'+vt'), which in turn makes the r' integration
easy. Thus, (46) becomes

2mv, g' - (N+ 1) 3N
s(X)= ' V' QA f ~ ~ f d r f dt J dt' (A. IU(r r +vt)IB &(C

I
U(r+vi

I
r)IA.)

@exp[i+(t' —f)- 0(f'+f)+7 ~ (rB+vBt —rC —vCt')] (4V)

We can now perform a closure on A and make use of (41) to obtain

27TVs(x)= "3'N" v ' zB c f J'd "~ f"df f"df'&c~IU(r+vf Ir+vf)IB &

I

x exp[i~(t' —t)-& (f'+f)+' ~ ( B+v f r —v f )] .
0 ~ » c c (48)

Equation (48) may be simplified further as follows: First, in the region f ' &f, make the substitutions T

=f ' —f, p=r+vf. Apart from the external constants, the contribution of this region to (48) then becomes

f ~ ~ fd pf dt f dv(C„I (pU+vrI p)IB & exp[(ie —& )r —2&0f+iPc ~ (p —
pC

—v &)]
0 0 0 0 X B C C
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f ~ ~ Jd 'p 1' d7'(C
~

U(p+v7'~ p)B ) exp[(i& —&0)7'+i' (p —p —v )j
p 0 A. A.

where the second form is obtained by performing
the integration over t. Now, in the other region,
t&t', let 7 =t-t', p=r+vt', and interchange the
dummy indices 8 and C. Doing this, one obtains

just the complex conjugate of the above expression.
Putting all this together, and also using (15), one
finally transforms (48) into

&(x)=, V Re+
C f fd'r f dt(C

~
U(r+vf~x)~B }exp[(i&a —&0)f-ia (r +v f —r )], (49)

where we have gone back to using x, t instead of p,
v'. Equation (49) represents a considerable sim-
plification over (46), but is still too complicated to
evaluate in closed form without further approxima-
tions. Accordingly, in Sec. VB we consider the im-
pact limit of (49).

B. Two-Body Impact Limit

In this approximation as discussed in Ref. 8, -one
considers U to be simply a product of U's repre-
senting independent instantaneous two-body col-
lisions. The assumption of two-body collisions
means that one of these separate U's, e.g. , Ugg,
representing a collision between A. and 8, is just
what one would calculate in the absence of all other
atoms. Thus, it refers only to the internal coordi-
nates of A and 8 and is a function only of their rel-
ative position r. Choosing the z axis in the direc-
tion of the relative velocity v, the instantaneous
assumption means that U~g(r+vt{r) is taken equal
to the S matrix Sgg = Ugg (~

~

—~) if z & 0, &+
vt & 0, while otherwise it is assumed to be equal to
the unit matrix. Independent means that separate
collisions are averaged independently, and that
processes in which the excitation is transferred
away from an atom in a collision and returned to
it in a subsequent one, or in which the same atom
collides twice with atoms carrying the excitation,
etc. , are ignored.

With this approximation, the U matrix element in
(49) may be thought of as made up of a sum of con-
tributions from all possible paths (i.e. , all possible
sequences of excitationtransfers) by which the ex-
citation can be brought from 8 to C in time t.
Since, however, we intend to integrate over t and
sum over C, we canthink of the full (49) as made
up of contributions from all paths beginning on B,
regardless of duration or end point.

Now let us evaluate the contribution from the to-
tality of paths containing a given number, n, of
transfer collisions. Such a path can be divided up
into (n+ 1) segments, in each of which there is no
transfer. The n points dividing the segments from

one another represent transfer collisions. We de-
note the time between the (j —1)st and the jth
collisions by f&, and that between the n ' th (and fi-
nal) collision and the end of the path by tp All the
t~ and tf, are to be integrated over. Now the

analysis of Ref. 8 shows that integration over the
coordinates of the (N-n —1) atoms not involved in
any excitation transfer collision leads to a factor
V(& —& —1) exp(- —,'divot), where cr is the total
collision cross section. According to Ref. 8,

gva'= 3 g (50)

1U. = exp(i&@ —6 —
2 Slvv- iv ~ v.)f.

0
(51)

Each collision contributes the following factors:
(i) a factor exp(- iz& bj) from the excitation, as
discussed in the preceding paragraph; (ii) a
transfer S —matrix element s{b); {iii) from the

iSn ecg t&~f+f =f, this can be thoughtof as a product
of contributions from the separate sequences (in-
cluding f), each contributing exp(- —,

'
%vent&) This.

is to be thought of as the amplitude for the absence
of excitation transfer along 'the jth segment. The
assumption of independent collisions prevents any
complications from the fact that the over-all path
here is zigzag while that considered in Ref. 8 is
straight. Similarly, the factor exp(i~ —&,)f can be
thought of as a product of such factors from each
segment.

