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The variational solutions to the Rayleigh-Schrodinger inhomogeneous equations are derived

by simple matrix algebra. It is shown how the approximate perturbation energies and wave
functions obtained in this way obey the same type of equations as the exact ones. This permits
the formulation of a variation-iteration theory convenient for numerical applications. Results
for the He-like ions show that the conventional linear series is less suitable than the present
method in obtaining accurate energies. The use of inner projection techniques leads to an ef-
ficient calculation of Pade approximants to the energy series, which show remarkable con-
vergence properties.

I. INTRODUCTION

The combined use of perturbation and variation
theory has several advantageous features due to a
variety of factors. Perturbation energies can, in
most cases, only be determined by variational ap-
proximations. ' Low-order perturbation theory
may be inadequate and the convergence of the per-
turbation series has to be studied in detail. These
problems have been studied by a number of auth-
ors, ' " and our emphasis here is to obtain expres-
sions involving the exact perturbation energies or
the approximate ones in a systematic way. An op-
erator approach, with approximations defined by
inner projections" of the resolvent, is employed.

A convenient test case for studying perturbation
problems is given by the Z expansions of two-elec-
tron systems. '~"~" We have examined the rich
material available for He-like ions. One of the
results emerging from our analysis is that Pads
approximants" to the perturbation series follow
immediately from inner projections of the reac-
tion operator in the Brillouin-Wigner (BW)
case. "~'o In Rayleigh-SchrMinger (RS) theory, the
same formulas may be adopted. We have carried
out a Pade analysis of the He series, finding re-
markable stability and convergence properties, su-
perior in our opinion to any of the extrapolation
techniques previously employed in this connection.

In order to introduce notations, and for the sake
of comparison, we first review the conventional
approach and then proceed to derive and illustrate
our approximations.

II. CONVENTIONAL RAYLEIGH-SCHRODINGER
PERTURBATION THEORY

We seek an eigenfunction 4 and its eigenvalue E
to the Hamiltonian II,

Given the splitting

the eigenfunction Po and the eigenvalue E, for the
corresponding state of the unperturbed Hamil-
t.onian IIO,

+o Ao = Eo 0o

BS perturbation theory in its conventional formu-
l,ation assumes expansions of the type:

QX P, E= QX e, (e =E). (4)n' n' 0 0n=o n=0

The nth-order perturbation equation is

n —1

(Eo - Ho) p = Vp
L=O

A detailed treatment of RS theory, with emphasis
on a comparison of the resolvent and the inhomo-
geneous equation approach, was given by I owdin. "

Variational principles for the perturbation ener-
gies of even order, &2n, have been obtained by
Hylleraas' (n = 1), Scherr and Knight, ' and
Stewart. ' A short derivation of these principles il-
lustrates some general features of approximate
perturbation theory. We use a matrix formulation
previously used to obtain variation solutions in the
BW case. " We thus expand an approximate eigen-
function 4 and an approximate eigenvalue E:

(j =y), E= +Pe . (S)
n=o n=o

552
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Insertion of (6) into the variational expression

&~~ Ifi ~&/&~l ~& =-R, +2&&, I-e, e.&}, (12)

and collecting terms after even powers of X gives,
assuming P~, k&n, to be known exactly, i.e. ,

k (ni

and 5~, =&6y, ~(a, —Z,)j,+(V-e, )y,&=0 . (12)

Let us expand the approximate functions in the
linearly i~dependent basis $1hl& I h2& ~ ~ ~

I h„&)
-=I h&

and introduce the following definitions:

n-1

'2.&~0'~0&-' ~ &~2. -I'"0-~o~~f&
l=o

n, =&a I&, R=&h Eo —Ho h) ',

v=&I
~

v-~, ~a&, a=&I~ v-~, (y, )
(14)

We then seek P, =
~ h&c„which we obtain from

6e, =0. With the choice 6P, = ~h&c, where c is ar-
bitrary, we get

c&(&niff. —Rol ~&c, + (15)

and hence

l=2

n-1 2n- l
Z ~ &y, ~ j2„, & . (9)

l=1 P=n-l+ 1

&&Iff. —&.
I

@&& +&I
I
V- ~

I e.&=0,

with the solution (&Q, [ Q,&
= 1 from now on)

c, =Ra; &, =a Aa.

