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Stationary Gaussian optical fieMs are also often called thermal fields because they are gen-

erated by natural or thermal sources. By using the amplitude of the field, we show that ther-
mal fields are only a particular case of the more general class of Gaussian fields. Such non-

thermal Gaussian fields can be obtained experimentally, and we calculate some properties,
concerning particularly the effect, of Hanbury Brown and Twiss, photocounting, and coincidence

experiments. We show that the thermal fields are the less chaotic or incoherent Gaussian fields.

Finally, we introduce pseudo-Gaussian fields which appear in some experiments of diffusion

with laser light. They are non-Gaussian fields, but their intensity has the same properties

as that of a Gaussian field.

I. INTRODUCTION

Statistical properties of optical fields have been
extensively studied in recent years. In particular,
we now have very good descriptions of coherence,
photon coincidence, and photocounting experi-
ments. '-' These descriptions can be achieved by
using classical concepts, where the statistical
nature of the electromagnetic field is described by
means of an appropriate stochastic process. Co-
herence properties are thus defined by a set of co-
herence functions which are particular moments
of the process. However, the statistical nature of
the field is also described quantum-mechanically
by a density matrix which allows us to introduce
quantum coherence functions.

The correspondence, which is in some cases an

equivalence between the classical and the quantum
description, can be studied by using coherent states
and the P representation. The main result of this
study is that, even though the quantum description
is more appropriate to a microscopic description,
the two points of vieware completely equivalent in
the case of fields actually studied inthe laboratory. '
Theoretically, there are fields which have no clas-
sical equivalence, ' but up to now they have not
been obtained experimentally.

This is particularly the case for natural light
and laser light. Ideal laser (or coherent) light is
represented by a coherent state or by a nonrandom
function of time. Thermal (or Gaussian or chaotic)
light is generated by a natural source, and its
Gaussian properties appear as a consequence of
the central-limit theorem. ' This statement is also
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true in the quantum description. An expression
for thermal light can also be used in the case of
optical fields obtained by the diffusion of laser
light in a statistical medium, and some recent ex-
periments seem to indicate that such fields are
approximately thermal. '

Nevertheless, it has never been pointed out that
thermal fields are only aparticular case of Gaussian
optical fields. We will present and study here the
most general quasimonochromatic Gaussian field.
For this description it will be necessary to sum-
marize the characteristic properties of thermal
fields. In particular, we will show that the analytic
signal and the amplitude of such fields must pos-
sess some special properties. By changing some
of these properties, we can obtain fields which
are Gaussian but are no longer thermal. Evi-
dently, the question arises whether such fields
are only hypothetical or are obtainable experi-
mentally. We will discuss this point and show that
it is actually possible to obtain such electromag-
netic fields. Therefore, it becomes very interest-
ing to specify the most important statistical prop-
erties of such fields; we will present results con-
cerning interference, intensity correlations, co-
incidence, and photocounting. In particular, we

will show that the effect of Hanbury Brown and Twiss
can be more important for these than it is for ther-
mal fields. Finally we will introduce the concept
of pseudo-Gaussian fields. In fact, there are some
non-Gaussian fields whose light-intensity proper-
ties are exactly the same as those of the Gaussian
field. This situation occurs particularly in dif-
fusion experiments with laser light: The diffused
field cannot be Gaussian, because the laser light
is not a pure sinusoidal wave, but has phase fluc-
tuations. " Nevertheless, counting and coincidence
experiments give the same results as for a ther-
mal field. Some properties of such pseudo-
Gaussian fields are reviewed. In our discussion,
we have chiefly used classical concepts, because
the equivalence theorem can be applied to the fields
studied here.

is the mean frequency.
The field is therma/ if X(t) is a real, zero-mean,

quasimonochromatic, stationary, and Gaussian
random process, which is therefore defined by a
correlation function rx(v).

