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The theory of atomic lifetime measurements is developed on the basis of the quantum theory
of radiation. The effect of coherent emission on the shape of the decay curves is studied in

detail. It is shown that the light intensity will oscillate in time when two closely spaced levels
decay coherently. Oscillations due to interference between fine-structure levels of the hydro-
gen atom in particular are discussed.

INTRODUCTION

Recently lifetimes of excited states of atomic
hydrogen have been measured using beam-foil
techniques. ' Excited hydrogen atoms are formed
by passing H, H, , or H3+ through a thin foil (usual-
ly carbon). The beam on the downstream &ide of
the foil consists of a mixture of many components,
some of which are excited hydrogen atoms. The
excited states decay by emission of line radiation,
and the intensity of this radiation is measured as
a function of the distance of the excited atom from
the foil. Knowing the velocity of the atoms in the
beam enables one to relate the distance of the de-
tector from the foil to the time interval between
formation of the excited atom And its subsequent
decay. The intensity of the emitted light can,
therefore, be measured as a function of time. The
intensity usually decreases exponentially with time
so the decay curve can be fitted to e f/~ and the
lifetime 7 of the state determined.

The exponential decay curve is expected on the
basis of the usual theory, '-but the usual theory
applies only to incoherent decay. If two excited
states decay to the same lower state, they decay
coherently. ' Such decays are common, especially
for the hydrogen atom. When the decay is co-
herent, the population of a lower state can oscil-
late as a function of time. The oscillation fre-
quency is just the difference in energy of the two

upper levels divided by Planck's constant. For
most decays, this frequency is so large thai mea-
surements average over many cycles of oscillation
and the oscillatory part of the decay curve aver-
ages to zero. When time intervals as short as a
nanosecond are measured, oscillations with fre-
quencies of the order of 1000 MHz can be re-
solved. Since the separation in energy between
many of the levels of the hydrogen atom is of the
order of 100 MHz, one may expect the oscillations
to appear in the experimental data. A brief dis-
cussion of the conditions for the observation of the
oscillations, and the relevance of these conditions
to interpretation of experiments, has been given
earlier. ' The purpose of this paper is to extend

the earlier discussion.
The number of photons emitted from an atom

excited by a beam-foil collision varies as a func-
tion of the angle 0 between the emitted ray and the
beam according to'

I(8) = I(1 —P cos'8)/4p(1 ——', P),

where I' is the polarization of light emitted at
8=90', and I is the total number of photons.
Letting I~~ denote the number of photons of light
polarized parallel to the beam, and letting Igde-
note the number of photons of light polarized per-
pendicular to the beam, we have

P=(I I)/(I +I -) =(3I -I)/(I +I), (2)

where I =I +2I (3)

From (1) and (2) we see that the number of photons
of light emitted at any angle is determined by I

j~

and I. The relationship of I~~ and I to excitation
cross sections, decay widths, and the time inter-
val after collision is the subject of this paper.
Reference to specific experiments is made via
Eqs. (1)-(3).

In the earlier publication, ' we emphasized that
the total number of photons I is unmodulated. If
measurements are made at 54. 8, then cos8
equals 1/v 3 and the observed intensity is propor-
tional to I. The decay curve will not oscillate and
will be better suited to the determination of atomic
lifetimes. On the other hand, one may emphasize
the oscillations by measuring light polarized par-
allel to the beam axis or perpendicular to the beam
axis. The frequency of oscillation provides a
direct measurement of the splitting of the decaying
levels. Further, the amplitudes of the oscillations
are determined by the relative population of ex-
cited states. Thus, an extension of the previous
discussion to include some general conditions for
the occurrence of the oscillation and the relation-
ship between the amplitudes of the oscillations and
excitation cross sections is desirable.
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Section I reviews the theory of Ref. (4) and Sec.
II treats cascading. Since the cascade portion of
decay curves contains contributions from an in-
finite number of states, this portion is inherently
difficult to analyze in terms of properties of in-
dividual states. For this reason Sec. II presents
only an outline of the general theory of cascading,
the main objective being to determine when the
interference of coherent decays is likely to lead to
noticeable oscillations. Section III discusses gen-
eral conditions for the vanishing of the oscillations.
We show that the total intensity is unmodulated,
and that light from the decay of fine or hyperfine
multiplets is unmodulated if the cross section for
an orbital angular momentum substate I.MI is
independent of Ml . Section IV presents a detailed
application of the theory to hydrogenlike ions.