(16)

It follows from (3) and (5) that the three terms in-
side the brackets vanish. The following inequality,
relating E2n and its approximation i2n is then
obtained:

e e =&Q ~&f& ) '(&g H —Z ~&f& )

n

+2&y V-e y )-2 Q e&y ~4 )
l= 2

n —1 2n-l
— Z Z ~ &e,~i2„, )), (»)

l=1 p=n-l+1

with P„determined from

The explicit solution to the Hylleraas problem was
obtained by Weiss and Martin" and its invariance
properties were discussed by Miller. " A deriva-
tion by means of an inner projection of the resol-
vent was given by Lindner and Lowdin. " It by-
passes the formulation of an ad Roc variational
principle.

Formally, it is now possible to get p„ from
6F'q, , =-0, provided we assume all corrections Py
to ~ ).c total wave function to be expanded in the
same basis [h&, i. e. , py= ~h&~c. From (11), we
obtain

n-1
c =RVc — Z e R~c +e R&& p,&,—n ———n-1 l——n-l n ——

=&6y (H -Z )y
n=2 3 ''' c, =Bg

n
+ (V-el)y I

- Q sf' ) = 0 ~1 n1
l 2

l nl

In most practical cases, we only know Q, exactly,
which leads to p» e, (and e, ).

Note that the variational principle for e2n and

P„ involves the knowledge of the smack P„P» ... ,
An-I an«O, el, s2 ". e2n-I
(11)becomes the well-known Hylleraas bound'.

However, (18) was obtained under the formal
assumption that P~, 0 & n was known exactly in or-
der to remove the three first terms in (9)~ Since
in practice all the perturbed weave functions are
constructed as linear combinations of the same basis,
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it is obvious, see also Midtdal, "that the condition
de2n ——0 with the choice ban ——$2n I, I = 0, 1, . . . ,
n —1, have the same effect on (9). Bounds to

are, however, no longer obtainable.
The previous matrix formulation can be applied to
the case when P, is only approximately known.
The variation principle for E, with Q,= I h) c,
gives

We have here assumed also the normalization
($0l pn)= 5n 0. The partitioning technique applied
to (22) leads to the following set of equations:

000 Ob b

c0+Mbb cb —0

(hlE, -H, lh) c,=o, (19) which corresponds to the partition of the matrix
M'

II =(hiE, —H, ih) ', (20)

with the normalization condition co(h Ih)co= 1. The
previous formulas then hold with the following
modifications (h orthogonal to g):

(M00 M l (c i
Mc=l I

I

=0,
b bb —bbl —(—bi

(26)

V=(hlv-e, ih), a= Vc„
Irrespective of the detailed form of Mbb, pro-
vided its inverse exists, we get the solution

with i, determined from C+m -'m c =0,

co Vco=0 (21) M
00 Qb bb bo = 0, c 10.

Since the inclusion of approximate quantities
eliminates the possibility to give upper and lower
bounds, one might question the value of higher-
order perturbation theory, unless the basis used
is practically complete. This fact leads us to an
approach which involves bounds for the total en-
ergy and not for the individual en.

In Sec. III, we will derive a modified expansion
obtained from the variation principle. The method
has been presented elsewhere" in the case of
exact quantities. Here, we will give a more gen-
eral formulation, which also applies to approxi-
mate quantities based on the previous analysis.

III. VARIATION-ITERATION THEORY

With the notation g =c I/c, we obtain

8 =E0+&I+ Z0 1 n n (29)

If Q&n} is complete it is clear that 8 = E; otherwise
E(8. Note that Xn--Xn($) and that (28) is the
bracketing function. '

In this formulation of the problem, we have not
yet specified gn, where n) 1. In the following we
will choose P as the nth order correction to Q,
in a certain perturbation scheme, yet to be speci-
fied. The usual statement about a convergent ex-
pansion

The Schrodinger equation in an arbitrary basis
Q& f}can be written in the form

bi'= Z btb, E=E +e + Z en' 0 1 nn=0 n=2
(29)

Mc=0,

with the' notation

(22)
implies in our formalism

M—b —bb —b0 0 —0'
M =M(S) =(btiH —be

i btb) y =(y y, .. .} (23)

