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A detailed study of the correlation energy of Ne has been made in order to analyze the nature
of the configuration-interaction (CI) method in ab initio calculations. Both the Bethe-Goldstone
method of Nesbet and the total-pair-excitation-block method (TPEB) were examined. A series
of calculations was made using both "atom-centered" and "shell-centered" basis sets. The

most detailed calculations gave -0.333 a.u. (88%) for the correlation energy by the TPEB
method, and -0.396 a.u. (104%) by the sum-of-the-pairs technique. The difference between

these two values is mainly the so-called pair-pair interactions, which have been considered
too small to be important to other investigators. A series of perturbation calculations on the

triple and quadruple excitations gives 1.5% of the total correlation energy. A complete CI
calculation with a very limited basis set was done on the P block of Ne. The results of this
calculation are in agreement with our total-atom calculation, except that now the TPEB calcu-
lation gave about 98.5%, and the sum of the pairs about 115% of the complete CI result. The

effect on the pair correlation energy of a unitary transformation of the outer-shell occupied
self-consistent-field orbitals was also studied. Only a small difference in the results was ob-
tained.

I. INTRODUCTION

The methods employed in ab initio calculations
have been, for the most part, either the tradition-
al variation' or perturbation procedures using a
configuration-interaction (CI) representation of the
state function of the system. Recently, however,
some dissatisfaction with these methods has arisen
because they represent what one might term
"gross" quantum mechanics, and in many ways
they fail to incorporate the physical aspects of the
problem. In particular, it was hoped that the
"grossness" could be removed from the above pro-
cedures, and in its place a method employed which
partitions the calculation in such a manner that the
most important contributions appear first in the
simplest possible way. Perturbation theory pro-
vides the facade of this progression, but the stan-
dard techniques fail to converge with the necessary
speed. ' More rapid convergence can apparently be
achieved by modifying the perturbationpartitioning. 4

A similar enhancement of convergence has been
sought for the variation method. In recent years
variational procedures developed largely by
Sinanoglu' and Nesbet' have emerged which parti-
tion the CI-variation procedure in a manner simi-
lar to that employed in perturbation theory. As a
result of this partitioning the procedures of
Sinanoglu and Nesbet place great emphasis on the
so-called pair correlation energies. This empha-
sis has culminated in the recent results of Nesbet
in which the pair correlation energies are calcu-
lated for all of the second-row atoms. 7 These re-

suits appear to be so good that Nesbet calls them
the total correlation energy, e. g. , to quote Nesbet,
"the total correlation energies range from 98.5-
100.3% of the empirical correlation energy. "' The
implication being that the omitted parts of a total
calculation (i.e. , pair-pair interactions, triple
excitations, quadruple excitations, etc. ), which
Nesbet notes in previous results, ' are either very
small, or almost totally self-canceling, or both.
If the conclusions of Nesbet are valid, then the
large-scale variation methods such as those of
Bender and Davidson, ' and Schaefer and Harris'
may be unnecessarily complex. A detailed exam-
ination of the Nesbet method is, therefore, a neces-
sity.

That Nesbet's conclusions need to be thoroughly
examined goes without saying, but another more
important implication of his work must be even
more closely scrutinized. If one accepts the fact
that Nesbet's Ne calculation is even more con-
verged than the Be one (100.3% for Ne to 99% for
Be), then one can visualize a time in the near fu-
ture when any atom or molecule no matter how
complex could have its correlation energy calcu-
lated with great accuracy by the relatively simple
procedure of summing the pair correlation ener-
gies. Obviously this raises many questions which
have quite fundamental significance to the method
of CI calculations in general. In this research the
authors have been exploring three of these perti-
nent questions. First, is the summation of pair
correlations a valid (very accurate) procedure for
determining the total correlation energy of atoms
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or molecules? Second, are the other types of cor-
relations (pair-pair, other three-body, etc. ) small
or self-canceling or perhaps neither? Third, even
if the sum of the pairs method is insufficient for
complex systems, is there a cutoff point at a com-
paratively low order of excitation, or do the more
complex effects become important as the size of
the system increases?

The present paper reports the results of a se-
ries of calculations on the ground state of Ne.
These results appear to provide answers to the
first two questions presented above. They also
provide enough information to speculate about the
third. In another paper to follow this one, "more
general mathematical reasoning will be employed
to answer these questions. Specifically in this pa-
per, in Sec. II, the simple theoretical arguments
behind the calculations are presented. Particular
attention is paid to the pair correlation method of
Nesbet and a more traditional procedure designed
to truncate the variation calculation at the end of
the pair excitation block. In Sec. III we briefly
outline the computational techniques used in this
work. Section IV contains the results and discus-
sion of the calculations of the Ne ground state. In-
cluded are a variety of pair summations and also
diagonalizations of the total pair block. Some of
these calculations are also done with basis sets
rotated from delocalized to localized. Total exci-
tation calculations within a particular limited basis
for a part of the Ne atom are also included. A se-
ries of perturbation calculations of the triple and
quadruple excitations is presented in order to try
to determine the importance of higher excitations.
Section V includes further discussion and a summa-
ry of the conclusions reached as a result of this
work.

II. THEORY

bination of Slater determinants, i. e. , Qf is an
eigenf unction of S ', Sg, and Lg but not of L . '

In order to better appreciate the emphasis which
will be placed upon the various separate block ex-
citations, Eq. (2) is expressed below in an equiv-
alent, but more tractable form:

i, a i j
a, b

+Q C. . abc abc
~ ~ g zj gk

a, b, c

(3)

where in (3), &f&zjy . . . ' ' ' represents the many
electron configuration in which the electrons from
space orbitals i,j,k. . . of &j&, have been excited to
the orbitals a, b, c. ~ ~ . Note that in our procedure
the excitations are from space orbitals rather
than from spin orbitals. It is also possible to rep-
resent each group of excitations with separate des-
ignations, e.g. ,

O'. . = $0+gC. Q.
a

+pc. y. + Q C..
'

y. .
'

a,

where the so-called occupied orbitals i and j are
being replaced by the virtual "excited" sets a and
b.