In Secs. I and II, atomic states are denoted by
ajm, where j is the total angular momentum of
the atom, and a denotes all other quantum numbers.
If only fine-structure splitting is important, j and
m denote the total angular momentum quantum
numbers of the electron J and MJ. If hyperfine
splitting is significant, j and m refer to the total
internal angular momentum of the atom E and My.
The axis of quantization is the beam axis.

L DECAY TO A SHARP LOPPER LEVEL

UPPER LEVELS a, j, m,

LONER LEVELS Oj0 tAO

FIG. 1. Schematic level diagram showing a coherent
decay.

photon, X is the dipole length operator, k8 is the
magnitude of its wave vector, and I/y~ is the
mean lifetime of all states a,j,m, . Equation (1)
is a good approximation to the decay amplitude
for t » 1 /z(a, j„a,j 0). For visible light I/& is
of the order of 10 ' nsec and the restriction t&1/~
is of no consequence.

In a collision, the excited states are populated
in a time of the order of 10 "sec, which is much
shorter than typical decay times (-10 ' sec).
Then at t =0 the excited states are populated ac-
cording to the excitation amplitudes A(a, j,m, ),
and the amplitude for finding the atom in state
ajm and a photon in the surrounding field is the
sum

Consider a group of upper levels with quantum
numbers a„j„and m, which are degenerate in the
magnetic quantum number m„but are nondegen-
erate in the j,. The decay is shown in Fig. 1.
The upper levels decay to a group of lower levels
ajm. We are interested in the probability ampli-
tude that the atom is in state ajm at time t, if it
was in state a,j,m, at t = 0.

If the atom is in state a,j,m, at t =0, the am-
plitude that it will be, in the state ajm and that a
photon of angular frequency ~8 is in the surround-
ing field, is'~'

& =Z, A(s,j,~,)B(a,j,m„a,j m ), (7)

where ZI is short for Q~ j,m,
It should be emphasized that (7) is an approx-

imation because (4) is an approximation. Neglect
ed in (4) is the direct coupling between states
of the same multiplet. This neglect is justified
because the coupling matrix element (5) is pro-
portional to the fine-structure or hyperfine-struc-
ture splitting which is small compared to the dif-
ference Ea j -Ea j. Indirect coupling via theaojo
lower states aojomo is proportional to the average
of

1 1 1' 0 0 0 1 1 1' 0 0 0

exp[i& —i+(a j,a j ) -y jt

.— 'I&I"0&0)-'y. ,
(4)

where H(a j m, a j m ) =i(2ve2/k )'j2
S

x~(a j, a j )(a j m ~Z ~ X~a j m ), (5)

&(a j, a j )=(E . —E . )/II,11' 00 a j, apjp

and k
S S

In (5) e8 is the polarization vector of the emitted

( g ~e ~ X j )

x(g jm (e x(a jm) (8)

over all polarizations. Breit shows' that this
average is zero, thus (7) is a good approximation.
When the atom is in an external field, the eigen-
states of the atom are no longer eigenstates of an-
gular momentum. Then the sum (8) does not van-
ish and (7) is a poor approximation. The theory
in this paper assumes (8), therefore, it does not
apply to atoms in external fields; for example, it
does not apply to the Stark effect.

The probability for finding the atom in state
a,j,m, is obtained by integrating ]8 ~' over all
normal modes of the field
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p dk =k 'dk dfl/(2vAc)',
S S S S

(S)

where dQ is the element of solid angle into which
the photon is emitted. The squared modulus of 8
is a sum of terms of the form

A (a,j,m, )B(ag,m „a,j,m, )A (a,' j,'m, ')*

x B(0~/AD mg, ooporno) (10)

The integral of each term over kz may be per-
formed by noting that the main contribution to the
integral comes from the region & =&(aljl, apjp),
therefore, the integral over k~ can be extended to
- with negligible error. Then all integrals
over k~ can be converted to contour integrals.