M =E +g

M =e; n&1.
(24)

Given the splitting, H =H, + V, we choose $0 as the
zeroth-order ground-state solution of H04~'
=En'@no, i. e. , &f&0—= 40', E0=E0'. Introducing
en ——(~n I VIA, n I), we get

A truncated basis of finite order N yields
N+1

E~E+e+ Q X e
0 1 nn'n=2

(31)

which, contrary to linear expansions, gives a
rigorous upper bound to the total energy. In order
to compute Xn, which for instance can be obtained
by the Nesbet2 method, we need the explicit form
of Rbb. In the BW ease, a simple expression is
obtained. " In the RS scheme it can be expressed
in terms of the corrections e and the overlaps
(e;le;)."
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In practice the e„'s and the Q„'s are not exactly
known. As we will see, the theory also holds in
this approximate case.

From now on we will restrict our attention to
RS theory. Vfe substitute the perturbation ex-
pansion into the Schrodinger equation and collect
terms after powers of V. The set of inhomoge-
neous Eqs. (5) is, of course, the starting point:

These conditions can be simply implemented:
Assume a linearly independent basis Ih& =

I hi,
h3, .. ., h~& and expand

(34)

in the same way as in (15)-(18). From (33) we get

(E —H)$ =0,

(E -H )P =(v-e )Q,
(33)

., [&I IE, -H, la&c -&I v-., y, &]=0,

or in the more compact notation

c, [R c, -a]=0.-1

(35)

(38)

(y ly & =0;n-l,

v-e

(y lz-Hly& (33)

n-2
=(y lv-, ly, &- g „&y ly ).

We now construct approximate Q. 's, which are
2subject to the conditions

It is immediately clear that the choice c, =Ra
leads to the desired result. In addition, it is the
optimal result within the linear space spanned by
h, since c, =R a is the solution of the Hylleraas
problem. ' Proceeding similarly to P„, the ob-
vious result is

n-2
c =Rvc

1
—z e &Roc„+e R(hi/ ),n —n 1

k
n-k k

n=2 3 -"
which is identical to the variational result of
Sec. II. '~' The relevant formulas in the SchrMing-
er theory are now easily rederived in an entirely
similar manner, but with the important distinction
that they apply to approximate quantities obtained
from the Hylleraas, Scherr, Knight, and Stewart
method. Since the following formulas hold in the
approximate, as well as in the exact case, we will
from now on drop the tildes. From (33) is ob-
tained (see Lowdin")

m n-1
vip & =&y, vip, &+ Z e, &p p~&- Z (38)

from which follows

(39)

If (Q. i/0& = 5.0, (39) reduces to"
o zO

m n
v

mn m+n+1
k 1 l

m+n+1-k-l k
(40)

The matrix elements M~„=($~ tH- h t Q ) are then given byn

n-1
=v -v, +(z -h)&y ly &+ Q e (41)
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To see that M~„ is Hermitian, we insert Vmz from (39) into (41), thus obtaining

m n rn

)(0 IA &+ + e (y Iy &
mn m+n+1-k-I m+n-u-t k l

k 0
m-k u n0=0 3=0

(42)

For the perturbation energies, we get

2n —2

ol I 3-1 '~ -I ol I'
L=O

and with (Q, I&]&0) =5;0, (43) gives'

2n —1

,„,I =(e, l vl v, &
- 2 (43)

n n —1

,)- ~ z ., „,&e, ly, ),
k=1 3=1

(44)

VI4', )=(@
I
VI'' &- ~ ~ .. I

In order to assure orthogonality to P„we simply replace V by

v- ~&col h&

-&hler.

& ~, and ~ by ~-&hl eo&&&ol»

which means that we have changed our manifold I h) to I h) —I P, )(&f&oI h) . The matrices 8 and a remain un-
changed.

Note that the results given here also hold for an approximate Q, = I h)c, and E, =(Q, IH, I Q, &, subject to the
variational condition

co=0, c, (hlh)c, = 1

and with 8, U, and a modified accordingly (see Sec. II). As a consistency check we write

=(y Ia +v-sly )=z +e -8, m =(y Ia +v-sip )

(45)

=-c() ~ c + & s
1 I&0 I(II&+(Eo- )&e$0IQ &; n&0. (45)

Since (/~I $0) = 0, we get, from (45) and (46),
Al

M (47)

which is the desired result.