Returning to Eqs. (1) and (2), the standard secular
equation may be set up, i.e. ,

In this section, the basic theoretical arguments
are presented. The more fundamental theory will
be presented in another article. "

We will begin by assuming that our concern is for
atomic systems" so that our Hamiltonian can be
expressed as

where H =(Q ~&(y )

The state function for the atom in question is al-
ways represented in terms of the configuration-in-
teraction method, i.e. ,

(2)

where each of the configurations in the orthonor-
mal set($1 J is a partially symmetrized linear com-

For convenience we designate the term in brackets
as

M =H -S Z .=H S E

One can modify the indexing in Eq. (6) so that it
represents the particular type of block correlation
energy rather than expressing each individual term
separately. Thus the secular determinant becomes
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The standard practice of what we might term the

where in (7) 1 and 2 represent all of the single and
double excitations collectively.

We may, of course, simplify the above expres-
sion by noting that our Hamiltonian contains noth-
ing more complex than pair interactions. Thus
(7) becomes

total variation procedure is to directly solve Eq. (8).
In actual practice the equation must, of course, be
truncated at some reasonable point, usually that
indicated by the dashed lines. This subblock we
shall designate the total pair excitation block
(TPEB)."~ '4 In addition to the partitioning, there
is also the necessity to truncate the expansion ba-
sis. As a result the reasonableness of the TPEB
approximation depends upon whether it is too crude,
and also whether the CI basis used to calculate the
upper bound to the total TPEB result is a nearly
complete one. This latter fact is very important
and will be one of the features emphasized in this
study. The difficulty is, of course, that the total
TPEB result is unknown. One of the fundamental
questions of any TPEB calculation is, therefore,
to determine whether the difference between the
approximate result and the exact ground-state en-
ergy is due mainly to the truncation of the varia-
tional blocks (8), or mainly to the truncation of the
TPEB basis.

These difficulties and other aspects led to the
development of the methods of Sinanoglu' and

Nesbet. ' The Nesbet Bethe-Goldstone procedure'
tries to circumvent these problems by noting that
Eq. (8) may be further subdivided by separating
each particular excitation within a total excitation
block. In this manner Nesbet is able, at least in

principle, to transform what appears to be an ex-
tremely untenable calculation i.nto a rather tracta-
ble one. An example of how this is done through
the pair block is shown below with Be, selected for
convenience, as the example. Note that our in-
dexing has been modified again so that it refers to
the orbitals omitted from g„

0)0M Mp, Mp 2 M0, 2 Mp Mp
„

Ml 0 M» M, 2 Ml Ml M, ,»

M2 0

M»2 p

M2,

M»2

M2 2

M»2 M». , 12

2 22M

12 22

M2, 1

M»2

=0

M22 p M22 1 M22 2 M22, 12 M22 2. M22, 11

Mll p M„, M„2 Mll
~

12 Mll 22 Mll ll

where 0 = 1s22g2

1=(ls y.}i &3,

2=(2s-g.)i& 3

11=(ls'-Q.Q. )i,j & 3
z2

22=(2s2-y. y.ji,j & 3,

12 = (1s2s -Q.Q.3 ij & 3i2
To calculate the specific contribution of say the

12 pair by the Nesbet method one need only solve
the variation calculation outlined in the dashed
lines. This gives what Nesbet calls the gross 12
increment (he»). From this we subtract the re-
sults of the calculations of the contributions of
lower blocks which presumably have already been
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computed. The result of this calculation is the
specific or "net" 12 increment (e»), i. e. ,

~ 12 12 1 2 0 (10)

In general one obtains, for the individual pairs,

and, for the sum of the pairs,

III. METHODOLOGY

This section is designed to outline the specific
procedures employed in our calculations so that no
misunderstandings should arise as to possible dif-
ferences between our results and those of others.

A. Genera1

First, all calculations were done on the IBM
7094/7040 direct coupled system of the University

This method may (by following Nesbet's lead')
be continued to include higher and higher blocks,
until one has computed, through the Nth order, all
net increments for an N-electron system. The re-
sult of this total Bethe-Goldstone calculation would
be the same as that obtained by solving the total
variation, Eq. (7), within the same orbital basis
set. It is important to note that the accuracy of
this calculation is also dependent upon the com-
pleteness of the basis sets employed. This last
statement, which is well known to the users of per-
turbation methods, will play an important role in
the results to follow. In the paper to follow this
one, we will be particularly concerned with the
nature of the term "completeness" and its com-
plexity. '

Aspointed out in the Introduction, Nesbet has used
the sum of all of the net pair increments [Eq. (12)]
to represent an accurate approximation to the ex-
act ground-state correlation energy. Advocates
of the TPEB method find it difficult to appreciate
how the Nesbet method, by ignoring pair-pair in-
teractions (such terms as M», », etc. ), is able to
get better results than the TPEB method (with the
same basis set) which includes these interactions.
Obviously either (1) these interactions are small
and the TPEB method is, for some reason, more
poorly converged to its limit than the Nesbet meth-
od, or (2) the pair-pair interactions are almost
totally canceled by terms from higher excitations,
or (3) the Bethe-Goldstone results of Nesbet are
not converged and in effect mask the size of these
pair-pair interactions. Some of the answers to
these questions will be presented in Sec. IV.

of Washington Computation Center. The programs
employed were all developed in this research group.

The single-particle basis functions used in these
calculations were normalized Slater-type orbitals.
The size of the sets and their screening constants
$ were used as variables. The limitations em-
ployed included; l&4, no more than20functions with
the same m value, no more than 9 functions with
the same g and m values.

