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Brueckner-Goldstone Many-Body Theory for Dynamic
Polarizabilities: Application to Ne~

C. Matsubara N. C. Dutta, T. Ishihara, and T. P. Das
Department of Physics, University of California, Riverside, California 92502

A many-body procedure applied earlier to helium is utilized here to study the response of
a neon atom in its ground state to a time-dependent electric field. The theory of the method,
omitted in the helium paper for reasons of brevity, is included here. Our results for the
frequency-dependent polarizabilities n (co) lead to refractive indices n(e), in excellent agree-
ment with experiment. As a by-productof the calculation, we obtain [from the poles of n(~)]
excitation energies for 2p-ns and 2p nd transitions in good agreement with experiment.

I. INTRODUCTION

There is considerable current interest in the
response of atomic systems to time-dependent
perturbing fields. ' ' The main reason for this
interest is that this response function provides in-
formation about the properties of excited states
and of interacting atoms. ' " In an earlier com-
munication, 4 we have reported briefly the results
of our calculation of dynamic polarizability n(&u)
of helium (ls'; 'S) through an adaptation of the
Brueckner-Goldstone (BG) many-body theory. The
excitation energies and London constants between
hydrogen-helium and helium-helium atoms derived
from o. (ur) have also been reported. ' The purpose
of the present paper is to report the results of a
many-body calculation of o. (e) for neon atom
(Is'2s'2p' S) ground state. Also we take this oppor-
tunity to present the details of the theory for uti-
lization of the BG procedure for time-dependent
perturbation, which we had not been able to pre-
sent in the earlier paper4 due to lack of space.

The calculation of n(~) for neon is more inter-
esting than helium since neon involves more shells
and provides a more severe test of the applicabil-
ity of the BG method and a richer analysis of many-
body effects. Another reason for the present cal-
culation is that earlier one-electron analysis of
n(e) and excitation energies of neon' did not yield
good agreement with experiment, the discrepancy
being more significant than for helium. '~4 It is
of interest to see if the present method of calcula-
tion can bridge the gap between theory and experi-
ment.

In Sec. II, we can describe the general formula-
tion of the BG theory for time-dependent perturba-
tions. In Sec. 111, we discuss our results for o. (&u)

and excitation energies, and compare them with
experiment and earlier work.

H. THEORY

The total Hamiltonian X(t) for an atom in the
presence of a time-dependent external perturba-
tion R,'(t) is

x (t)=x, +x"., +~.,'(t)
N

where 3C = Q(T +V.).
~

1 z
(2. 2)

and
N

x'= Z-—
1 . .y'. .i&j ij

(2. 3)

We shall assume a harmonic perturbation of the
fol m

R '(t)= G (r) e +c.c. (2. 4)

In Eq. (2. 2), Tt is the sum of the kinetic energy
and the nuclear Coulomb energy of the ith electron;
I/yt& is the Coulomb interaction energy between
the ith and jth electrons; and N is the total number
of electrons in the atom. Vi is a single-particle
potential which we can choose suitably to obtain
good convergence in perturbation theory and to
simplify the computational procedure. The anal-
ysis of a perturbation of the type (2.4) enables us
to handle any general perturbation because the lat-
ter can be expanded as a Fourier series in ~.

The N-particle eigenfunction C „of the zero-
order Hamiltonian SC„satisfying

4' =g 4On nn (2. S)

can be expressed as combinations of Slater deter-
minants built out of the complete set of one-elec-
tron states pi generated by

(T+ V') p, =&.y. (2 ~ 6)

In general, this complete set of states vill consist
of both bound and continuum states. The unper-
turbed ground-state function 4, is given by an ap-
propriate linear combination of Slater determinants
built out of single-electron states belonging to the
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ppp p
' (2. &)

N lowest one- electron energy levels. Following
usual notations, Eqs. (2. 2)-(2. 4) can be rewritten
in second quantized form as