For optical problems, and particularly for in-
troducing the light intensity, it is convenient to
use the analytic signal (a. s. ) of X(t) defined by

z(t) =x(t)+iY(t), (2. 1)

where Y(t) is the Hilbert transform of X(t).
Moreover, we introduce the amplitude Z (t) of the

field by

z(t) =x(t)+iY(t) =z(t)e (2. 2)

where &u, is the mean (angular) frequency of the

field. Therefore the light intensity is

(2. 3)

(2. 4)

(2. 5)

where 1 Z(v) is the first-order coherence func-
tion of the field. Therefore, with Eq. (2.2) we
obtain for the amplitude Z(t),

Now we will summarize the fundamental proper-
ties of the amplitude of a thermal field. (i) Since

X(t) is quasimonochromatic, Z(t) is band-limited

and the mean frequencv is evidently 0. (ii) Thus,

Z(t) is not an a. s. , because there are negative fre-
quencies in its spectral representation. Therefore,

X(t) and Y(t) are not Hilbert transforms. (iii) The

random amplitude Z(t) is fully stationary' to second
order, "which means that &Z(t, ) Z (t,)) and

&Z(t, )Z*(t,)) are only functions of t, —t,. In fact,
if X(t) is stationary, we know that the a. s. Z(t)
sat%sf le 8

II. THERMAL FIELDS &Z(t,)z(t,)) = 0 (2. 6)

In this section we will summarize some charac-
teristic properties of thermal fields, which will

allow us to introduce, in the following sections,
Gaussian but nonthermal fields.

We are not interested in polarization problems,
and therefore the field can be described by a sca-
lar random function of time X(t). Moreover,
throughout the following discussion we will con-
sider only quasimonochromatic fields. The func-
tion X(t) is quasimonochromatic if its spectral rep-
resentation has nonzero components only in a fre-
quency range b,v, such that (bv/v, ) «1, where v,

(2.7)

Thus, Z(t) is fully stationary to second order.
Conversely, if Eqs. (2. 6) and (2. 7) hold, the field
X(t) is stationary. (iv) By introducing the corre-
lation functions of X(t) and Y(t), Eq. (2. 6) can be
written in an equivalent form
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'XX"='YY(' ~

r (~) = -r (~),XY YX

and therefore Eq. (2. 7) becomes

I (7)=2[r (~)+ii"—(~)j .
Z XX YX

(2. 8)

(2. 9)

(2. 10)

Let us suppose that the amplitude Z(t) is still
fully stationary to second order, but that Eq. (2. 6)
does not hold. In this case the field is only quasi-
stationary. " In fact, Eq. (2. 5) is still valid, and
there is always a stationary first-order coherence
function, but we have

(Z(f,)Z(f, )& = (Z(f, )Z(4)&e (3 1)

which is not a function of (i, —t, ), even if
(Z(f, ) Z(t2)& is stationary. Thus, Z(t) is notfully sta-
tionary, but only to second order, and X(t) is not
stationary. Now if the amplitude Z(f) is Gaussian,
we obtain a quasistationary Gaussian field which
is nonthermal.

A nonstationary field can be considered as un-
physical. But the expression "quasistationary"
means that there are some physical properties of
the field which are still stationary, and in our case
one such property is the light intensity defined by
Eq. (2. 3). Therefore, for experiments on light
intensity, the field appears as stationary.

Thus, we can define the most general quasimono-
chromatic Gaussian field by the correlation ma-
trix of its amplitude Z(t)

We may note that we have exactly the same equa-
tions for X(t) and Y(t), as for X(t) and Y(t) but
with the important difference that I"XX(r) and

I'Yx(r) are Hilbert transforms, because I'Z(7') is
an a. s. That is not true for I'Z(r), so I xx(v) and

I'yx(r) are not Hilbert transforms. (v) The am-
plitude Z(t) of a thermal field is a Gaussian ran-
dom function. Thus, the components X(f) and

Y(t) are also real and Gaussian. (vi) An immed-
iate consequence of Eqs. (2. 8) and (2. 9) for 7'= 0
is that (X'(f)& =( Y'(f)& and (X(t)Y(f)&= 0, so that the
instantaneous phase of Z(t) has a uniform distri-
bution.

HI. INTRODUCTION OF GAUSSIAN NONTHERMAL
FIELDS

one nonzero element, I'Xx(v). Before discussing
properties of such fields, it is important to con-
sider whether quasistationary Gaussian fields can
be obtained physically, or are only theoretical con-
cepts.