After the one- and two-electron integrals were
computed, the basis set was used to generate the
self-consistent-field (SCF) result. This was ac-
complished in the usual manner (Roothaan) with
close scrutiny being paid to problems of overcom-
pleteness and linear dependency. In this manner
the best basis sets mere developed. Due to the
nature of the Nesbet method, the SCF result was
often poorer than could be obtained by other meth-
ods using similar numbers of orbitals. If one is
not expecting great accuracy, this fact is not
necessarily a critical feature of the CI results. "
A more detailed analysis of this problem will be
presented in subsequent sections. The methods
employed in these stages to optimize the f values
were largely ad hoc procedures designed to com-
pletely span the expansion space of the basis.
Due to the comparatively simple nature of the
atomic system, more elaborate optimization pro-
cedures, such as Ransil's, "were deemed un-
necessary.

Functions which were to be employed in the cor-
relation calculations, but which due to symmetry
(I &2) did not affect the SCF result, were included
in many of the sets.

The CI calculations were performed by an eigen-
value algorithm based on an extension of the meth-
od of Nesbet" and Shavitt. " Initially these cal-
culations were made using the SCF basis of oc-
cupied and virtual orbitals. The density matrix
was then formed and the natural orbitals generated.
The frozen form of these natural orbitals" was
then employed to repeat these CI calculations. The
results of these calculations were compared and
their relative merits analyzed. As will be seen in
Sec. IV, the differences between the SCF orbitals
and natural orbitals were not as pronounced as
those obtained by Bender and Davidson on the first-
row diatomics. '

The CI calculations were, in general, performed
by the TPEB and Nesbet pair scheme. Calculations
were also made omitting the single excitations so
that their contribution could be determined. Be-
cause Nesbet's results were obtained from con-
figurations constructed entirely from single Slater
determinants, ' rather than eigenfunction of S', our
results differed somewhat from his. These dif-
ferences are easily determined (see Sec. IV) by
employing the same basis as Nesbet and noting the
magnitude in those cases where the results differ.
These differences can then be added to any of our
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calculations performed with larger basis sets be-
cause the larger sets would produce differences of
about the same size.

B. Limitations of the Number of Configurations

Under certain circumstances it was necessary to
limit the number of configurations employed in the
CI calculations. When very large basis sets were
used (-60 functions), the number of possible dou-
ble excitations generated was untenably large. In
order to circumvent this difficulty the contribution
of these configurations was first calculated by sec-
ond-order perturbation theory (T. his method will
be discussed in Sec. IIIC. ) The terms were then
ordered and the 1000 largest-orbital product con-
tributors were employed to form configurations in
the TPEB calculations. A perturbation calculation
was done to test the effect of this truncation and
this is reported in Sec. IV.

A different CI-variation procedure, which is not
restricted to single and double excitations, was
employed for some of these calculations. This
method is, however, restricted to 50 spin config-
urations. It was used to calculate the total result
of all exeitations generated within a limited basis
on selected subbloeks of the Ne atom. It was also
used as the variation initiator in a perturbation
calculations of the triple and quadruple excitations.

C. Perturbation Method

The perturbation calculations were all done by
a scheme developed in this group and described in
detail elsewhere. ' The technique is similar to
the conventional Rayleigh-Schrodinger method, but
differs because there is no initial partitioning of
the Hamiltonian operator. Instead the perturba-
tive matrix is partitioned so that all diagonal terms
appear in the denominator. It is also arranged so
that the scheme may be used to culminate a vari-
ation calculation. The basic equation is

where Jgo& is an approximation to the wave func-
tion and may consist of several configurations.
Note that expectation values appear in the denom-
inator in place of the usual eigenvalues of Ho.

D. Rotation of the Basis Set

It is well known that the Hartree-Pock wave func-
tion is independent of a unitary transformation on
the orbitals in $0. In some methods, however, the
correlation energy is not independent of this trans-
formation. This somewhat disturbing fact was

pointed out in calculations carried out in their re-
search group by Bender and Davidson on LiH" and
BH." In those calculations the sum of the pairs
was found to be very dependent upon a unitary
transformation of the SCF orbitals. A similar
procedure was developed for our calculations.
This was used to test whether rotating the basis in
P, from the ordinary complex atomic orbitals to a
localized tetrahedral basis would affect the pair
results. Unfortunately the nature of this rotation
was such that it destroyed the symmetry proper-
ties of the basis orbitals, and our programs were
restricted to handling only 20 basis functions.
This placed a severe restriction on the extent of
our results.

IV. RESULTS AND DISCUSSION

We begin with an analysis of the results obtained
by Nesbet using the summation of pairs technique
(Bethe-Goldstone). ' This is done in order to es-
tablish a basis with which to compare our results.
Nesbet's calculation is the only detailed study of
Ne previously reported. The results of Sinanoglu"
and Kestner, "which will be discussed later, are
concerned with specific fragmentary aspects of the
total calculations. Nesbet's results are presented
in Table I. They are listed in terms of collected
spin-symmetrized pair groups, rather than the
manner of their actual calculation. This listing is
employed in order to make the comparison with
our results more convenient. Also included in
Table I are our results for a calculation of the L
shell of Ne. These were obtained using a basis
identical to Nesbet's L-shell basis. The basis em-
ployed in Nesbet's calculations consists of the ba-
sic double-zeta set of Clementi (CDZ) (ls = 8. 9141,
12.3545; $2s ——2. 1839, 3.4921; (2P =2. 0514,
4. 6748), "plus three separate additional sets of
functions designed for calculations on different
shells.

Several very important peculiarities of these
pair calculations should be noted before they are
accepted on an equal basis with those of more tra-
ditional methods. First, there are essentially four
different P, 's in these calculations. There is the
Hartree-Fock g, which is used to obtain the SCF
result ((Q, IHI Q, )). Then there is also a unique
Q, for each of the three different shells. How this
should affect the interpretation of the results is not
totally understood. The four different Q, 's are also
accompanied by the four different basis sets which
are used to implement the pair calculations. Fur-
ther, the SCF orbitals from one set are not quite
orthogonal to those from another set so the 1s' and
2s' pairs, as calculated, are not quite mutually
exclusive. Also a lack of completeness in the s-
and p-type basis functions is reflected in the poor
SCF energy obtained with the L-shell set. One
should not, however, be too quick to criticize the
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a
TABLE I. Nesbet Ne results and our &-shell results obtained with the same basis.