(o) =(e(f)j of(f) j
q'(f)}

=(U(f, — )C jO(t)jU(i, — )e }

=(U(, — )C'0 U(, t)O (t)U(t, — )jC )

xi= Z (pe ~ ~~~}np n n, n
1

P, q, ~, s 12

—z&pj&je}np n

P pQ'

(2. 8)

Assuming that & is small compared with the first
excitation energy, we can write

4'(~) = U(00 —oa)4 = e 4

where P is a real constant. Equation (2. 13) can
be reduced to the form

+(p G*(r)jq}e '
]q

CO p
(2. 9) (C0jU(, f)O (f)U(t, — )jC }

(0} . 0 I 0
(C,jU(, — )~C,}

where g and g~ are annihilation and creation oper-
ators, respectively. The prime on the summation
in (2. 8) indicates that only distinct terms obtained
from a combination of the four indices have to be
included. Proceeding to the interaction represen-
tation denoted by subscript I, operators in the prob-
lem take the form

0 (t)=e 'O(t)eI

Thus, the net perturbation Hamiltonian R'(f)
=R', +X,'(f) transforms to

where the factor e ~ ~ ~~ is added to denote adia-
batic perturbation. " The ground-state wave func-
tion 4'(t) corresponding to the total Hamiltonian
K (f) is then given in the interaction representa-
tion by

= Z (C 0j U (, f)O (f) U, (t, — )
j
4 0}~,

rl n'

(2. 15)
where the subscript I indicates that only linked
terms" should be included in the summation.

As in the case of time-independent problems" "
the terms in the summation in Eq. (2. 15) can be
represented by Feynman-like diagrams. The dia-
grammatic notations for the vertices are the same
as before '~'~" "except that we need the notations
in Fig. 1 for the vertices K,'(f) and O. Due to the
time dependence of K,'(t), some modifications are
necessary in the rules for the energy denominators
in the diagrams. %e are interested here only in
linear response so that the vertex R,'(f) occurs

+(t)= U(f, — ) C,

where U(t, t0)= Z U (t, t0)0 0 n 0

The operator U(t, f,) is unitary which implies that
4(t) is normalized to unity. " Hence, the expecta-
tion value of an operator 0 is given by

FIG. l. Additional interaction vertices that enter
into the polarizability calculations. The diagram on the
left shows the vertex associated with the external time-
dependent perturbation Q (t) while the diagram on the
right describes an operator 0, whose expectation value
is being sought. [See Eqs. (2.13) and (2.15). j In the
present investigation, the operator 0 has been taken to
be the dipole moment operator Z.
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~(~)=Z ~ (~); &»= Z &s& ~

n=o a=O
(2. 2O)

FIG. 2. Diagrams describing the rules for energy
denominators.

only once in each diagram. The modified rules
are illustrated in Fig. 2. Thus, the parts of the
diagrams between the G+e~ ~~ and 0 vertices have
denominators (E0-3C, +~) as indicated, with &o

replaced by — in the case of G+e i~~ All other
denominators are the same as in the case of time-
independent problems. ' " The generalization to
nonlinear response involving more than one R,'(t)
vertex in the diagrams is straightforward.

For our present problem of frequency-dependent
polarizabilities of atoms and molecules, we assume
that the external perturbation originates from a
plane-polarized electromagnetic wave in the Z di-
rection. Thus, K,'(t) is now given by

the order n is determined by the number of Ã',
vertices in the diagram, since the number of
R,'(t) and 8 vertices are restricted to one each
because of linear response.