Integrating (10) over the density of states (S)
gives

KA(a j m ) (a j m ~X ~apjpmp)
q 0 0 0

x (a'j'm')*(aljlm'~X ~a jpmp)*11 1 q 00 0

1 —exp[- i~(a j,a j ) —y —y ]t11' 11 a, a,

(u(a j, a'j ') —i(y +y &)
ag aj

where K = 4e'~'/3c', (12)

xA(a'j'm') (a'j'm'~X ~a j m )*
11 1 q 00 0

1-exp[-i&(a j, a'j')-y -y, ]i11' ll a, a,
z(a j, a'j') -i(y +y i)

Qg Qg
(13)

Because P (f) is the probability for finding the
atom in one of the lower levels at time t if it was
in an upper level at f = 0, P '(t) is proportional to
the number of photons emitted between t = 0 and
t = t. In some experiments this integrated number
of photons is measured, and (11) describes the

and we have set z (a,j„a,j,) = z —-const since the
splitting of the upper levels is much smaller than
the energy difference between the upper and lower
levels. The subscript q on x refers to the po-
larization of the emitted light referred to a space-
fixed coordinate system in which the beam axis is
taken to be the z axis.

The probability P (i) (not to be confused with the
polarization P which is also a function of time) for
finding the atom in one of the lower levels and a
photon of polarization q in surrounding space is
the sum of (11) over a,k,m„a„j,m, , and a,j,m, :

p'(f)=If Q A(a j m )(a j m ~X ~a j m )

011

measured quantity. Because the upper states de-
cay coherently, the integrated intensity oscillates
as a function of time.

Experiments may also measure the number of
photons emitted in a short time interval. Then
the number of photons of a specific polarization
q is proportional to the time rate of change of
P (f). This rate of change is just P (t), obtained
by differentiating (13),

P'(t)=Kg A(a j m )(a j m ~X ~a j m )

xA(a'jim ' )*(aljlm ~X ~apj m )*11 1 q 00 0

xexp[-i~(a j, a'j') —y —y, ]t. (14)a, a,'

Equations (13) and (14) are the fundamental
equations of our theory of lifetime measurements.
They are implicit in much earlier work, '~' but
this derivation is presented here for completeness
and because it is easily extended to include cas-
cading. Equations (13) and (14) contain the sum of
oscillatory terms as well as the usual exponential
terms. When the period of the oscillations is very
short compared to the time interval over which the
photon flux is averaged by the measuring appara-
tus, the interference terms average to zero and
only the exponential decay terms remain in both
(13) and (14). In (13) the oscillatory terms are
small compared to the nonoscillatory terms when
the ratio

(r +r ~)/~(n j, nj'')
aj ag

is small. Consequently, when the decay widths
are much smaller than the level splitting the time-
integrated photon flux will be unmodulated, even
though a specific polarization is detected. When
the number of photons emitted in a short time in-
terval is measured, the intensity is given by (14).
The oscillatory terms are as large as the non-
oscillatory terms, and therefore must be included
to obtain the correct value of P (f). However,
when w(a, j„a,'j, ') is small compared to the
average decay width ya +ya ~, the light intensity
will decrease rapidly during one period of oscil-
lation, and the oscillation will not be noted. An
example of this behavior is given in Sec. IV.

II. CASCADING

Lifetimes of excited states can also be measured
indirectly by detecting light emitted in the transi-
tion of the intermediate states a,j,m, to a group of
lower levels when the intermediate states are
populated by cascading from the upper states
a,j,m, . The cascade is shown in Fig. 2. The con-
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ventional theory of these measurements has been
discussed by Bickel. ' On the basis of the dis-
cussion in Sec. I, the light intensity can be ex-
pected to oscillate if the group of upper levels is
closely spaced in energy. The conventional theory
does not apply, and a treatment based on the quan-
tum theory of radiation is necessary.

FIG. 2. Schematic level diagram showing a cascade
for which an intermediate level is populated by a coherent
decay from a group of upper levels. Light emitted in
the subsequent transition from the intermediate levels to
the lower levels is modulated with a frequency correspon-
ding to the splitting of the upper levels.