Type of pair Nesbet's results Our results Symmetry difference

2s
2s 2pp

2s 2p+
2s2p

2p p

2p p2py

2P p2P

2p+
2P+2P
2P'

—0.01083
—0,02724
—0.02715
—0,02715
—0.02581
—0.04928
—0.04928
—0.01650
—0.06753
—0.01650

-0.01084
-0,02611
—0.02604
—0.02604
-0.02583
—0.04615
—0.04615
-0.01651
—0.06356
—0,01651

—0.00113
—0.00111
-0.00111

—0.00313
—0.00313

—0.00397

Sum (I shell) —0.31727 —0.30374 —0.01358

1s (E shell)

1s2s
1s2p0
Is 2'
1s2p

—0.03993

—0.005136
—0.006630
—0.006630
—0.006630

Sum (&-I shell) —0.025026

Total sum
of pairs —0.38223

SCF energy
(Varies with

basis) —128.53662 (Clementi H. F. energy= —128.5470)

bBasis = Clementi double zeta plus
& shell &-& shell L shell

0= 21.63:
2s~ 2p

4s, 4p, 4d, 4f
5s, 5p, 5d, 5f

0 = 4.214:
3s~ 3Pq 3d
4s, 4p, 4d

4f

0=21.63:
2s~ 2p

3s~ 3P~ 3d
4d 4f

g = 4.214:
3sq 3pq 3d
4s, 4p, 4d

4f

All of the results reported in this table and all subsequent tables are in atomic units.
See Ref. 25.
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method due to these pecularities, because the
unique nature of these calculations may make these
difficulties inconsequential in the evaluation of the
results.

The differences between the two sets of L-shell
results reported in Table I are due, as was stated
previously, to our using spin-symmetrized con-
figurations, while Nesbet's configurations are all
constructed from single Slater determinants.
These differences, which we have called symmetry
differences (SD), are itemized in Table I. The two
sets of results agree (within the accuracy of the
method) for those pairs in which the spin-symme-
trized configurations are single Slater determi-
nants (i. e. , 2s', 2p, ', 2P+', and 2P' ). Therefore,
one may conclude that the two calculations are
equivalent except for the SD's. C1ose scrutiny
shows that the SD's arise due to the "internal"
pair-pair interactions between the Slater determi-
nants which make up a particular degenerate set.
These interactions are all positive in sign and
would be omitted in any Bethe-Goldstone pair cal-
culation. Thus, in order to bring our pair method
in line with Nesbet's we need to add a contribution
approximately equal to the SD's to results obtained
from basis sets larger than Nesbet's.

To see what effect Nesbet's shell centering ap-
proach has on the results, we decided to do a se-
ries of increasingly complex calculations in which
the basis is as evenly spread over all of the shells
as possible. With an even spread we also hoped to
get the best possible TPEB result, This is assum-
ing that a balanced set is necessary for the TPEB
method. As stated previously, we were also con-
cerned with the very poor SCF result obtained with
the Nesbet L-shell centered set. It was hoped that
a balanced set could correct this difficulty. The
results of these balanced calculations are pre-
sented in Table II. Of particular importance are
the results obtained with the CDZ set. By noting
the difference between these results and those of
Table I, one can determine the importance of the
additional sets of functions employed by Nesbet.
The last column gives the results obtained when
the SD's from Table I are added to our best results
in Table II. These results indicate that the Nesbet
values were obtained with an unconverged expansion
basis, with the possible exception of the 1s' pair.
The TPEB results were obtained from the 60-func-
tion set using both the virtual SCF orbitals and the
frozen natural orbitals. Note that the SCF energy
obtained with this set also indicates that the s- and
p-shell part of the results should be more con-
verged than those obtained with the Nesbet set.

It is also interesting to compare the CDZ results
reported in Table II with those reported in Table III.
The latter numbers were obtained from sets based
upon the one used by Clementi in his Hartree-Fock
calculations of Ne, " The second column of Table III
lists the results obtained using Clementi's set

(CHF). The third column has values generated
from a basis set which was designed to "improve"
as much as possible upon the CHF set. The set
is called the pseudo-Clementi basis (PCS). A
careful scrutiny of the set was maintained to en-
sure that no linear dependencies were created.
This latter set should nearly span the s- and P-or-
bital spaces for Ne. One can, therefore, use the
results in Table III as an indication of how well the
CDZ set is converged. The PCS set was subse-
quently employed as the basic part of the basis set
used in our most detailed calculations. These are
discussed below.

Having already exhibited that a well-balanced,
large basis set could produce an "excess" of pair
correlation energy, we next tried to determine if
even more could be obtained by the Nesbet method
of using different basis sets centered on different
shells. We considered the Nesbet 1s' pair and our
balanced KL pairs to be fairly well converged.
Therefore, we decided to try to specifically in-
crease the sum of the L-shell pair energies.
Table IV lists the results obtained when the CHF
basis and the additional L-shell functions used by
Nesbet were combined. A 43-function (two func-
tions centered on the K shell and 41 on the L shell)
set is formed. The third column of this table in-
cludes the SD corrections. Once again the Nesbet
set appears to be incomplete. It is interesting to
note, however, how the additional s- and P-type
functions used by Nesbet improve upon the CDZ
set. By noting the difference between the CDZ and
CHF results (Tables II and III) and the appropriate
differences in Tables I and IV, this improvement
and its reasons become apparent. Obviously the
functions added to CDZ by Nesbet enhance the span-
ning of the s and P spaces, but they apparently fail
to completely do so by a significant amount. Per-
haps the most significant result to be noted in
Table IV is that by using the Nesbet shell centering
method, one is able to get pair results equivalent
to those obtained using far more complex balanced
sets. In particular, one shouId note that the low
2s2p pair results reported in Table II were quite
substantially increased by the Clementi-Nesbet set
(Table IV). Realizing this we decided to develop
an even more complex L-shell centered basis set.