The quantity rC+ vCt —r~ in (49) is just the over-
all displacement of position of the excitation along
the path. This too can be treated as a sum of in-
dependent contributions of the segments, since
during each segment the excitation is carried a
distance v&t&, where vj is the velocity of the atom
having the excitation in the jth segment. t. In addi-
tion, there is a contribution bj for each collision,
where b& is the (vector) impact parameter, since
the instantaneous transfer moves the excitation by
bj. Putting all this together, we see that each seg-
ment contributes a factor
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integration over the relative coordinates of the col-
liding atoms (part of the d2Nr), a factor vdt (v =

relative velocity) representing the range of s for
which the collision takes place between t& and tj
+dtj and. also d '5 from the other two coordinates;
(iv) A factor of N, from summing over all possible
choices of atoms that might collide.

Finally, we must integrate over rg in (49) and
sum over B, giving a factor NV. Putting all this
together and carrying out the independent integra-
tions and averages over the tj, we find for the total
contribution of all n-transfer paths:

Re
PIC

n V02&

The integral over /is closely related to well-
known integral representations of Bessel func-
tions, "and gives the result

F= 2' p' sin'8 f —[J,(p)+ 270"(p)]
0

where p=l(. bsin8

Making use of the differential equation satisfied
by J„and its behavior for small p, one easily
finds that the p integration in (57) gives —,. For
sin'8, clearly, we must take its average value,
3 We the ref ore have, finally,

) n+1
X

~~

I

~ ~ ~ ~
~ ~

~ I
~

~ nn n
2M —+ ——Kvo-ZK ~ v

0
(52)

(58)

Inserting (58) into (52) and summing over n after
some rearrangement, we find

F=[v fd'bs(b)exp(-iK b)d'b] . (53)

To evaluate E, we approximate s(b) by its as-
ymptotic form, ""

erhere the curly brackets denote velocity averaging
over the Boltzmann distribution, and

ETC

00

v, 'V i(& —K ~ v+i&O+ ,i Stvo'—
0 ' n=0

11'C' (I-Z) ',
&,'V i(ur —

TK ~ v+i &9+,' ist v—a'

(59)

s = —s = (2i p'/vb'),
xx (54) where Z=

~
~

2/3wp, '
~ v+ g~ + 22K va'

0
(5O)

where the x direction is that of b, and all other
elements of s are zero. We also assume that, af-
ter velocity averaging, there will be no contribu-
tion from transfers in which the polarization
changes. This means that the polarization must
always be X, and we can also average over the two
possible polarizations for given I(, ~, since they are
equivalent on the average. In this way, we can re-
place s(b), which is really a matrix, by the scalar
quantity

s '(b) = ,' [Trs(b) K—s(b) K]—

The velocity averaging gives a Voigt profile:

8 ~ P
I/2 exp(- Pv')dv

K —OD (u+iA —KV

(where P = —'m/kT)

so that our full expression for the emission inten-
sity is

i g ((0;+o
+ 2 Kv(7; K )

= (ip, '/vb') sin'8(sin'Q —cos'Q), (55)

~db 2m5'= i', ' sin'8 f —fb

x(1 —2 cos'p) exp(- i' b sin8 cosp)dp .

where k denotes a unit vector in the direction of

Ky& 8 is the angle between K~ and the z axis (which
is in the direction of v), and P is the angle between
6 and the projection of ~~ on the xy plane. We now

have for F, using (53) and (55),

The meaning of the result is a bit more trans-
parent, however, if we assume that all velocities
are small enough to be neglected. This corre-
sponds to restricting our attention to the true res-
onance broadening and ignoring Doppler broaden-
ing. In this limiting case, one finds immediately

s(&)= ", Re
v, 'I' (a+~(&,+-,'atuv)+ l ~my)

+0+ P XVO'

v, V (~+ ~ v stp')' ~ (d, + 2 st vg)'

This is the same impact line shape as for ab-
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sorption' ' except that the line is shifted to the red
by ~mgtp . According to Eq. (50), this shift is
smaller than the width by a factor of 7t-', and
might be expected to be difficult to see. Never-
theless, the theory definitely predicts that the
shift should be present in the emission line pro-
vided that our choice of initial state is valid under
the conditions of the experiment and that the vari-
ous approximations made in this section are sat-
isfied. It also predicts that, when Doppler and
resonant broadening are both present in emission,
they do not combine into a simple Voigt profile,
but into the more complicated expression (62).
This has to do with the fact that the velocity dis-
tributions of all the intermediate atoms which
carry the excitation before emission contribute to
the profile.

It is perhaps appropriate at this point to say a
fem words about some of the approximations made
in this subsection, which might seem at first
glance to go beyond the impact approximation.
These have to do in particular with the evaluation
of the collision contributions in Egs. (53)—(58}.

First, the separate averaging for the segment
and collision contributions, including velocity av-
eraging, might seem at first glance to be an im-
permissible separate averaging of absolute veloc-
ities of the atoms in a collision (for the segment
contribution) and their relative velocity (for the
collision contribution). Here, though, the situa-
tion is saved by the fact that v drops out of the ex-
pression for F in (56).

