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The helium double-photoionization cross section has been evaluated using a Hylleraas wave
function for the ground state in order to include correlation between the atomic electrons more
directly than in previous calculations. Good agreement is found between the present results,
the experimental data, and the theoretical work of Byron and Joachain. An interpretation of
the differential electron spectrum is used to motivate an asymptotic calculation of the double-
photoionization cross section which agrees well with the more exact treatment at high energies.

I. INTRODUCTION

Interest in the helium double-photoionization
cross section was stimulated by the observation®’?
that the oscillator strength for this transition
made a non-negligible contribution to the average
excitation energy term in the expansion of the
Lamb shift. Carlson,® who measured the helium
double-ionization cross section and noticed that
the data could not be interpreted by the electron
shake-off process* which is based on single elec-
tron wave functions, concluded that an adequate
description of the data could be obtained only if
a many-body approach was employed.

In a series of papers, Byron and Joachain®®
arrived at a similar result by pointing out that
double ionization depends critically on the way in
which correlation effects between atomic electrons
are included in the initial-state wave function.
These authors expanded the wave function of the
bound state of helium in relative partial waves and
calculated the double-photoionization cross sec-
tion”; good agreement with Carlson’s data was ob-
tained. However, from a comparison with an
asymptotic double-ionization calculation,® Byron

and Joachain estimated the uncertainties in their
cross section to be of the order of 25% arising
principally from the failure of their ground-state
wave function to be of sufficiently high precision.

It is the purpose of this paper to reevaluate the
helium double-photoionization cross section using
a very accurate Hylleraas wave function for the
ground state (Sec. II), and to compare these re-
sults with Carlson’s data and Byron and Joachain’s
calculation. An interpretation of the differential
cross section is used in Sec. III to stimulate an
asymptotic calculation which is found to be applica-
ble at energies greater than 600 eV.

II. DOUBLE-PHOTOIONIZATION CROSS
SECTION

Since the double-ionization process depends so
critically on correlation of the atomic electrons in
the initial state,*™¢ it is important to employ a
wave function for the bound state which includes
a high degree of correlation: For helium, Hyl-
leraas-type wave functions which explicitly in-
clude interelectronic 7,, terms best fulfill this
criterion. In the work that follows, the ground
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state will be represented by the six-parameter
Hylleraas wave function, @
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where s =7, +%,, t=7,~7%,, and u=%,,. This de-
scription (1) of the 1s? state of helium (with the pa-
rameters recently reevaluated by Stewart and
Webb?) not only includes electron correlation di-
rectly but it also gives a better ground-state en-
ergy than does the Byron-Joachain (BJ) wave func-
tion, in spite of the fact that the latter representa-
tion uses 15 parameters in each of three partial
waves. This wave function gives a ground-state
energy of ~2,90332 a.u., while BJ obtain ~ 2,9020
a.u. Complications introduced by use of the Hyl-
leraas description will be considered below.

The final state of the helium atom with two elec-
trons in the continuum is represented by a sym-
metrized product of uncorrelated Coulomb wave
functions,

!
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Both of the free electrons are assumed to be in-
fluenced by a central field of charge Z=2, i.e
they exhibit a negligible screening effect on each
other. *°

The double-photoionization cross section o(Het+)
has been evaluated using
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where « is the fine structure constant, a, is the
Bohr radius, %w is the energy of the incident pho-
ton, € and €’ are the energies of the ejected elec-
trons, and I, is the two-electron ionization poten-
tial. (Atomic units are used throughout, with en-
ergies in rydbergs.) If £ and 2’ are the momenta
of the ejected electrons, i.e., k2=€ and k'2=¢€¢’,

the 6 function can be used to eliminate one integral,

and the differential cross section becomes |
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The dipole momentum matrix element, which has
been shown to be more reliable than the dipole
position or acceleration formulation over a wide
range of photon energies, ? is used to express the
matrix element

bf/drdeb vt
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When the wave functions (1) and (2) are used in
(4), the integrals are straightforward except those
involving products of the Coulomb functions and the
interelectronic separation. It is precisely these
difficulties that lead Byron and Joachain to intro-
duce a wave function free of the troublesome 7,,
terms. However, all the integrals may be ex-
pressed in closed form if the following expansion
is made for » ! 12;
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where 7, (7.) is the larger (smaller) of the two co-
ordinates 7, and 7,. Such a representation is use-
ful because the angular integrals over the asso-
ciated Legendre functions in (6) and the spheri-
cal harmonics in (2) vanish except for one par-
ticular value of #» and of m. Consequently, the
sums in (6) and (5) also vanish, and the calcula-
tion is simplified considerably. A similar expan-
sion of 7,,® in terms of spherical harmonics also
facilitates integration.