An attempt was made to provide a spanning of the
rest of the l -type spaces in a manner similar to
that used for the s and P spaces. A set was devel-
oped composed of t:he PCS s and P functions, plus
members which at least partially span the d- and
f-type spaces. This set and the L-shell results
obtained using it are reported in Table 7, The
second column contains the result of the pair cor-
relation calculations and the third, the sums of the
second column results and the SD's. These results
indicate that all of the previous sets used in I-shell
calculations on Ne were incomplete, It is perhaps
surprising to note that this basis, which is sup-



CONFIGURATION- INTERACTION METHOD 651

Cl
M
+

0
~W

O

lQ Cg lC lQ O CO
00 00 t t Q
O CO CO CO CO O

MO O 0 Q 0 0
0 0 0 0 0 0

M oo Cb CA CD
N O O On L t- L CO

CO O 0 O 0
Q O O O O O

0 0 0 0 0 0 0

CO t W t
N QO Q 00
cD cO oO cO

O O
0 Q 0 0

I I I I I I ! I I l I I I I I I I

O
EQ

00
Cg

CD

0
~~

O

O

0

Q

Q

cd

cd

0
07

~~
S

GQ

0
R

0
~&
O

I0

Q
K

0
~W

,I0

O & & O
00 L CO CO O0 aA & aA CO

N N N
Q O O Q 0
0 0 0 O O

CQ CQ

t t
0 0
CD O

00 M 00

CO
Q O Q
Q O Q

EQ
Cb
lA 00
O cg
CQ O
O O

00 Cb
N O

LO O
O Q
0 O

Cb Cb
O 0 et t CO
O Q N0 O 0
O 0 O

t i f I f l I ) I f l I I

00 t CO CO
t t

00 CO CO
Q H0 O 0 0 O
O 0 O 0 0

Cb Pb

CQ0 O
0 0

00
Cb

O 0
O 0
0 0

O
CQ t
00

O Q

Cn O0
lQ

O O O
O 0 O

M CO

Q QO 0 O
O Q 0

I I I I I I I I 1 I I I I I I I I

CA
CD

CD
CQ
CQ

0
I

cd
CD

O CQ

LQ CQ

00 O

O
CO C5
CO 00 t
L

O oo O
I g I

N

LQ
O

Q
O CO

t

cd

8e
U

0 ~

00
II II

rn

00
S4 II II

CD oO

00 t
CO

II II

CQ

C4
Cg

9)

0 40 00
cg O O
CO LQ LQ

L

II II II

r0
~ O

~ O 51

II II

0
Q

II

CO Cb
O & + ~ O

Cg CO0 H + N0 Q 0 0 0
0 0 0 0 0

CO0 0
M0 0

0 0

oO CO
Q0 0

O 0
0 0

CO CO t
CD

Q O QO O 0
0 0 0

CO Ch0
0 0

00 CO 00
Q N OQ O O
Q O Q

I I I I I I I I I I l I I I I I l

00 CO
ce L
CO
LO

LQ

0 00 Q

I

4
Q Q

8 ~
V

g oH

e~ 0



T. L. BARR AND E. R. DAVIDSON

TABLE III. Pair correlation energies for the Clementi-Hartree-Fock (CHF) and pseudo-Clementi (PCS) basis sets.

Type of pair

2s
2s2Pp
2s 2P+
2s 2P

2P p

2Pp2P+

2P 02P-
2P'
2P+ 2P
2P'

Sum I shell)

1s (E Shell)

1s2s
Is2Pp
1s2P+
1s2P

Sum (&-L Shell)

Total sum
of pairs
SCF energy
TPEB

Basis

Basis
1s

15.4496
9.5735

2s
7.7131
4.7746
2.8462
1.9550

"2P

9.4550
4.4545
2.3717
1.4700

Results CHF

—0.00514
—0.01566
—0.01568
—0.01568
—0.01317
—0.02477
—0.02477
—0.00975
—0.03124
—0.00975

—0.16561

—0.02821

—0.00370
—0.00207
—0.00207
—0.00207

—0.00991

—0.20373
—128.54699

—0.17465

1s
15.4496
9.5735

2s

10,125
6.75
4.50
3.00
2.00

&2p

10.125
6.75
4.50
3.00
2.00
1.33

Results PCS

-0.00552
—0.01601
-0.01602
—0.01602
-0.01356
—0.02510
—0.02510
—0.00997
—0.03191
—0.00997

-0.16918

—128.54704

TABLE IV. Pair correlation energies obtained from Clementi-Nesbet basis set (~ shell only).

Type of pair

2s
2s2Pp

2s2P+
2s'2P

2Pp

2P oP+
2PoP-
2P+

'
2P+ 2P-
2P '

Sum of I
Shell pairs

SCF Energy

Clementi-Nesbet results

-0.01077
—0,02649
—0.02645
—0.02645
—0.02601
—0.04678
—0.04678
—0.01676-0,06407
—0.01676

-0.30732

—128.54705

Clementi-Nesbet + SD

—0.01077
—0.02762
—0.02756
—0.02756
—0.02601
—0.04991
—0.04991
—0,01676
—0.06804
—0.01676

—0.32090

aThe basis set consists of the CHF functions and those functions added by Nesbet to the CDZ set for the I. shell.
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TABLE V. Correlation energies obtained with "unbalanced" 60-function set centered on L shell,

Type of pair

2s
2s2pp

2s2p+
2s2p
2p p

2P02p+

2P02p

2p+
2P+2p-
2P

Sum (L shell)

1g2 (X shell)

Results for unbalanced 60

—0.01117
—0.02719
—0.02712
—0.02712
—0.02678
—0.04807
—0.04807
—0.01738
-0.06554
—0.01738