Thus, &8&, is given by the sum of the diagrams
shown in Fig. 3. The contribution to &8&, from
these diagrams is

-2(d te e e
+m 6 -6 +~

m k nz k rn k
(2. 21)

thus giving n, (ur) from these diagrams as

n, (cu)=- z /&mfs[a&f'

X2(t)= Q (ZOB. e +c.c. )
g=1

(2. 18) x[(e —e —&d) +(e —e +&d) ].rn k m k

(2. 22)

N
o= Qs.=s

i=1 g
(2. 17)

The polarizability n(v) is derived from the rela-
tion

«&=- ~( )(~..'"'" .), (2. 18)

where &8&= Q &CO~U (~, t)
8jS

Z being the Z coordinate of the ith electron, and
2EO is the amplitude of the electromagnetic wave.
0 is now the dipole operator

Here m represents the hole states and k repre-
sents the particle states. The summation over k
implies a regular summation over bound excited
states and an integration over the continuum
states. The next order contribution n, (v) arises
from the diagrams which include one order of
Ky vertex. Four typical classes of diagrams that
contribute to n, (u&) are presented in Fig. 4. The
diagrams of class 4(a) and 4(b) could be inter-
preted as representing the first-order correction
to the polarizability due to the self-consistent
interaction between the perturbed hole states. In
Fig. 4(b), the diagrams involving same hole states
do not occur if we use the so called VN 1 poten-
tial '~" "for the single-particle states. On the
other hand, Figs. 4(c) and 4(d) are two-particle

xs (t)v, (t, — )i+ & (2. 18)

The form of the right-hand side of (2. 18) is a con-
sequence of the linear response that we are pres-
ently interested in.

In listing the diagrams that we shall evaluate for
n(u&), a word about the nomenclature regarding
orders in &(&u) is helpful. Thus in writing

, ( ]aK ywK

FIG. 3. Diagrams contributing to np().
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(c)

FIG. 4. Diagrams contributing to G.'~(v). For each
of the diagrams, all possible time ordering of inter-
action vertices should be included.

(m'

correlation diagrams, the latter class being the
exchange counterpart of the former. For each of
these classes one has to include all diagrams in-
volving different time ordering and also include
both G e'~~ and 6~e ~~~ vertices. Finally, it
should be pointed out that in drawing these dia-
grams in Fig. 4 we have carried out the usual
cancellation between the vertices associated with
I/r~& and -Vf, as in our earlier work in time-
independent problems. "" The algebraic expres-
sions for n, (w) corresponding to these diagrams
are given by

~
-e, - ~)] '+ [(e - ~ + ~)(e, - e,+ ~)]-',

m k

o', (~)= z &m(z(k&(m'/p~(/„)- (~E/, &

b

&&(0 ~S~m &[(e —e —&u)(e, —e, —~)] +[(q e +~)(e e +~)]-i
nz k m' (2. 24)

Pl p 82

k, k'

+ e e e )(e e &)] + [(6 + E —f —6 )(E —E + R)]
k k' (2. 25)

PPl
p

fPl

k, k'

x[(f + e z
—E' —6 z)(c —6 z

—M)] ~ + [(e + E z
—E —E'

& )(E—e + ~' )]m nz ' k k' gag k' rn m ' k k'
gpss (2. 26)

The above expressions include the diagrams obtained
by exchanging8 andK, (t) operators in diagrams (a),
(b), (c), and (d). Some of the diagrams for o', (&u)

which include two orders of $C,' vertices are shown
in Fig. 5 and the corresponding expressions can be
easily derived from the diagrams.

The comparison of o.(v) with experiment is
carried out by relating n(&u) to the refractive index
n(v) at standard temperature and pressure by the
relation

[n'(~) —I]/[n'((u) + 2] = ;m N, n((u), — (2. 27)

where N, is the number of atoms per cubic centi-
meter. " It must be noted that Eq. (2. 27) applies
strictly to noninteracting atoms and one has to take
account of corrections due to interatomic interac-
tions~~" in making accurate comparisons of theory
and experiment.