It is convenient to express the radial Coulomb
functions in (2) by means of an integral representa-
tion for the confluent hypergeometric function of
complex argument, 3

)mo—l—l

g,
(7)
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where n,=Z/k.

‘Using these representations the integrals in (4)
can now be evaluated directly. The procedure,
described in detail elsewhere, ' consists in inter-
changing the order of integration so that the inte-
grals over the radial coordinates are performed
before those over the contour followed by &; the
results appear as a finite sum of residues of the
Coulomb function [integrand in Eq. (7)].

Evaluating the matrix element (4) in the manner
described above at energies from 0.1 to 1.0 keV
and then integrating over the differential cross
section (3), the helium double-photoionization
cross section is obtained. The result, o,.(6) (the
subscript ¢ indicates that Coulomb waves were
used for both of the ejected electrons and the 6 de-
notes that the six-parameter Hylleraas ground
state was used), normalized to the single ioniza-
tion cross section at the same energy' is plotted
in Fig. 1 together with Carlson’s data. Both the
present calculation and that of Byron and Joachain’
produce good agreement with the experimental
data, although the shape of the theoretical cross
sections is somewhat different at energies greater
than ~350 eV.

III. ASYMPTOTIC DOUBLE PHOTOIONIZATION
CROSS SECTION

An asymptotic approximation to the double-pho-
toionization cross section can be inferred from
an interpretation of the differential cross section
(3). Figure 2 is a plot of the electron spectrum
(1/%)do(He++)/dk as a function of #* at 7w =1.0 keV,
and it can be seen that the curve is approximately
symmetrical about the midpoint between k?=0 and
k2 =Tw - 1,, with the extremes being much greater
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FIG. 1. Ratio of the double-ionization to single-ioniza~
tion cross sections calculated using uncorrelated Coulomb
waves for the free electrons (solid line) and a Born wave
for one electron (broken line). The experimental points
(Ref. 3) are noted.
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FIG. 2. Differential electron spectrum for double
photoionization at 1 keV.

than the values near the center: This reveals that
the double-ionization process proceeds principal-
ly by the ejection of one electron of high energy
k2~ nw - I, while the other barely escapes into the
continuum, %,°~0. In fact, the probability for the
ionization to occur in this manner is nearly two
orders of magnitude greater than that for the ejec-
tion of both electrons with the same energy % ?
~k,? ~ 3w -1,). A similar result has been con-
firmed experimentally by Carlson, ¢

This interpretation of the electron spectrum in-
dicates that an adequate free state for energies
substantially above threshold would be obtained if
the electron of high excitation was described by
a plane wave while the electron of low excitation
was represented by the Coulomb function (7) in a
central field of charge Z=2.!" Let the free state
(2) be replaced at high energies by the following
symmetrized product:
r.,r,)

v (

¢ 179 :2‘1/2(713(1’1)%(7 )+uB(72)uC(71)) , (8)

2

where ug(r) is the plane wave (zeroth Born-ap-
proximation solution)

ug®=n 32T ©)

and uc(F) describes the electron influenced by the
Coulomb field,

(ry

uc(r):Re,l im

(Q) . (10)

Since the present calculation is expected to be
valid only at energies substantially greater than
threshold, it is not necessary to use the very ac-
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curate Hylleraas wave function (1) for the bound
state of helium, but rather it is sufficient to em-
ploy a simple two-parameter Eckart wave func-
tion'® which is a symmetrized product of hydro-
genic wave functions characterized by effective
nuclear charges Z,and Z*,

C(e—Zorl— VAN . e-Zo'r2 - Z*rl),

¥, (), 1y)= (11)
where C=8(Z,Z2*)P%/(Z,+Z*)?
It has been shown'* that this wave function, with
the parameters reevaluated using modern comput-
ing techniques,'® may be used to provide a single -
photoionization cross section which, at energies
substantially greater than threshold, agrees to
within a few percent with the results got by Sal-
peter and Zaidi® who used a much more accurate
ground-state representation.