—0.31582

—0.03374

Unbalanced 60 + SD

—0.01117
—0.02832
—0.02823
—0.02823
—0.02678
—0.05120
—0.05120
—0.01738
—0.06951
—0.01738

—0.32940

—0.03374

1s2s
1s2po
1s2p+
].s2P

Sum (X-L shelO

—0.00485
—0.00671
—0.00671
—0.00671

—0.02498

—0.00485
—0.00671
—0.00671
—0.00671

—0.02498

Total sum
of pairs

SCF energy

TPEB

E(2)

Basis

—0.37454

—128.54703

—0.33328 (-0.33268 )

—0.37786 (-0.47093 )

Pseudo-Clementi plus

&3a &4~ &4f
8.00 3.85 6.00
4.00 3.00
2.00

—0.38812

SCF virtual orbitals.
Frozen natural orbitals.

posedly centered on the L shell, gives essentially
the same TPEB result as that obtained with the
"balanced" 60-function set reported in Table II.
This is due, we believe, to the greater importance
of the L-shell pairs in the total result (i.e. ,
L-82%, X-ll/q, and KL-7%). The insufficient
treatment of the E shell in this unbalanced 60-func-
tion set is indicated by the poor K- and K-L-shell
results also reported in Table V. This insufficien-
cy is indicative of the nature of the shell-centered
method.

An analysis was also made of one of the approx-
imations used in the TPEB calculations. Recall
that due to the extremely large numbers of con-
figurations generated by our 60-function set, it
was necessary to selectively truncate our many
electron basis using perturbation theory. A per-
turbation calculation was used to test the effect of
this truncation. The calculation was made employ-
ing the truncated (natural-orbital-generated) set

used to obtain the TPEB result reported in Table V.
This gave the value E"' = —0.4657 a. u. , whereas
the total (untruncated) many electron basis pro-
duced an E"& = —0.4709 a. u. The differential
(-1%) is probably also reflected in our variation
calculation, so that one may assume our TPEB
results nearly converged within the limits of the
orbital basis employed.

In Table VI we imitate Nesbet and add together
results from different calculations to obtain the
best possible total sum of the pair correlation en-
ergies(Berthe-Goldstone). Since Nesbet's K-shell
calculation is more detailed than any of ours, we
use his value for ls'. This summation is -104/o
of the total correlation energy of Ne (0.381 a. u. )
reported by Clementi. " Although this value gives
the appearance of near convergence, there is rea-
son to believe that quite a bit more can be obtained
by employing an even more complete basis set. A
further discussion of this point will appear in Sec.V.
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TABLE VI. Our best summation of pair correlation
results.

Type of pair

2s
2s2p
2s 2p+
2s2p
2p Q

2p Q2p+

2p Q2p

2p+'

2p+ 2p
2p'

Sum (I shell)

Is shell)

1s2s
Is2pQ

1s2p+
ls2P

Sum -L shell)

Best result

—0.01117
—0.02832
—0.02823
—0.02823
—0.02678
—0.05120
—0.05120
—0.01738
—0.06951
—0.01738

—0.32940

—0.03993

—0.00528
—0.00709
—0.00709
—0.00709

—0.02655

Sum of
pair correlation
energies

—0.39588

Taken from Table V.
Taken from Table I.
Taken from Table II.

Perhaps the most significant single feature of
these results is obta. ined by comparing the total
sum of the pairs with the corresponding TPEB re-
sults. The difference between these two values is
0.04-0.06 a. u. , and is all due to the so-called pair-
pair interactions. This difference is roughly pro-
portional to the total correlation energy obtained
from the largest pairs. Thus, the pair-pair inter-
actions for Ne constitute -15% of the total corre-
lation energy. It might seem reasonable to con-
clude from the above results that the approximate
convergence values of the sum of the pairs and the

T&EB methods are -105% and -90%, respectively
(with -15% for the pair-pair interactions). If this
were true it would be necessary for triple and
quadruple (and perhaps higher) excitations to con-
tribute -10% to the total correlation energy. Thus,
if these ratios were true, then the triple and qua-
druple excitations for Ne would not be small. In
order to examine this point, we made a series of
calculations of these higher excitations. The per-
turbative method for doing this was outlined in
Sec. III. Specifically, we selected the 50 most
important double excitations constructed from our
unbalanced 60 natural orbital set, and performed
a variation calculation using these 50 functions.
We then constructed nearly all of the possible tri-
ple and quadruple excitations which could be gen-
erated from simultaneous excitations of different
pairs. Finally, using the lowest-energy eigenfunc-
tion of the variation calculation as P„weper-
formed a second-order perturbation calculation on
these higher excitations. The results of these cal-
culations are reported in Table VII. The signif-
icant feature of these results is the small size of
the contributions of the triples and quadruples.
Thus, despite the fact that our small variation
calculation generates approximately 3 of the even-
tual TPEB value, the E&'& perturbation calculation
gives less than 2% of the total correlation energy.
From these results the only interpretation is that
it is a mistake to expect to get anywhere near 10%
from the higher-excitation contribution to the cor-
relation energy of Ne. It is also interesting that
the ideas of Sinanoglu about unlinked clusters are
borne out. ' Thus the largest contributors to the
energy from the higher excitations are the so-
called S -type unlinked clusters. " Kestner's con-
clusions about the smallness of the triple excita, —

tions of Ne are also borne out by this study. '4 We
do not agree with Kestner, however, in concluding
that the small size of the triples is indicative of
the exactness of Nesbet's results.

The accuracy of standard second-order pertur-
bation calculations must always be considered
somewhat suspect. Therefore, we did another

TABLE VII. Contribution of triple and quadruple excitations by perturbation theory (in a.u. ).