The dynamic polarizability a(&) has poles on the
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these excitation energies is obtained from the de-
nominator of n, (v), namely,

(2. 28)

FIG. 5. Some higher-order diagrams contributing to
e2(co) .

co axis due to the energy denominators in the dia-
grams. The entire o.'(&) curve thus involves
regions centered around the poles which resemble
the anomalous dispersion effect in optical spectros-
copy. While the values of n(e) in the neighbor-
hood and beyond the first pole of co are not very
meaningful in view of our assumption of adiabatic
response of the atom to the electromagnetic field,
the poles of n(~) can nevertheless be interpreted
as corresponding to the various excitation energies
of the atom. The lowest-order approximation to

This is the energy difference between one-electron
states generated by the single-particle potential
Vz that we have chosen. Thus, one obtains a mea-
sure of the extent of resemblance of V~ to the real
physical potential by comparing the poles of o.,(~)
with the experimental excitation energies. To in-
troduce higher-order corrections to the poles of
n(&) due to the consistency and correlation effects,
it is necessary to sum the various classes of dia-
grams to infinite order. This can be carried out
by a geometric series approximation which was
found to be good in helium. '~ '4

III. RESULTS AND DISCUSSIONS

In this section, the results of the application of
the method explained in Sec. II to the ground state
of neon (ls'2s'2p6; 'S) are presented.

We have chosen for our calculation the so-called
yN-1 potential »' "for generating both bound
and continuum single-particle states, The single-
particle s states are generated by exciting the 2s
electron to ks states, the radial equation being

P P dr' P (r)+1s ks r 1s

rP, dr' P (r)=0.
2p ks r ' (3. 1)

The single-particle P states are generated by exciting the 2P electron to kP states. The corresponding
radial equation is

c
r 2

d 20 2 ~, 1 r ~ 1 ~ 21 r 4, +———,—4 P '—dr' —4 P '—dr'-10 P '—dr'+ — P '-, dr'+2c P (r)dr' r r', 1s r 2s r „2p r 25 0 2p r' kp kp

2
r

+2+
3 Pl P~, dr' Pl (r)+

31s , dr'P (r)+-2s kPr ' 2s

r 2

, dr'P (r)=O. (3. 2)

The single-particle d states are obtained by exciting 2p electron to kd states. However, the V+ 1 potential
for this case is not unique and as in earlier work"~" we took an average of the potential over the six pos-
sible excited configurations using a single determinant in each case. The radial equation for d states is

(
d2 20 6 ~ , 1 ) ~ , 1, +———,-4 I' '—dr' -4 P '—dr'-1dr' r r' p 1s r 0 2s r

2

2 I 2 1+dr + I', dr +2& I'

r' r
0
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We have used Clementi's" 1s, 2s, and 2P wave
functions of neon in generating the potential in
Egs. (3. 1)-(3.3). The 2s and 2p states obtained
from Eqs. (3. 1) and (3. 2) should be identical to
the Hartree-Pock 2s and 2p states, which may be
used as a check on our numerical procedure. Our
energy eigenvalues and wave functions for the 2s
and 2p states in fact agree to the fourth significant
figure with Clementi's results. As expected, the
other hole state, namely, 1s, has an energy
-34. 1270 a. u. which is lower than the Hartree-
Fock energy -32.7728 a. u. due to the difference be-
tween the V&-& andthe actual Hartree-Pock poten-
tial for the inner-hole states. This energy differ-
ence is corrected for by ladder diagrams. '~'~" "
The 1s wave function, however, was inappreciably
different from Clementi's Hartree-Fock function
and differences between the two were neglected in
the evaluation of diagrams. In evaluating the dia-
grams, the continuum basis states have to cover
the range &=0 to ~. This entire range is effec-

- tively included by the use of Gauss-I aguerre quad-
rature technique, "which also reduces the com-
puting time significantly. In summing over bound
states, the ten lowest states for each angular mo-
mentum / were included explicitly and contribu-
tions from the rest (n & 10) were included by the
n ' ' approximation. '

We shall next consider our results for the polar-
izabilities and excitation energies. Before taking
up the comparison of our end results with experi-
ment, it is appropriate to list some of the features
of the contributions from individual diagrams.