It is effectively possible to obtain such fields in
experiments on the propagation or diffusion of light
in random media. Let us consider a coherent
monochromatic beam which passes through a ran-
dom medium. If we neglect phase fluctuations, the
incident beam is described by ei+Ot. If the random
medium creates only amplitude fluctuations, the
beam obtained can be written

Z(t) =X(t)e (3.3)

A (r, i) = n( r, f) —(n& (3.4)

In many cases we can assume that A(r, f) is a
real Gaussian function. The optical field diffused
in a direction defined by the impulse transfer k
can be obtained by a calculation similar to the Born
approximation, and in the first approximation the
amplitude of the diffused field is "

Z (f)= J A(r, t)e dr (3.5)

where V is the scattering volume.
To see whether the scattered field is a thermal

one or not, we have to study whether the relation
(2. 6) is satisfied. From Eq. (3.5) we obtain

where X(t) is, for example, the random transpar-
ency of the medium. If X(t) is real, stationary,
and Gaussian, the output beam is quasistationary
and Gaussian, but the light intensity X'(f) is sta-
tionary. A more general case with complex trans-
parency can also be considered.

At this point it is interesting to study the complex
amplitude of the field obtained by the diffusion of
a laser beam in a statistical medium. In fact, as
previously noted, many recent experiments using
counting and coincidence measurements have shown
that such a field is approximately thermal. '

To discuss this problem we can use a macroscop-
ic description of the fluctuations of the medium
which are the origin of the diffusion, by introducing
a refractive index n(r, f) of the medium whose fluc-
tuations are

'xx" 'x-"
r(r) =

'YX" 'YY" (3.2) &z„(f)z,(f-.)&= j j N(.„f)~F., f- )&

and the only condition is I'XY(v') = I' Yx(- v), be-
cause of the stationarity of Z(t). A thermal field
is a particular case defined by Eqs. (2. 8) and (2. 9).

In Sec. IV we will study fields with real ampli-
tude for which Y(f) = 0, and therefore I'(r) has only

ik ~ (r, +r, )d d (3 6)

The index fluctuations A(r, f) can be supposed
stationary in space and time, and we suppose that
the correlation function can be factorized as
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(3.7)

After a change of variables and two integrations,
we find

&Z (f)Z„(f — ))= lF ( )f(1)~(&), (3.8)

where f(k) is the Fourier transform of f(r).
Thus, for otherdirections than the incident one

(k= 0), Eq. (3.8) is identical to Eq. (2. 6), and

therefore the diffused field is thermal. To under-
stand this fact we may note that the diffusion pro-
cess creates fluctuations of the amplitude and phase
of the field, and therefore the phenomenon is more
complex than in the case of random transparency.

IV. PROPERTIES OF GAUSSIAN FIELDS WITH
REAL AMPLITUDE

In this section we will study Gaussian fields de-
fined by Eq. (3.3), where Z(t) is real, because
among the nontherma3. fields they are experimentally
~he most feasible and theoretically the simplest to
study.

A. Interference and First-Order Coherence

Even though the field Z(t) defined by Eq (3 3) is
not in the strict sense stationary, we can introduce a
correlation (or first-order coherence) function of
';he field by

By using the fact that X(t) is Gaussian, we find
for the probability distribution of the random var-
iable I(t) at the time f,

(.) [ 1/2( . .)1/2]-1 -g/2go
(4.4)

where i, = &I(t)), the mean value of the intensity. For
thermal fields we have an exponential distribution;
a comparison between all Gaussian fields will be
given in Sec. 5 (see Fig. 1).

D. Photocount Distribution

Photocounting experiments provide an important
tool for investigating the statistical properties of
optical fields. These experiments give information
about the point stochastic process determined by

where yZ(v) is the complex degree of coherence of
the field. For thermal fields, we have a similar
expression, but without the factor 2. Therefore,
if we characterize the effect of Hanbury Brownand
Twiss due to the second-order incoherence of the
field by the ratioh=I'I(0)/I"I( ), we obtain h=3,
compared with h = 2 for a thermal field. In some
sense we can say that this field is more cha, otic or
more incoherent in second order than a thermal
field.