Size of second-order perturbation

19 triples and 1099 quadruples
329 triples a

19 triples

Total triples
Total quadruples
Total quadruples + triples
Correlation energy of QQ

Perturbation results

—0.005699
—0.000156
—0.0001125

-0.000156
—0.005587
—0.005743
—0.22343

Most of the possible triple excitations from orbitals
in @Q.

bS-type unlinked triples constructed from double ex-
citations in QQ. See Refs. 5 and 28.
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TABLE VIII. Total calculation using limited basis on p block of Ne.

No. of configurations

1 SCF
14 singles+ doubles
15 triples
11 quadruples
4 Pent. + Hex. (complete)

Total correlation energy
Singles + doubles
The higher blocks
Pair energies

Block variation
increment

—128.47833
—0.08069
-0.00016
-0.00091
—0.00001

-0.08177
—0.08069 (98.68%)
—0.00108 (1.32%)

Bethe-Goldstone

Pairs —0.09411
3 body +0.01407
4 body -0.00205
5 body + 0.00053
6 body -0.00021

—0.08177

—0.09411 (115.2%)

Basis: Single zeta for 1s and 2s+CDZ for 2P (only P —P excitation considered)

series of calculations, the results of which we con-
sider very important. These calculations were
performed using a limited basis set on just the P
block of Ne. Because the size of the basis set
was very limited (we used the CDZ p-block set), we
were able to calculate the contribution of all possi-
ble excitations (up through hexuples) by both the
Bethe-Goldstone and the total excitation block mech-
ods. The results of these calculations are report-
ed in Table VIII. Three features of these results
are extremely important. First, the pair-pair
interactions given by these calculations are once
again -15% of the total result. Second, the con-
tributions of the true triple, quadruple, etc. , ex-
citations are also still small as they were before
(i. e. , less than 2%), and once again the quadruple
excitation terms are much larger than the triples.
Third, the TPEB result for this total "subspace"
calc'ulation is -98% of the limit of the basis set
while the sum of the pairs gives -115%.

Finally, selected results of a series of calcula-
tions are reported in Table IX, in which the basis
sets are rotated from complex to tetrahedral. The
motivation for this type of study was the results ob-
tained by Bender and Davidson on I.iH ' and BH. 2

Their work indicated that the sum of the pairs
method could be quite susceptible to the nature of
the basis employed to make the calculations. The
results exhibited in Table IX indicate that a sim-
ilar, but much less pronounced effect is occurring
for Ne. Unfortunately these resu1ts are not as
accurate as one might desire. This is due to an
inherent restriction of the programs. One should
not necessarily conclude that the agreement be-
tween Nesbet's results' and Sinanoglu's tetrahedral
results" disproves these ideas. It can be shown
that whereas the sum of the pair energies for
Bethe-Goldstone pairs is not invariant under a uni-
tary transformation of Q„the total pair energy for
the exact Sinanoglu MET pairs is invariant under
these transformations (although not for the first

approximation to these pairs).

V. CONCLUSIONS

It has been conclusively shown that, at least for
Ne, the sum of the pairs method designed by Nes-

bet overshoots the limiting energy of the basis set
by a significant amount. The present calculations
produce by this method approximately 104/&'j of the
correlation energy of Ne. It is suspected that the
method will produce an even greater percentage if
a more complete basis is employed. Before am-
plifying this statement, we should point out that the
additional contributions produced with more com-
plete basis sets will all be negative in sign. Thus,
one should not expect the percentage to decrease
if the sets are made more complete. More will
be said on this subject in a subsequent paper. "

The significant differential (-15%) between the
sum of the pairs and the TPEB result is due to the
so-called pair-pair interactions. The size of these
contributions (which are always positive in sign")
is perhaps surprising, because many researchers
have long considered them an insignificant part of
any calculation. " It should be pointed out that we
do not agree with the conclusions of Freed, "in
which he postulates that the pair-pair interactions
will go to zero when one rotates to a totally local-
ized basis set. It is true that this rotation will
greatly reduce the contributions of totally disjoint
pairs (e.g. , f,' with f,' or in the parlance of
Kelly" and Freed" the so-called nondiagonal hole-
hole diagrams). The rotation does not, however,
necessarily diminish the size of the interactions
between semidisjoint pairs (e.g, 2P02P+, with
2pp2p g or particle-hole and ring diagrams). A
more extensive treatment of this problem will be
presented in the second paper of this study. "

It is also interesting to note that the improve-
ment of the Nesbet method over second-order
Rayleigh-Schrodinger perturbation theory is due to
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TABLE IX. Effect of rotating the basis on the sum of the pairs.

Complex pairs

2s
2s2P p

2s 2P+
2s2P
2P p

2P p2P+

2Pp2P„
2P+2

2P+ 2P-
2P'

Sum (L shell)

Is (& shell)
\

Is2s
Is2P p

Is2P+
Is2P

Sum (&-I- shell)

Complex results

—0.00838
—0,01677
—0.01676
—0.01676
—0.01985
—0.03694
—0.03694
—0.01292
—0.05009
—0.01292

—0.22833

—0.03170

—0.00398
—0.00422
—0.00422
—0.00422

—0 ~ 01664

Real pairs

2S

2s2Px
2s 2P

2s2Pz
2P'
2Px 2py

2px2Pz

2'
Pg Pz

2P.'