For purposes of discussion we shall divide the
diagrams into three broad classes, —those that
involve zero, one, and two orders, respectively,
of K~» contributing, respectively, n, (&u), o, (~),
and o.,(&) to the total polarizability o. (&u). The
pertinent diagrams of these three classes are pre-
sented in Figs. 3-5. We shall first consider
o.,(~) which arises from the diagrams in Fig. 3.
Table I summarizes for four typical frequencies

ISHIHARA, AND DAS

the contributions to n, (v) from various modes of
excitation. It is noted that 2p -kd excitations
make the largest contribution at low frequencies,
followed by 2P -ks which contributes about one-
third of 2P-kd. The contribution from 2s -kp is
one order-of-magnitude smaller while 1s -kP is
negligible in effect. The relative importance of
these various modes can, of course, be severely
altered in the neighborhood of resonances, as for
example at the highest frequency in Table I which
is in the neighborhood of the 2p-Ss transition fre-
quency. It is of some interest to analyze the rela-
tive contributions from bound and continuum states.
This information is presented in Tables II and III
where the contributions from various bound excited
states and continuum are listed for the 2p -kd and
2p- ks excitations. For the 2P - kd excitations, the
continuum excitations give almost 95% of the total
for this mode while for the 2P -ks excitations, the
bound states contribute about 65/p of the total. A

, similar behavior was also found for the 2p-kd
and 2p»ks excitations in higher-order diagrams.
These observed, preponderant influences of the
continuum states on the major excitation process
2p-kd suggest that in variational calculations the
trial functions should incorporate directly or in-
directly the features of the continuum states. The
relative importance of continuum states contribu-
tions to the total o.,(~) is also illustrated in Fig. 6,
where both the continuum contribution alone and
the total (continuum and bound) are plotted. Ex-
cept in the vicinity of singularities, the over-all
continuum contribution is seen to represent about
80% of the total.

The diagrams in Fig. 4 which contribute to o(~)
can be broken up into two subclasses, as described
in Sec. II; namely, the consistency types in Figs.
4(a) and 4(b) and the correlation types in Figs.
4(c) and 4(d). Cancellation effects between direct
and exchange diagrams 4(a) and 4(b), and 4(c) and
4(d), lead to the result that as far as interactions
within the P shell are concerned, finite contribu-
tions arise only from consistency and correlation
effects between electrons of opposite spin through
diagrams 4(a) and 4(c). The cancellation effects
between electrons of same spin are similar to the

TABLE I. Lowest-order contributions ao(co) to the total dipole polarizability n(co) of neon ( 8) from various ex-
citations and various ~.

Excitation co =0.0 co = 0.20 e =0.40

2p kd

2p —ks
2s kp
1s kp

Total

2.05787
0.61001
0.05076
0.00075

2.71939

2.11115
0.65475
0.05100
0.00075

2.81765

2.29813
0.85199
0.05177
0.00075

3.20264

2.76381
2.10719
0.05312
0.00075

4.92487

aAll polarizabilities are expressed in a.u. To convert
them into A (10 cm ), multiply by 0.14818.

Energies in a.u.
k denotes both bound and continuum excited states.
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TABLE II. Contributions to 0, 0((u) for neon ( S) from 2p kd excitations for various co.a b
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Excitation

2p~ 3d

2p 4d

2p 5d

2p 6d

2p Vd

2p 8d

2p 9d

2p 10d

nd'
n=11

2p —continuum

Total

cu = 0.0

0.04295
0.02226
0.01220
0.00727
0.00466
0.00314
0,00222
0.00222

0.00903

1.95192

2.05787

cu = 0.20

0.04586
0.02367
0,01295
0.00772
0.00494
0.00333
0.00235
0.00233

0.00957

1.99843

2.11115

co = 0.40

0.05753
0.02923
0.01588
0.00974
0.00603
0.00405
0.00287
0.00284

0.01120

2.15876

2.29813

(d = 0.60

0.09991
0.04804
0.02553
0.01499
0.00952
0.00637
0.00449
0.00445

0.01703

2.53348

2.76381

All polarizabilities are expressed in a.u. To convert
them into A (10 om j, multiply by 0.14818.