C. Light-Intensity Probability Distribution

= F—(v)e (4. 1)
p(&)

where lx(7') is the correlation function of the
amplitude g'(f). This function is used for the in-
terpretation of the interference experiments. The
main intensity obtained in a two-beam interferom-
eter with a delay 7 is given by

=2[&—(0)+F (7') cos(u I]x
= 2I[1+1'—(v) cos~ 7]x 0 (4. 2)

Therefore, in interference phenomena there is
no difference between quasistationary Gaussian and

thermal fields. Furthermore, we can even say that
for every Gaussian field we can find a thermal field
which gives the same interference fringes. This
field is the stationary Gaussian field whose correla-
tion function is I"y(r) cos&u,v. Thus, to distinguish
thermal and Gaussian fields, higher-order prop"
erties must be studied.

8. Intensity Correlation Experiments and

Second-Order Coherence

Because X(t) is real and Gaussian, the correla-
tion function of the light intensity I(t) =X'(t) is
given by

0 05
I

1.5

FIG. 1. Intensity probability distribution for Gaussian
fields and F0=1. (1) Thermal field; (2) Gaussian field
with real amplitude; (3) general Gaussian fieMs with

p=0.4 (4) with p=0.6 (5) with p=0.8.
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P (T) =(1/nt)({exp[- f nI(8)de]j

[f nI(8) de] )

To investigate the properties of the field, it is
also interesting to study the probability q„(T) for
the emission of n photoelectrons in (t, t+ T) with the
condition that there is a point at the time t (trig-
gered photocounting distribution). The result is

q (T) = (1/nti ) ({exp[-f I(8) de]]

&&I(t)[ f I(e)de] ) . (4. 8)

the emission times {ti]of photoelectrons as mea-
sured by a detector immersed in the field. "

As recently pointed out, "there are many kinds
of photocount distributions; for this discussion we
will only consider the two most important ones.

An ordinary photocount experiment gives the prob-
ability Pn(T) for the emission of nphotoelectrons in
the time interval (t, t+ T). Since the process of
{ti] is a Poisson compound stochastic process, we
have

which is an increasing sequence for a compound
Poisson process. For a pure Poisson process we
have F(n) =F (0); for the thermal field, F(n) =

(n+1) F(0); and here we deduce from Eq. (4. 7)
t at

F(n) =(2n+1)F(0) (4.11)

Therefore, as previously, we can conclude that

Eq. (4. 9) or (4. 11) shows that the field is more
chaotic than a thermal field.

E. P-Time Joint Photocounting Distributions

If we wish to evaluate some statistical distribu-
tions which are not instantaneous but related to the
time evolution of the field, we may in particular
study the multitime distribution of the photocounts,

p(n, T„.. . , npTp), which is the probability that the
numbers of photoelectrons received during the sam-
pling time intervals (t„ t, +T,) ~ ~ (tp, tp+ Tp) are
n„., ...np. For a Gaussian thermal field this was
calculated for 7.'z «7& by Bddard, "and more re-
cently by Dialetis" for an arbitrary value of T~.
In this section we calculate in the first approxima-
tion (Ti «v ) the p-fold joint probability distribu-
tion p(nl Tl, ..., npTp) given by

In the following equations, for simplicity we put
n = 1. To avoid complex calculations, "we suppose
thai the sampling time T is much smaller than the
coherence time 7'c of the field, so that ftt+ TI(8)de
=I(t)T; then from Eq. (4.4) we obtain

P(n T, ... , n T )

P
=( g exp(-I T ) [(I~T~) /n~t ])

u u
(4. 12)

and

r (n+ —,') (2(Ã))

{2(N)+1)
(4. 7)

where I& is the light intensity during the time in-
terval (ty, tt + Tt,). Such a distribution can be ob-
tained by multiple differentiation of the P-fold
generating function+(s 1, . . . , sp) defined by the re-
lation

1(n+-,') (2 (N))

( ( )
)n+3/2

(4. 8) G(s, . . . , s )=(II (1 —s.)
2=1

(4. 13)

where I' is the factorial (Euler) function, and (N)
= ioT is the mean number of photoelectrons in the
time interval (t, t+ T).

Some elementary properties of such distributions
are of interest. First a comparison between the
mean value of N for the distribution p„and q„gives

where N~ is the random number of photoelectrons
detected in the time interval (ti, t + Ti).