We may qualitatively discuss the decay using
Eq. (13). Here the number of photons emitted in
the decay of state a,j,m, is proportional to the
probability of finding the atom in state ap jpmp.
This probability is given approximately by (13)
(when summed over q but not over a,j,m, ), and
we see that the population of a given level ao jpmo
will oscillate in time. This probability multiplied
by the square of the dipole matrix element for the
decay to a lower level is proportional to the num-
ber of photons emitted in the decay, provided the
levels a,j,m, are degenerate, or have splittings
which are much larger than the decay widths so
that one need not consider interference due to the
splittings of the intermediate states. Since mo
refers to a specific magnetic sublevel, we expect
the number of photons of a specific polarization to
oscillate in time.

Our discussion of cascading on the basis of (13)
is correct only when the decay width of a,jom, is
small compared to the decay width of a,j,m, . In
this case a,j,m, is a fairly sharp level and (13)
applies. Right here, however, we are interested
in precisely the opposite limit, namely when the
lower level decays much faster than the upper
level. To investigate this case, we can follow our
previous approach except that (4) must be replaced
by the amplitude appropriate for the case when

aoj,m, can itself decay. This amplitude has been
obtained by Weisskopf and Wigner. ' They find

p(a j m, a j m )=H(a j m, a j m )exp(-y t)
exp[i& —i~(a j, a j ) —(y -y )jt

ag ao
—u)(al jl, aOj 0) —(y —y )s 11' 00 a, a,

(16)

where the amplitude has been rewritten in the notation of Ref. (6). We see that (16) differs from (4) in
that ya is replaced by ya —ya and the amplitude is multiplied by exp(- ya t). With this observation and
recalling Eq. (13), we can immediately write down the probability Pa & m (t) for finding the atom in theao jomo
state aojomo:

P . (t)=K+A(a jm)(a jm X la jm)A(a jm)*
apjomp 11' 1 1 1 1 1 1 Q' 00 0 1 1 1

Q'

x (a'j'm '
l
+ la11 1 q 00 0

exp(-2y t) —exp[- iz(a j,a,j, ) —y —y i] t
ap 1 1' 1'1' a,

~(a j, a'j~) —i(y +y, —2y )1 1' 1 1 a, a,' a,
(17)

The main significance of (17) derives from the ob-
servation that the magnitude of oscillating terms
to the nonoscillatory terms is governed by the
ratio

consequently, oscillations may even be important
in the cascade region.

III. GENERAL CONDITIONS FOR THE VANISHING
OF THE OSCII.LATIONS

(y +y ~ —2y )/~(al j, al,jl, ) .
ay az ap

(18)
A. Proof that the Total Intensity is Unmodulated

Since we are mainly interested in cases where
ya»y or ya ', we see that the oscillatory terms

p ag
can be large even if the upper levels decay slowly,

The theory presented in Secs. I and II can be ap-
plied to two somewhat different types of experi-
ments. One may wish to determine only the decay
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rates of excited states. The additional oscillatory
terms merely complicate the analysis of the data
since now logI is no longer a linear function of
time. On the other hand, one may wish to mea-
sure the excitation amplitudes and excitation cross
sections. As mentioned in the Introduction, the
coefficients of the oscillatory terms can be ex-
tracted from experimental data, and excitation
cross section can in turn be extracted from the
coefficients. One may also wish to measure the
oscillation frequencies and thereby determine the
splittings of the upper levels. For purposes of
designing and interpreting the results of these
various experiments, it is desirable to have some
general criteria for the observation or elimination
of the oscillations. We first show that the total
intensity is unmodulated.

The coefficient of the oscillatory terms in (13),
(14), and (1'l) contains the factor

where the sum over all polarizations is included
to obtain the total intensity. Now Breit has shown'
that (19) vanishes for fine-structure or hyperfine-
structure levels with the same orbital angular mo-

a unl aa jama = aa ja ma ~ W nee" n y
extend Breit's proof to include the case when the
states a,j,m, and a, j,m, have different values
of orbital angular momenta; for example, S and
D states of hydrogenlike ions decaying to a com-
mon P state.

In the representation LMLSMSIMI, the matrix
(19) is diagonal in the electron-spin and the nu-
clear-spin quantum numbers. The factors de-
pending upon the orbital angular momentum quan-
tum numbers are just

g (I. M, lx lI, M )(I. ,M, lx lI. M )*.