Energies in a.u.
Estimated by n rule. See Refs. 14 and 24.

result found for hyperfine interactions in atoms
with P electrons in the valence shell. "~" Inter-
actions between P and s electrons can, however,
take place through all the diagrams in Fig. 4 since
direct and exchange diagrams are different in mag-
nitude and do not cancel. The diagrams involving
P-P correlation and consistency effects are found
to be one order-of-magnitude larger than the cor-
responding p-s diagrams. This result is not un-
expected since there is stronger overlap between

p orbitals than between p and s. As regards the
relative importance of consistency and correlation
effects, they make identical contributions at zero
frequency, with the consistency effect increasing
in relative importance at higher frequencies. The

calculated values of n, (~) at different frequencies
co are included in Table 1V.

Some of the typical second-order correlation
diagrams that we have investigated are shown in
Fig. 5. In evaluating these diagrams, only
2P-kd (both bound and continuum) excitations
were included, in view of their dominating impor-
tance for n, (&u) and n, (&u). In contrast to the results
in helium, the contributions from these higher-
order diagrams for neon were found to be about
two orders-of-magnitude smaller than n, (u&), and
thus numerically insignificant. Thus the values of
the total n(u&) in Table IV are effectively the sum
of n, ((o) and n, (ar).

In Fig. 7, our calculated refractive index func-

TABLE III. Contributions to 0, 0(cu) for neon ( S) from 2p ks excitations for various ~.a 1 b

Excitation

2p 3s
2p 4s
2p 5s
2p 6s
2p 7s
2p 8s
2p 9s
2p 10s

(1) = 0.0

0.34396
0,04432
0.01485
0.00592
0.00282
0.00136
0.00058
0.00015

cu = 0,20

0.37716
0.04742
0.01490
0.00628
0.00299
0.00143
0.00060
0.00015

(d = 0.40

0.53086
0.06006
0.01846
0.00771
0.00364
0.00174
0.00073
0.00017

co = 0.60

1.65326
0.10832
0.03100
0.01275
0.00607
0.00300
0.00138
0.00050

n=11
ns 0.00591 0.00720 0.00885 0.01200

2p —continuum

Total

0.19014

0.61001

0.19662

0.65475

0.21977

0.85199

0.27891

2.10719

All polarizabilities are expressed in a.u. To convert
them into A (10 cm ), multiply by 0.14818.

Energies in a.u.
cEstimated by n rule. See Refs. 14 and 24.
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FIG. 6. Variation of the lowest-order contribution

Qo(M) to polarizabilities of neon atom with angular fre-
quency cu (in a.u.). Curve I shows the contribution from
continuum states to eo(cu) corresponding to diagrams
shown in Fig. 3. The arrow on the co axis indicates the

frequency correspondence to the first dipole excitation.

tion is compared with Cuthbertson and Cuthbert-
son' s experimental results. " The one-electron
results of Kaveeshwar, Chung, and Hurst' have
also been included for comparison. While data
on pressure dependence of n(~) or the dielectric
constant are not available for neon, Johnston,
Oudemans, and Cole" point out that the pressure
dependence appears to be much weaker than in
helium and of the same sign. This behavior is not
unexpected because of the anticipated cancellation
of short-range and long-range interaction effects
which predominate respectively in helium and
argon. The excellent agreement between our cal-
culated n(~) and experiment reinforces our obser-
vation regarding the minor importance of consis-
tency and correlation effects represented by o., (&)
and o.,(&). The magnitudes of consistency, first-
and higher-order correlations symbolized by dia-
grams [Figs. 4(a)-4(d) and 5) for ~ = 0 are 2. 4,
0. 66, and 0. 002%, respectively, relative to o, p(p).
The comparable figures for helium are 6. 46,
6. 46, and 5. 1, respectively. The nature of these
results is to be expected physically, since helium
has only one other electron which is more strongly
affected by the perturbation of one of them while
in neon the valence n = 2 orbitals contain eight
electrons which are relatively less affected by
what happens to one. This observation is similar
to the Koopmans's theorem for excitation ener-
gies. In view of this minor importance of cor-
relation effects on o, (~), one-electron contribu-
tions calculated by other techniques should also
agree well with experiment. The observed de-
parture of about 10% between the results of
Kaveeshwar, Chung, and Hurst, ' and ours, can
perhaps then be attributed to lack of flexibility of
the variational function used by them.