For a real-amplitude Gaussian field and when
7.'z«7, we haveCP

P
G(s, . .. , s ) = ( g exp[ —(s.T.X.')]), (4. 14)

z=

(N) =3(N) =3(N)
P

(4. 9) where X.= X(t.)

instead of Nq = 2(N)~ for a thermal field. This ratio
is a measure of the bunching effect of photoelec-
trons, which is therefore stronger than for thermal
fields.

Secondly, we can compute the sequence'~ " P(X, ... , X )
=' exp(- zX AX),(detA)'"

(2m)P/
(4. 15)

Moreover, the P-fold joint probability distribu-
tion for the zero-mean real amplitude X(t) is given
by

F(n) = (n+1) P„ 1/P„ (4. 10) where X is the column matrix formed by the Xz,
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i = 1, 2, .. . , P; X t is the corresponding row matrix,
and A ' is the symmetric covariances matrix.
Using Eqs. (4. 14) and (4. 15), we see

where hN is the matrix with elements

(~ ).. =5.. +2(X X ).T .s.
Nzj zj z j z z

(4. 19)

(deta)'"""p) N/2
(2m)

xf ~ ~ ~ f exp( ——,X BX)d& ~ ~ d& ), i4 18)1 P

For P =1, we obtain G(s) =(1+2(N)s) '~' which
gives the photocount distribution pn(T) of Eq. (4. 7).

For P = 2, we obtain

G(s„s,) =[I +2(N, )s, +2(Nz)sz

where B is a matrix related to A by

8 ..=A .. + 2T.s.5..
ij ij i i ij

Finally, the esult can be written

G(s, ... , s ) = (det a ) '",1'"' p

(4. 1.7)

(4. 18)

+4(N, )(N2)s|s2(1 —y )]-~~ (4. 20)

where N, and N, are the numbers of photoelectrons
in the two intervals, and y the normalized (and in
this case real) degree of coherence. From Eq.
(4. 20) we can derive the twofold probability distri-
bution p(n„ t„T„n„t„T,); in particular, we have

p(n, t~, Ti; 1, tz, T,) = t, /a 4n(N&)(Nz)(I y')
1 2

+2(n+ z) [(N )y2(N )(N )(I yz)] (4 21)

where A = 2(N, ) + 4(N, )(N,)(1 —y')

and B = 1+2(N,)+2(N, )+4(N„)(N,)(1 -y')

In these expressions, (N,) and (N, ) are, respectively,
the mean numbers of photoelectrons registered
during the time intervals (t„ t, + T,) and (t„ t, + T,).

%hen t, = t, and T, -0, we obtain the conditional

probability that n photoelectrons are registered
during the time interval (t, t+ T) on the condition
that one photoelectron is registered at the time t.
If we set y= 1 and (N, ) = 0 in Eqs. (4. 21) we obtain

t(~) = (t.)-'(f(t)1(t+ ~)exp[ f I(8)d8])

For very large v~ and a real Gaussian field, we
obtain

w(v) =i, /( I+2i,~)"'

l(7') = S,t/(1+2i, r)"'
(4. 24)

Such functions are represented in Fig. 2, where
they are compared with the corresponding thermal
distributions given by"

q (T) —p(n, t, T; 1, t, 0)/p(l, t, 0)
n

which is just the same as Eq. (4. 8).

(4. 22)
sv(r) = t,/(I +i,7)',

l(v) = 2i,/(I +i,7)'
(4. 25)

F. Time-Interval Distributions
G. Generalization for Arbitrary Coherence Time

u (7) = g(t+ 7)exp[ —J I(8)d8])
t (4. 23)

Another way to study the statistical properties of
photoelectrons is to consider the probability dis-
tribution of time intervals. Let us define the life-
time as the random variable T which is the time
interval between two photoelectrons, and "residual
waiting time" as the time interval between an ar-
bitrary time and the first photoelectron registered
after it; and let us denote by l (7) and w(r) the corre-
sponding probability distributions. In the case of
a Poisson compound process we have