Sum

Is

Is2s
Is2px
Is2P

Is 2pz

Sum

Real results

-0,00838
-0.01677
—0.01677
—0 ~ 01677
—0.01985
—0.03694
—0.03694
—0.01985
—0.03694
—0.01985

—0.22906

—0.03170

—0.003 98
—0.00422
—0,00422
—0.00422

—0.01664

Tetrahedral
(I shell) pairs

tg
2

tit2
t it3

t~t4

t2

t2t3

t2t4

t3

t3t4

t4
2

Sum

Is

Istic
Ist2
ISt3
Ist4

Sum

Tetrahedral
results

—0.01880
—0.02542
—0.02542
—0.02542
—0.01880
—0,02542
—0.02542
—0.01880
-0.02542
-0.01880

—0.22772

—0.03170

—0.00416
—0.00416
-0.00416
—0.00416

—0.01664

Total sum of
pairs

TPKB

SCF

—0.27667

—0.24760

—128.53891

—0.27740 —0.27606

Basis set. CDZ+ f = 8.9141+02P
= 12.3543+ 0 = 2.1839+$3d

——4.67482S 2P 3s

the former's inclusion of the interacting virtual-
state terms (i. e. , the particle-particle and hole-
hole ladder diagrams) to all orders. Interestingly
these terms contribute (positive in sign) about 19/0
(i. e. , Et'& = 123/0 while gef& =104%) to the cal-
culations reported in Table V. Thus, we see that
contrary to the conclusions reached by many oth-
ers, "the pair-pair interactions are, at least for
Ne, almost as important as these ladder dia-
grams. "

The results of our higher-excitation and total p-
block calculations indicate that the contribution of
these higher-excitation terms is of the order of 2/o.
This small size plus the results of the total P-
block calculation lead us to believe that the signif-
icant error present in our best calculations re-
sides in the inherent incompleteness of the basis
sets employed. Thus, if we were to scale a total
calculation we would predict for the correlation
energy of Ne: Sign

Sum of the pairs = 113%

Pa.ir-pair interactions =15%

TPEB =98%

Higher excitations =2% ( —) .

That this has not been obtained is indicative of the
difficulty in obtaining a complete basis set for a
relatively complex atomic system (10 electrons).
The question that immediately arises is, if the
basis set is incomplete, where are these "gaps"
located? As stated previously the s and p spaces
are (for our unbalanced 60-function calculation)
almost completely saturated.
Tests indicate that the d space is also nearly sat-
urated. Thus the incompleteness of our best ba-
sis set is apparently due to the unsaturated nature
of the f space, plus the omission of higher I-type
spaces (g, h, etc. ). That the contribution of these
higher l spaces should be so large is not very sur-
prising. A series of calculations made on Be by
perturbation theory produced a contribution from
higher I-type spaces of approximately 2/0. "i'b
One must, of course, be wary about transferring
contributions obtained in different calculations
using completely different basis sets.

One can legitimately question the appropriate-
ness of simply scaling our results as was done
above. As the size of the basis set is increased,
the fraction of the connecting matrix elements be-
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tween different pair excitations which are nonzero
decreases rapidly. Hence it is possible that the
relative accuracy of the sum of the pairs might
improve somewhat as a more complete basis was
used. It is unlikely that the absolute error would
decrease, however, so that the difference of 0. 04
is likely to be preserved. If the higher excitations
contribute 2%%d, this would set a lower bound of
about 108%%up for the pair energy limit compared with
the upper bound of 118%%uo obtained by scaling.

No firm conclusions can be drawn concerning the
unitary rotations of Q, . A definite change in the
sum of the "Nesbet" pairs was noted, but this was
not as pronounced as the changes found by Bender
and Davidson on molecular systems. "~" Perhaps
this differential will shrink as one goes to more
and more complete basis sets, but the results re-
ported in Table IX seem to preclude this possibil-
ity.

We have now discussed enough results to be able
to answer, at least for this particular case, the
three questions presented in the Introduction to
this paper.

(a) The summation-of-pairs (Nesbet type) method
is not an extremely accurate method for obtaining the
exact correlation energy. The excellent percent-
ages reported by Nesbet (100.8/0), and even our
104/p, arewefeelfartoolow. They result from
the use of an incomplete expansion basis. The
TPEB method would, we feel, give better answers
than the sum of the pairs method, if the basis sets
employed were complete. This incompleteness is
a difficult problem to solve, however, so that the
-10%%uq error noted for our TPEB results will be
difficult to remove. It should be pointed out that
we do not feel the sum of the pairs method is with-
out merit; in fact it represents what is probably
the quickest and best technique yet developed to
obtain accurate estimates of the total correlation
energy. With the inclusions of the extensions as
suggested by Nesbet, ' the method may prove par-
ticularly accurate. It should also be noted that our
results do not necessarily preclude the use of the
summation of pairs technique as an accurate
scheme to calculate physical properties other than
the correlation energy. (b) We have shown that
for Ne the pair-pair interactions are quite large,
on a relative scale in which one hopes for quanti-
tative accuracy. We have also indicated that
higher-excitation terms (triple, quadruple, etc. )
are not large and contribute not more than 2% to
the total correlation energy. The transferability

of these results is in part an answer to the third
question. (c) Since all of our results are for Ne,
we can only speculate on the transferability of
these results to more complex systems. The fact
that the pair-pair interactions are much smaller
for Be is probably due to the small penetration of
the 1s and 2s orbitals. Nesbet's results for pair
energies indicate that all pairs of orbitals with
large penetrations are strongly correlated. It
seems likely that all pairs of pairs with large pair
penetration, defined by something like

J le (1)e (2)~e (1)e.(2)l le, (1)

will have large pair-pair interactions.
It is instructive to apply these ideas to the re-

sults obtained by others using methods other than
the Bethe-Goldstone technique of Nesbet. Since no
comparable results exist for the Ne atom, it is
necessary to use results obtained for other
atoms. " The boron results of Schaefer and Harris'
and the oxygen results of Kelly are interesting
examples. In the former case totally symmetrized
configurations were employed and no compensation
was made for the SD's in obtaining their sum of the
pairs. If this compensation were used it is prob-
able that the Schaefer-Harris sum for 8 would
be very close to Nesbet's. ' An extension of the
Schaefer-Harris basis to get even more pair
energy seems to be possible. Kelly's oxygen re-
suIts were obtained by the Brueckner-Goldstone
perturbation theory. " For this calculation Kelly
ignores some of the nondiagonal ladder diagr: ms
(most of which are positive in sign) as well as all
pair-pair interaction diagrams. It is thus not sur-
prising that Kelly gets a value for Eco» which is
-107/o. Had he included these omitted diagrams
his results would most certainly be closer to the
true value.
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