The value of the static polarizability that we have
calculated, namely, n(O)=2. 672 a. u. , compares
very well with the value of 2. 663 a. u. that is ob-

a
TABLE IV. Final results for the frequency-dependent polariz ba 'zabilities e(co) of neon ( S).

10 [w(~) -1]
0.0
0.10
0.20

0.30
0.40
0.50
0.60
0.63

0.66

2.71939
2.74291
2.81765
2.95847
3.20264
3.65999
4.92487
6.14852

11.83869

—0.04772
—0.04812
—0.04968
—0.04977
—0.05778
-0.06721
—0.10302
—0.16088
—0.82977

2.67167
2.69479
2.76797
2.90870
3.14486
3.59278
4.82185
5.98764

11,00892

6683.56
6741.41
6924.48
7276.54
7867.33
8987.86

12062,55
14978.96
27540.41

aAll polarizabilities are in a.u. To convert them into
A (10 cm ), multiply by 0.14818.

Energies in a.u.
Contributions from diagrams shown in Fig. 3.

Contributions from diagrams shown in Fig. 4.
Total of column 2 and column 3.

At STP, NO=0. 26870 && 10 atoms/cm . See also
Ref. 20.
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I"IG. 7. Variation of n(co) —1

of neon, where n(co) is the re-
fractive index, with angular

frequency co (in a. u. ) . Curve
I represents our final results
including correlation effects,
whereas Curve II gives the
one-electron variational re-
sults of Kaveeshwar, Chung,
and Hurst (Ref. 3). The "tri-
angles" represent the experi-
mental results of Cuthbertson
and Cuthbertson (Ref. 25).
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6 000

tained by extrapolating Cuthbertson' s data to zero
frequency. " Kaveeshwar, Chung, and Hurst's'
value for o (0) was 2. 382 a. u.

The singularities of n(&o) are known to yield the
excitation energies of the atom. In Table V, we
list some of the 2p-ns and 2p -nd single-particle
excitation energies together with the corresponding
experimental data obtained from the table by
Moore. " Since the excitations 2p ~d can take
place from any of the m~=0, 1 states, and the
hole in the 2P state for both 2p-ns and 2P -nd
excitations can be in different j states, a number
of closely spaced transitions are available for each
value of n. Since we have neglected relativistic
effects and have taken the average over configura-
tions associated with 2p -nd excitations, we cannot

predict these splittings. Instead we have compared
our excitation energies with one of the experimental
transition frequencies for each n. The theoretical
and experimental excitation energies listed in Table
V are uniformly in agreement to within 7%.

IV. CONCLUSION

As in our earlier application to helium, the BG
procedure has yielded, for neon, dynamic polariz-
abilities n(u&) which produce excellent agreement
with experimental refractive indices. The differ-
ence from helium is that the consistency and cor-
relation effects play a less important role. A sim-
ilar result is expected for the heavier rare gases.
We would like to remark here that the BG proce-
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TABLE V. Frequencies of spectral lines of neon ( S).1 a

Calculated excitations

2p 3s
2p 4s
2p 5s
2p 6s
2p ~7s
2p 8s
2p 9s
2p 10s
2P -3d
2p 4d
2p-5d
2p 6d

2p ~7d .