%hen time intervals are not much smaller than

7&, we can evaluate various statistical distribu-
tions in which the random functional
E = f t + TXz(8) d8 appears. Such calculations have
been performed for thermal fields with Lorentzian
spectra. " " On the same assumption, we can ex-
press the generating function of photocounts
G (s), for a Gaussian field with real amplitude by

rv/2
G (s, r)=

coshz + sinhz[(ry /2z) + (z/2ry )]&&2

(4. 28)
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w('t) A. Intensity Correlation

When the amplitude Z(t) is complex, the intensity
of the field can be written as

I(t) = X'(t) +7'( t),

where X(t) and 7(t) are Gaussian. Thus, the inten-
sity correlation function I'I(v) = (I(t)I(t —v')) can be
expressed in terms of the correlation functions of
X(t) and 7(t) by

r (t) =(I)'+2[r '(v)+r '(v)
XX

+ 1'—F'(v') + I"—'(v) ]

05 where (I) is the mean value of the intensity, defined
in terms of the variances oX and ol of X(t) andi'(t) by

FIG. 2. Time-interval distributions: lifetime &

residual waiting time ~; ip=1. &g g' . real Gaussian

field l2, su2'. thermal field l3. Gaussian field with p = 0.5.
(I ) = o ' o—'/(o —'+ o—')' .X (5. 3)

where z= 1"v(1+4(N)s/rv)"' (4. 2"t)
By using the determinant of the matrix I'(v ), this
expression can be written

In these equations, I' is equal to 7~ ', and v is the
time interval in which the Kharunen-Lrunen- oeve expan-
sion is valid. To obtain the photocount distribution
p„(T), we put v = T and differentiate repeatedl .
The tame interval distributions t(v) and w(v) are
given by

r (»=(I)'+2[lr-(v) I'-2«tr(v)~,

whereas for thermal fields we have

r (v)=(1)'+ lr (v)l' .

(8.4)

w (v) = G ( 2, v)A. (v)

l(»=G (2 v)3&'(v)
(4. 28) As previously, we can characterize the effect of

Hanbury Brown and Twiss by the ratio. It = 1' (0)/
rl(™)which is

l

where
h = 3 —4(1 —p') o—'o —'/(o —'+ o—')'' x'r' x "F (5.8)

QT —Q7'

~( ) 4. (1"+ n)e —(1' —n)e
0

(I+n) e —(I -n) e
QT 2 —Q7'

(4. 29) where p is the correlation coefficient of the two ran-
dom variables X(t) and 7(t). We can easily see that

where n = I'(1+4I,/r)'~2. These equations are gen-

erally valid for all I'. For I'=0 (vo infinite), A(»
is equal to i,/1+ 2i,v, which gives Eq. (4. 24).

V. GENERAL GAUSSIAN FIELD VfITH
COMPLEX AMPLITUDE

In this section we study the mostgeneralGaussian
field, defined by the correlation matrix of the com-
plex amplitude Z(t) given by Eq. (3.2). Our aim
is to obtain some general results and to discuss the
comparison with a thermal field.

2&A&3

The maximum value is obtained if p = 1 or if one
of the variances is equal to zero. The first case

t
means that X(t) and 7(t) are almost surely prop
ional, and therefore Z(t) =einX(t).

re y propor-

The minimum value is obtained if a = 0 and 0—
= o y; which means that X(t) and 1"(t) have the same
variances and are independent for the same t. That
is evidently true for thermal fields. But as this
relation is necessary only for the same t, there are
nonthermal fields for which k = 2.
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B. Intensity Distribution

To simplify the notation we now suppose that OX
= Oy =0. The twofold probability distribution for
the random variables Y and 7 at the time t is"

] X'2 + P2 —2pXP'
t (X F) 2~om(1 pa)2/a e p 2 2(1

(5. 6)

By using Eq. (5.1), we obtain for the intensity
probability distribution

p'E

2a'(1 — ')'~' 2a'(1 — ') 2a'(1 — ') )

(5. 9)

When X and Y' are independent random variables
(p = 0), we obtain the usual exponential function
corresponding to the thermal-field intensity distri-
bution. We have plotted, in Fig. 1, p(i) given by
Eq. (5. 9) for some values of p between 0 and 1, and
we present in the same figure the probability distri-
bution of the intensityfor a real-amplitude Gaussian
field given by Eq. (4. 4). We see that the shapes of
these curves are particularly different for small in-
tensities (i & ,'i, )—