Lo

(20)

I0 m0 (19)
Using the Wigner-Eckart theorem' to factor out
the geometrical factors in (20) gives

(I ll&llL0)(I l,ll&llI0)* Z (I 1I M lL M lq)(I. M lqlI- 1L,M ~ ).
Lo

(21)

By the orthogonality properties of the Clebsch-
Gordan coefficients, (21) vanishes unless I., =I., '
and MI. =MI. I Thus, the matrix (19) is diago-
nal in the representation LMLSMSIMI. Further-
more, each submatrix corresponding to states
with the same L is a constant times the unit ma-
trix. Since the transformation to the physical
states ajm does not mix states with different L,
the matrix (19) is diagonal in the representation
ajm, and the total intensity does not oscillate.
Note that this proof does not hold for atoms in an
external field, for which the transformation to the
physical states does mix states with different L.

B. Uanishing of the Oscillations When States With Different

ML are Equally Populated

The amplitudes A(a, j,m, ) contain all the in-
formation about the excitation of the upper states
in the atomic collision. A detailed theory of these
collisions is not available at present, but some
results can be obtained using only very general
properties of the scattering amplitudes. Of
greatest importance here are the symmetry prop-
erties of the amplitudes. The electrostatic inter-
action is primarily responsible for the excitation
of the atoms in atomic collisions. For atomic
states which obey IS coupling rules, the amplitudes
are conveniently written in the representation

LMI SMQMI . To facilitate the discussion of the
symmetry properties of the amplitudes, we write
the amplitudes more explicitly as transition ma-
trix elements:

A(a j m )=(a j m, fkk' ~ ~ ~ lTli)

(a,j,~, lI.M sM IM )

S

x(I.M
SMARM,

you'".
l
rli), (22)

fd&d&'" (I.M SM IM, yu'. "I~li)L S I'

&&(il&l 'MI'S'M'I'M, you'" ). (23)

where i denotes the initial state of the beam-foil
system, f denotes the internal quantum numbers
of all undetected particles in the final state of the
beam-foil system, k, k' ~ ~ are the momentum
vectors of the outgoing particles, and T is the
transition operator. To obtain the intensity of
light emitted in a decay we must average (13),
(14), or (lV) over the initial state i and the sum
over the final states. The required sums are ob-
tained using a generalization of a result due to
Percival and Seaton. ' Consider the integral



THEORY OF ATOMIC LIFETIME MEASUREMENTS

~LM SM IMI)-exp[-i(ML+MS+MI)y]

xiILM SM IM ). (24)

The transformation of the plane wave functions
is obtained from the partial-wave expansion

e
'

= Qj (kr)Y* (k)Y (r")- Z j

x(kr)Y (k)e ™Y&(r). (26)

Since all azimuthal directions of the outgoing par-
ticles kk ~ ~ ~ are integrated over and since

f d&f& Y *($)Y, ,(k) =0, unless m =m, (26)

all exponential factors e ~~& coming from the
plane-wave terms in Eq. (23) cancel.

The states Ii) and If) transform as

We will show that the integral is zero unless MLt
+MS=ML+MS and

The transition amplitude and, consequently (23),
is a complex number whose value is independent
of the choice of coordinate systems. This is true
on very general grounds, but in our case, it is
easily seen to hold because all spatial coordinates
in the definition of the T matrix element are in-
tegrated over. Expression (23) must be the same
number if we choose a new system of coordinates
to write the T operator and the wave functions.
We choose a new system related to the old system
by a rotation through an angle y about the axis of
the incoming particles. The states ~LMLSMS IMI)
transform as

But Eq. (22) is just a complex number whose value
is independent of the choice of coordinate systems.
This can only be so if (22) is zero or if ML+M S
+ Mg =ML + MS + My . Since T does not depend
upon the nuclear spin, Eq. (22) is zero unless both
ML + MS= ML + Mg and My=My. When LS cou-
pling holds, we further have ML =ML and Ms
= M~. When the wave function for the final state
depends upon J, or when T depends upon the spin
variables, (22) vanishes only when M~ 4M~ where
MJ =ML + Ms.