If the assumption that excitation transfer mith
change of polarization does not contribute is ac-
cepted, then the replacement of the remainder of
s by its average in Eg. (55) is certainly permissi-
ble even without velocity averaging, since we. in-
tegrate 5 over the xy plane. The neglect of polar-
ization change on the average is clearly correct
for any one collision, but not necessarily for the
combined contribution of tmo or more, since the
deviations, which depend on the velocities of the
atoms involved in the collisions, may be correlat-
ed in successive collisions. If, however, one is
only interested in getting the shift and/or width to
first order in the density, then the analysis of Sec.
IV shows that one can, indeed, limit oneself to sin-
gle collisions. Corrections to this approximation,
therefore, may well affect the detailed line shape
but not the term linear in the density. They really
represent corrections for the nonindependence of
collisions, and are thus somewhat outside the
spirit of the impact approximation.

Finally, there is the repla, cement of s by its
asymptotic form. In terms of diagrams, this
means that transfer collisions are treated only to
first order, i.e. , diagrams such as those of Figs.
1(b) and 2(c) are omitted. This is valid in the re-
gion b'» p'/v or, referring to (50), b2»o. The
question then is whether this criterion is satisfied

in the range of p which makes the main contribution
to the integral (57). The carrying out of the

/int-

egrationn in (56), of course, does not depend on
(54). The approximation is valid, therefore, if
the region in which it breaks domn corresponds
only to very small p, i.e. , if

K 20&&1.

Another way of putting this is that the square of the
emitted wavelength must be much greater than a
collision cross section. If this is not satisfied,
however, one would not use the impact approxima-
tion in any ease. This approximation has greater
validity here than in the usual case" where one
tries to use it to calculate the total cross section.
There, the integral over b diverges and a cutoff
must be introduced, while here the exponential
factor causes the integral to converge.

We conclude, therefore, that the results of this
section depend only on the validity of the impact
app roxlm ation,

Zaidi has treated this problem under a some-
what different set of assumptions, arriving at an
expression valid in the wings of the line.

VI. DISCUSSION

The conclusions of this article may be summa-
rized as follows, (a) For resonant broadening of
the lower state in emission, the emission line
shape is the same as that for absorption from the
ground state to the resonant-broadened state. (b)
For emission from the resonant-broadened state to
the ground state, however„ this is not the case; the
off-diagonal matrix elements of the resolvent con-
tribute to emission but not to absorption, for our
particular choice of initial emitting state. (c) In
the impact limit, this difference manifests itself in
a small shift of the emission line toward the red.
We do not know of any existing experimental results
which provide a test of this. It would be desirable
to do an experimental check, homever; the situation
is favorable at least in that the predicted ratio be-
tween shift and width is subject only to the impact
approximation and not to uncertainties over the
value of p, .

As has been mentioned several times already, the
emission results would be different for different
assumptions about the initial state. In our case,
the assumption responsible for the main results is
that in the initial state the excitation is shared in-
coherently among the atoms of the gas. If there
were coherent sharing, e. g. , if the initial state
were of the form

then Eq. (19}would contain terms proportional to
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&x./~ /a &&c /~

which vanish in the incoherent case because of ran-
dom phases among the coefficients ag. It is also
the incoherence which enables us to perform the
closure with respect to A which leads from Eq. (47)
to (48). Thus, different assumptions about coher-
ence of excitation sharing would lead to substantial-
ly different results. " Different assumptions about
initial momentum distribution, however, would af-
fect only the detailed treatment of the Doppler
broadening. In an absorption experiment, the ex-
citation probability amplitude is proportional to the
polarization vector, so there is coherent sharing in
this case, the details of which are different for
different frequencies of exciting radiation (because
of the different values of the refractive index).
Hence, our assumed initial state differs, in general,
from what one would have immediately after an ab-
sorption, and the latter in turn depends on the na-
ture of the exciting radiation. If initial excitation
is brought about by electron impact, or some simi-
lar means, it seems reasonable to assume that our
initial state should describe the situation fairly
well.

Since the off-diagonal resolvent matrix elements
represent excitation transfer processes, it is clear

that their role in nonresonant broadening, where
excitation transfer can only be a virtual process,
should be much less significant. For nonresonant
broadening, therefore, the difference between ab-
sorption and emission corresponds to a higher or-
der effect than in the case considered here.

The resolvent method which we have used is not
a,s general, and perhaps not as elegant, as the
Green's-function methods used in Refs. 4-6 and 19.
In particular, our formulation requires the neglect
of quantum statistics. %hen these are unimportant,
however, the present method has its advantages.
It is sufficiently rigorous in formulation to permit
a careful study of the validity of some of the stan-
dard approximations, and at the same time often
leads to a fairly transparent intuitive picture of
what is happening in a line broadening process. It
also seems to be easier to express some kinds of
approximations in the present formalism.
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