2p 8d
2p- 9d

2p Iod

0.6744
0.7820
0.8141
0.8280
0.8352
0.8395
0.8422
0.8440
0.7947
0.8192
0.8304
0.8366
0.8402
0.8427
0.8443
0.8444

Experimental excitations

2p (Pg(2)3s
2p ( Pygmy)4s

2P'('P)]2) 5s
2p'('P, ») 6s
2p ( Pg(2)7s
2p'('P„, ) 8s
2p (Pygmy)9s

2p ( Pg)2) 10s
2p ( Pg)2)3d
2P'('P„,)4d
2P'('P, (,)5d

2P (P~&~)6d

2p ( Pgy2)7d

2p ( Pg)2)8d
2p'('I «, ) 9d

2p ( Pg)2)10d

0.6192
0.7269
0.7594
0.7733
0.7806
0.7849
0.7876
0.7894
0.7401
0.7646
0.7759
0.7821
0.7858
0.7882
0.7898
0.7910

Energies in a.u. (27.205 eV) calculated from diagrams in Fig. 3.
Taken from Ref. 27.

dure for atomic problems has two main advantages.
First, it allows a systematic study of many-body
effects, and secondly, it allows a good quantitative
treatment of one-electron effects in the presence
of external perturbations through the use of a com-
plete set of basis states. It is this latter feature
of the method that is taken to most advantage in
polarizability calculations. For the shielding fac-
tor'4~" of the nucleus in an external field, consis-

tency and correlation effects would be of greater
importance.
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The zero-field hyperfine structure of the metastable 2 S~ state of He has been me8. sured by
the optical pumping magnetic resonance method. The hyperfine transitions in a weak magnetic
field were observed at low temperature in order to achieve narrow linewidths. Discussions
of the theory of the hyperfine structure, the theory of the experiment, the apparatus, and the
experimental procedure are presented. The final value for the hyperfine structure is 6739
701177+16 Hz on the A.-1 time scale. The fractiona1 pressure shift of the hyperfine structure
is (-7.4+3.0) && 10 /Torr. The theoretical and experimental values for the hyperfine struc-
ture are compared, and the dependence on the nuclear structure is discussed.

INTRODUCTION

One of the important sources of information con-
cerning nuclear and atomic structure is precision
measurements of hyperfine structure intervals.
The theoretical value for the hyperfine structure
(hfs) depends upon knowledge of the atomic and
nuclear wave functions, the electrodynamic cor-
rections, and the values for the fundamental con-
stants. One of the fundamental hyperfine intervals
is that for He. ' in the metastable 2'S, state. The
hyperfine interval for this simple atomic state
should be calculable to high precision; the agree-
ment between the calculations and the measured
interval can be used to test quantum electrodynam-
ics and atomic-structure calculations.

This paper reports a redetermination of the hy-
perfine structure of the metastable 2'Sy state of
He'. The previous measurements of this hyper-
fine structure interval used an atomic-beam tech-
nique. ~~ 2 The precision of the measurements was
limited by the transit time through the radio-
frequency field; the linewidth was 40-55 kHz. The
experiment reported here used an optical pumping
technique to measure the hyperfine structure.

The precision of the measurements was limited
by exchange collisions between atoms in the meta-
stable state and atoms in the ground state; the
linewidth was 1-2 kHz. This large decrease in
linewidth made it possible to reduce by more than
an order of magnitude the error in the hyperfine
structure interval.

The optical orientation of metastable He3 was
first reported by Colegrove, Schearer, and
Walters. ' They also showed that the cross sec-
tion for exchange of metastability with the 1 Sp
ground-state atoms was high enough to transfer the
orientation to the ground state. This rapid meta-
stability exchange process has the undesirable
effect of severely broadening the magnetic reso-
nance lines of the metastable state when the gas
is at room temperature. It was predicted by
Buckingham and Dalgarno4~ ' and demonstrated
experimentally by Colegrove, Schearer, and
Walters' that the metastability exchange cross
section decreases rapidly as the temperature is
decreased. The consequent narrowing of the meta-
stable resonance lines has made possible a mea-
surement of the hyperfine structure interval to a