This proof is a rather standard application of
group theory, "but it seems worthwhile to dwell
on it in some detail to show the essential condi-
tions under which it is valid. The most important
requirement is that all azimuthal directions are
integrated over. Results which use this theorem
are not directly applicable to experiments in
which the direction of some outgoing particles is
detected. Our proof also assumes that the target
is cylindrically symmetric so that T is invariant
to rotations about the beam axis. This means
that the foil must be isotropic. More precisely,
it means that if the incoming particle makes a
collision, the probability that it will make a sec-
ond collision must be independent of the azimuthal
direction of the particle momentum after the first
collision. This is not the case for a crystal with
well-defined channels along which the fragments
can travel.

The intensity of light detected in an experiment
is proportional to the sum of (13) or (14) over all
undetected final states and an average over all
initial states of the beam-foil system. We denote
the sum and average by S. Included in the sum
and average is an integration over all direction
and energies of the outgoing particles. The in-
tegrations are carried out using (23). When L '
=L, S =S, and I =I the summation of (23) can be
written

I i)- exp(- iM .y) I i),

lf) - exp(- iM y) If) .
(27)

Here Mz is the projection of the total angular mo-
mentum of the initial state of the beam-foil system
onto the axis of the incoming beam, and Mf is the
projection of the total angular momentum of the
final state of all particles, except the decaying
atom, along the axis of the incoming beam. In-
cluded in the total angular momentum of li) and
If) are the orbital angular momentum of the elec-
trons, their spin angular momentum, the motional
angular momentum of all foil nuclei, and the in-
trinsic angular momentum of all nuclei. Since
(flTli)is the complex conjugate of (i ITlf) the fac-
tors e iMfy and e ™i-yalso cancel. The trans-
formation only multiplies Eq. (22) by

exp[i(M +M + M M M M') y].---

xIM', fkk' )=5
M i 6 g5

x V.o /(2S+1)(2I+1), (28)

where o'LM is the cross section for forming the
atom in sta e LML ~ and Vi is the initial velocity.
Because the cross section is independent of the
electron and nuclear spin quantum numbers, they
have been dropped on the subscripts of o'. This
formula will be useful when the excited states are
fine- structure or hyperfine- structure states. In
these cases all states have the same L, 8, and I.

The coefficients of oscillatory terms in (13),
(14), and (17) contain the factor

A a,j,m, A aqua~'~~* . (29)
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Using (22) and (28) to evaluate the sum S when L =L, we have

Aa jm Aa,j,m, = a j m LM SM M LM SM IMa, j,m,
M MQL,

x V.o /(2$+1)(1I+1). (30)

When o'LM is independent of ML the right-hand side of (30) becomes

V,o Q (a j m ~LM SM IM )(LM SM IM a,j,m, )/(2$+1)(2I+1)
M M M

= V.o' (a j m ~a ~j gm p)/(2$y1)(2I+1)
z I

= V o' 5. , 5 . ,5, /(2$+1)(2I+1),aa, jj, mm,
(31)

(32)

and we see that the light intensity is unmodulated even when light of a specific polarization is detected.
%e emphasize that, in contrast to our result that the total intensity is unmodulated, this result applies
only to modulation from states with the same orbital angular momentum. It does not apply for example to
interference in the decay of S», and D» or D,/, states of hydrogen to a common Pz/2 or P,/, state.

One significant corollary to (31) is that hyperfine splitting of S states does not produce oscillations in
decay curves, since oL p is clearly independent of ML. Thus hyperfine splittings of S states cannot be
measured by observing oscillation frequencies in decay curves as long as the experimental arrangement
maintains cylindrical symmetry. Cylindrical symmetry could be destroyed by detecting light from atoms
which are scattered at a definite azimuthal angle for example.

Equation (31) holds as long as LS coupling holds. When LS coupling no longer holds, one can show by
the techniques used to obtain Eqs. (30) and (31) that the equation

Aa jm Aa Ij Im = a jm )JM IM JM IMa j,m, V. O 2I+1

holds, where oJMJ is the cross section for exciting a particular state of total electron angular momentum.
Analogously to (31) one has that the light is unmodulated if o'~M is independent of Mg. An analog of
the corollary to Eq. (31) also holds. States with J'=0 have no hyperfine splitting but states with J'=

& do.
However, because the beam-foil system is invariant to reflections in any plane passing through the beam,
one has that o~M (and oLM ) is independent of the sign of M~ (or ML). It then follows that ogM& is in-
dependent of MJ if J= 2, therefore, states with J= 2 will show no oscillations resulting from interference
of decays of different hyperfine levels. For example, P,/„ I" =0, 1 states of hydrogen, although split by
the hyperfine interaction, do not give rise to oscillations in decay curves.