Using (8) for the free state, the dipole momen-
tum matrix element (4) can be written as a sum of
two contributions,

r F)M(r
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where MB(rl, r

If the representations (7), (9), and (10) along
with the Eckart bound state (11) are used above,
the terms in the matrix element (12) and (13) can
be written in closed form.

The asymptotic double-photoionization cross sec-

tion is
411aa ﬁ€fd€ E|be|2
l,m

x6(e+€’+1, - w) ,

where l%:n ]belzzleB]2+4ch]2 .

The extra factor of 2 in front of M, occurs be-
cause Mp is nonzero only for (I,m)=(0,0), where-
as M, vanishes unless T, m)=(1,x1).

The asymptotic double-photoionization cross sec-
tion orB(Z)(the B indicates that the Born approxima-
tion was used to describe one of the ejected elec-
trons, and the 2 denotes the two-parameter Eckart
wave function was used for the ground state), nor-
malized to the single-ionization cross section re-
sults of Salpeter and Zaidi? and Stewart and Webb, °
is included in Fig. 1.

IV. DISCUSSION

An inspection of Fig. 1 shows that although the
two double-photoionization cross sections, o.(6)
and op(2), calculated here, employed quite differ-
ent wave functions for both the initial and final
states, nevertheless the agreement between them
is relatively good at high energies (7iw 2 600 eV)
where the approximations inherent in og(2) can
be expected to be reliable. At lower energies, the
asymptotic cross section exhibits a maximum at
about twice the double-ionization threshold energy
as is expected in applications of the Born approxi-
mation,

The small discrepancies between the present
calculation o.(6), Carlson’s data, and the results
obtained by Byron and Joachain at low energies
imply that much greater confidence can be placed
in this cross section than the uncertainty of ~259%
originally suggested by the latter authors. The
differences between the calculated cross sections
at energies greater than ~300 eV must be as-
cribed to variations manifest in the two different
representations used to describe the ground state
of helium, But even if the discrepancies between
these two results are indicative of the uncertain-
ties in the calculations, then the error implied is
less than ~10%.

These results could be improved further by use
of a still more accurate bound-state wave function,
but such a calculation should be deferred until cor-
relation can be explicitly included in the final
state.
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The rotational intensity distribution was measured for ’=*-!1=" electric dipole transition

which occurs only by violating the spin-selection rule.

The photographic intensities, obtained

using a 5-m two-mirror vacuum spectrograph, were reduced by means of the Seidel function

and the intensity alternation which exists for homonuclear molecules with A=0,

The results

are in disagreement with theoretical intensity distributions.

1. INTRODUCTION

Despite the tremendous amount of information
that has been obtained on diatomic molecules, there
have been very few experimental tests on line in-
tensities in forbidden transitions, and none on
3%+ - 15+ electric-dipole transitions which occur
only by violating the spin-selection rule, AS =0,
The reason for this is not only that reliable mea-
surements of intensities are difficult to make but
also, in this case, the very weak intensities in-
volved are not compatible with the high dispersion
and resolution required for precision measure-
ments of the individual lines in the molecular bands.

The proof of the selection rule, AS =0, depends
on the possibility of separating the wave function
of any state of the stationary molecule into the
product of two factors; one depending on the or-
bital motions, and the other on the electron spins.
This separation cannot be made, however, when
the spin-orbit interaction is taken into account; the
resulting modified wave function now permits in-

tersystem transitions of small intensity. In the
analogous case of intercombinations between sin-
glet and triplet states in an atom with two elec-
trons, it is necessary to solve the perturbation
problem completely before the intensities can be
calculated. The molecular problem is simpler,
however, since all that is required here is the de-
pendence of the intensities on the rotational quan-
tum number J for a given electronic transition, and
not, as in the atomic case, with the intensities of
different electronic transitions. Thus, the pertur-
bation problem need not be completely solved, nor
indeed would this be possible without definite knowl-
edge of the complete molecular wave functions.
This problem was investigated theoretically by
Schlapp! who, by including the spin-orbit interac-
tion, obtained formulas for the intensities of ro-
tational lines of intersystem transitions for the
case when the spin vector is not coupled to the in-
ternuclear axis (Hund’s case b). More recently,
Watson?® included the effects of spin-spin interac-
tion and derived different intensity formulas which