C. Photocount Distribution For T(( v.
z

The intensity distribution given by Eq. (5. 9) can
be directly used to obtain the photocount distribu-
tion when the sampling time T is much smaller
than the coherence time. We perform the calcula-
tion by residues and obtain

a 1 n (n+p)! 1 ! 1

(1 &) +1[1— 2y(1+ )2]n+1/2 '
p =0 p t' ' 2) (1 2( 2]l/2/,

(5.10)

where a is equal to 2o'T(1 —p').
We verify that the usual expression for a thermal

field" is obtained from Eq. (5. 10) by putting p = 0,
and from Eq. (4. 7) when p - 1.

D. Time-Interval Distribution for Large 7~

The general formulas for the lifetime and resid-
ual-waiting-time distributions l(7) and w(v) for very
large 7c can be evaluated from Eqs. (5. 9) and
(4. 23). We obtain

VI. PSEUDO-GAUSSIAN FIELDS

As previously noted, thermal fields or quasista-
tionary Gaussian fields can be generated in exper-
iments on propagation or diffusion in random media.
For simplicity in exposition, we have supposed that
the incident field e~~ot was perfectly coherent and
monochromatic. But in practice even the best sta-
bilized monomode lasers have phase fluctuations, "
and therefore the incident field must be written as

g.(t) = expi[~ t+ C .(t)]0 (6. 1)

1+i,(1 —p')7
( )=( — ),([

Zp
( ) ( P ) ([1y i (1 p2)y]2 2)3/2

where Cz(t) is a random process describing the
phase evolution of the incident field. " Therefore,
instead of Eq. (3.3), the diffused field is now de-
scribed by

Z(t) = Z(t) expi[(o t + e.(t)) (6.2)
3

1 —p 1+10 1 —p 7' (5.11)

where io = 2a' = (Q.
We have plotted these functions in Fig. 2 for

Gaussian fields with a complex amplitude (t) = —,
' and

1) and with a real amplitude. The functions w(r)
are nearly independent of p; in contrast, the life-
time depends strongly on the correlation coefficient
p. Its value for r= 0 is 2, or 3 times ~(0), because
of the chaotic properties of the Gaussian field.

However, as a consequence of this expression,
we see that even if the amplitude Z(t) is Gaussian,
the field g(t) is no longer Gaussian, because of the
random process Ci(t). We call such afield apseudo-
Gaussian field. Indeed, for experiments on light
intensity this field has exactly the same properties
as the Gaussian one defined by P(t) ei&ot. And all
the experiments described previously are on light
intensity (intensity correlations, photocounting,
etc. ). To show that the field is not Gaussian it
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$64 (T)) t(007 (6.3)

would be necessary to study the statistical proper-
ties of the phase, which has not yet been done.

Another consequence of Eq. (6.2) is that the field
is now stationary. Indeed, its amplitude is evidently
Z(t)e~C't(t) and, in general, the phase at any time is
uniformly distributed, so that Eq. (2. 6) holds.

Finally, in such experiments we obtain a station-
ary pseudo-Gaussian field. Evidently, this field
can be pseudothermal, and that is probably the
case in experiments on diffusion in rotating ground

glass or solutions of macromolecules. " We can
see that such a field is not thermal by comparing
first- and second-order coherence experiments.
If we suppose that random processes Z(t) and Ct(t)
are independent, the first-order coherence function
is given by

where b C (r) = C.(t + r) —@.(t)
z

Therefore, if we carry out an interference exper-
iment, or a measurement of optical spectrum, we
obtain a result which depends on second-order prop-
erties of Z(t) and on the incident light. For ex-
ample, if the random medium has only slow fluc-
tuations, the coherence time of the field is that of
the incident field. So with very slowly rotating
ground glass it is not possible to obtain thermal
fields with very long coherence times~6; they can-
not be smaller than that of the incident field.
Nevertheless, in an intensity-correlation or photo-
counting experiment, the phase fluctuations disap-
pear completely, and we obtain exactly the same
results as for a true thermal field.

More complex experiments" on second-order co-
herence functions may be able to prove that the field
is not Gaussian but only pseudo-Gaussian.
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