IV. INTERFERENCE IN THE DECAY OF EXCITED
HYDROGENLIKE IONS

In this section, we discuss the decay of excited
states of the hydrogen atom (I = —,) in some detail.
For reasons stated in the Introduction we will
neglect cascading. In addition, we will omit in-
terference of decays from states with different
orbital angular momenta. The omission of inter-
ference terms from states with different orbital
angular momenta cannot be rigorously justified, "
however, and our treatment is incomplete in this
regard.

A. Influence of Hyperfine Structure

Only S and P states have hyperfine splittings
comparable to their decay widths. In light of the
results of Sec. IIIB, only the decay of P», states
will show modulations due to hyperfine structure.
Since the hyperfine splitting decreases rapidly as
the principal quantum number increases, and
since the hyperfine splitting of the 2P,/, state is
already a factor of 4 smaller than the decay width,
we will only consider the effect of hyperfine split-
ting on the Lyman-z decay curve. The relevant
coefficients have already been obtained by Percival
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and Seaton. ' Using the results of Sec. (3.6) of
their paper, we find

I =2y36 '[19v +17&0q-0

l.o

y13(o' —a' ) cosAtj exp(- 2y t), (33)

where Q=3. "(]. x10' sec ' and 2y=6. 25~10' sec '.
A graph of I& 0 versus time is shown in Fig. 3
for three choices of 0, and o, . Curve A is for o,
=0, curve B for a, =o„and curve C for Op 0.
The oscillations are too small to be noticed as os-
cillations, but the presence of the cosQt term
changes the apparent slope of the decay curve.
Curve B represents a purely exponential decay
and the slope of the line gives the correct lifetime.
This example illustrates the necessity of either
measuring the total intensity, which is unmodu-
lated, or measuring the polarization of the emitted
radiation to determine the extent of the modulation,
in order to obtain accurate lifetimes. Measure-
ments of the lifetime of the 2I' state of hydrogen
by Chupp et al. ' are unaffected by interference of
hyperfine levels since they determined that the
Lyman-z light was unpolarized, indicating that
o'p —0'] Their experimental curv e cor r esponds to
the pure exponential decay curve B in Fig. 3.

B. Influence of Fine Structure

I=X(L, Z, )o exp(-2y t). (34)

Many fine-structure splittings of excited states
of atomic hydrogen are in the 100-1000 MHz range.
They can therefore give rise to measurable oscil-
lations in decay curves. A complete analysis of
the decay curves, to obtain cross sections O'ML as
well as mean lifetimes, requires expressions
analogous to (33). The total intensity I is given by
the product of the total cross section, times the
transition probability for the decay, times the ex-
ponential factor. Denoting the transition prob-
ability by X(Z, I, ) and the decay width of the ex-
cited state by 2yL, we have for the total intensity
I,

A
B
G

) )

5

TtME (nsec}

FIG. 3. Effect of hyperfine structure upon the decay
curve for the intensity 1(t) of Lyman-0. radiation polarized
parallel to the beam for three magnetic-substate popula-
tions. Curve A is for 0~ =0. , curve 8 is for (To=(7~, and
curve C is for 00=0.

ln (34) the dependence of X(L, L, ) upon the prin-
ciple quantum numbers of the initial and final states
has been suppressed. Since oML is independent of
the sign of ML, ay is given by

c =c p Q 2c (36)
M =1 I

We seek analogous expressions for I& 0 =I~~.
Since only fine-structure splitting is important, the
quantum numbers a, j,m, in (14) will be explicitly
denoted by LSJMJ, the quantum numbers aojpslO
by LOSO JOMJ, and the quantum numbers a1 jl ml
by LSJ MJ. The decay widths y+ and y+ ale

1
equal and will be denoted by yL. t'urthermore,
since S = ~, each fine-structure multiplet consists
of two levels and there is only one oscillation fre-
quency A. Then Eg. (14) becomes

dP/dt =
J'MJiJMJJOMJ

0

x(Lsd )(Lsm ~x ~L s z M )

xa(LSZ'~, )'(LSZ'M, ~X ~L S Zp~)" exp[- '
(Z, Z')-y ]t. (36)

Equation (26) is summed over final states and
averaged over initial states using (28) and(22). To
perform the sums we may use a method of Percival
and Seaton. ' Vfe note that when the sum S has

been carried out (36) has the form

I =(a+b cosAt)exp(- 2yt). (37)
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We will calculate a and b by first calculating a+5
and a. The sum a+5 is most easily calculated.
It is equal to the right-hand side of Eq. (36) at
time t =0, and is simply the product of four

matrices in the LSJMJ representation. Since the
product must have the same value if expressed in
the LMLSMS representation, the sum S can then
be carried out using Eq. (28) giving

M M M M
(LM SMSIX IL0ML S M )'/(2S+1),

I =& Z V.~LM (LM IX IL M )2,

LFL.
(38)

where the last equality holds because Xq does not operate on the spin variables. Using the Wigner-Eckart
theorem to factor out the geometrical factors from the dipole matrix element gives finally

++&=X(L,L ) Z V.o' (L 1LM L M 1q)',

L Lo

where the decay probability X(L, L,) is given by

(39)

X(I,I,) =&(L IIX[[L,)'/(2L+ 1) . (40)

Summation over terms on the right-hand side of (36) with J = Z gives the constant,

a= ALSJM ISJM X L S J M ALSJM
JM@ IZ M

0

x (LSZM, Ix IL S Z M~)*. (41)

The sum over Jp and MJ may be replaced by a sum over ML and MS since the projection operators

Z II, S Z M )(I. S Z M
J M

M M

M SM )(I. M SM

project into the same space. All vectors of other states in the LSJMJ representation are written in the
LMLSMS representation using the transformation (22) and the relation

LSZM )= ~ IIM SM )(I,M SM ILSZM ).
M M

(42)

With these transformations, and using (30) and the Wigner-Eckart theorem to evaluate the sum S, we find

a = X(L, L ) Q V oL[(LM. 'LSMS ILSZML +@+MS )(LSJML + q +MS ILML +qSM )

0 0

&& (L01LM + q IL0M 14)]'/(2S + 1) .
0 0

(43)
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FOHTRAN program was written to evaluate the coefficients of vLML in (39) and (43) for the case when

q =0. The results for L =0 to 4 and L, =L+1 are presented in Table I. They suffice to analyze decay from
states with principle quantum numbers up to five. Some qualitative remarks concerning the magnitude of
the oscillations can be made on the basis of Table I. First, we note that the modulation is 100 /p only when
oM = 0 for ML4L, and the decay takes the atom from a state with orbital angular momentum L to a state
wit orbital angular momentum L —1. This follows directly from the observation that the coefficient (L
(L01LML IL0MLolq) in (39) is zero when q = 0, I, &L0 and ML =ML =L. Preferential population of the state
with ML =L seems unlikely, however, and one does not expect the modulation to be as high as 10(P/p. In this
connection, we note that the g~&'s increase relative to the 5ML's as L increases. For most reasonable
types of populations this implies that light coming from the decay of states with high L & 2, will show only a
small modulation, if any.
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TABLE I. Formula for the number of photons polarized parallel to the beam axis for the transitions L I p in hydro-
gen. I~~=VX(L, LO) (a+booe~t) exp(-2yLt), where a=+M aM aM /D, b=+M bM oM /D, ML ——0, . . . , L, X(L, LO)MI MI I & MI ML,
is the transition probability, V~ is the initial velocity of the beam, and 2' is the decay width.

ap

5

16
44

213
417
380
628

ag

29
69

388
748
717

1181

a2

12
274
490
588
956

60
373
581

a4

56

bp

4
2

6
12
24
12
20

bf,

~ 2

6

12
36
18
34

b2

~ 12
-24

0

0

16

b3

-60
-30
-14 -56

9
45
75

525
735
882

1134
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