IV. PADE APPROXIMANTS

Given a function of a complex variable, its power-
series representations are the simplest available,
simplicity being not always compatible with con-
vergence or existence. Just as the high-tempera-
ture expansion of a thermodynamic prop-erty (e.g. ,
a susceptibility) perturbation theory offers an ex-
ample where the coefficients of a power series are
known in principle and which sometimes can be

computed in practice quite accurately. The con-
vergence properties of such expansion are deter-
mined among other things by singularities of the
function represented. The power series break
down at such points and are useless as devices
for locating phase transitions. The Pade" tech-
nique, successfully applied to a number of problems
of this type, "consists in constructing rational ap-
proximants to the function represented based upon
the coefficients of the power-series expansion.
There is an excellent review by Baker" of the Pade
technique,

The upper and lower bounds that we have previ-
ously discussed in connection with continued frac-
tion energy expansions of BV type" and of polar-
izabilitiesme are recognized to be Pade approximants
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. of type [N, N) and [N, N 1-] (in the notation by
Baker" ), respectively. " The approximants [N, N]
and [N, N 1]-furnish upper and lower bounds to
the function represented when the corresponding
power series is of Stieltjes type, this being the
case in the BW series and in the moment expansion
of polarizabilities. " One of the characteristics of
the inner projection approach is that the form of
the approximants is conveniently expressed as the
expectation value of an inverse matrix, and not as
a ratio of two determinants. The computations are
hence very simple.

Given a series like (4) and (6), it is immediately
obvious that Pade approximants will yield results
of interest about E(X) or 4'(X). Unfortunately not
all series are of Stieltjes type and some of the con-
vergence properties of the Pade approximants
themselves are still unknown. "~" We discuss
elsewhere some of the matters, "and it will suffice
here to give the explicit form of the approximants.
Given a series for the energy like (4), one obtains

mants a special class is automatically selected.
In fact, given the Pade approximants [N, N] and
[N, N 1]-to the series (54) one can write (48) and
(51) in the form

Eq(A. ) =ED+Le ~
—X2[N, N]

and E,'(X) =E, +X e,
—X'[N, N-1],

(55)

(56)

V. NUMERICAL RESULTS

respectively, though for computational purposes the
forms (48) and (51) are convenient. They are also
suitable for locating the singularities of the func-
tion E(X). This is achieved by searching for the
zeroes of ~ and D."

In conclusion, given the linear series (4) and the
variation- perturbation, expressions like (Sl}, (48),
and (51) provide a good alternate way to compute
the energy and to examine the convergence and
properties of E(X).

E,(&)=E,+&e, +X'(e, +he A 'e),

where et is a row vector

' =('s''""N 2) '

(48)

(49)

The isoelectronic sequence of He was used as a
test example. The Hamiltonian for a two-electron
system with nuclear charge Z is given (in atomic
units} by

and ~ is a square matrix with elements
H=H()+ V, V=y'j2

II, = —-', (v, '+ v, ')- z/r, —z/r, ,

(57)

Note that (48} for a BW series determines a lower
bound. " Another set of approximants which are
easily obtained is given by

which, when transformed to the scaled variables
(ri'=Zri, i= 1,2), leads to

H= ——(&, +V, ) —x ' —x '+Z ' ~ x, ', (58)

E,'(X) =E,+Le, +X'e D 'e.

The row vector e~ has the form

(51)
where the energy is now expressed in Z ' a.u. The
form (58) is particularly suitable for considering
a perturbation expansion in the parameter Z '. The
conventional linear expression is given by

('2' 'S' ""N+ 1} '

and D has matrix elements

Dkl ~k l ~~k l ) k, l=l, . . . , N.

(52)

(5s)

E=Z(E+Ze+ZZe),
0 S nn=2

e=z Q z "y
n=O

(59a)

(59b)

For aBWseries, (51) determines upper bounds. "
It should be emphasized that both (48) and (51) ob-
tained by inner projections in the case of BVf se-
ries correspond in all cases to a Pade analysis of
the power series

If (59b) is truncated to N terms, Eq. (Sl) gives

%+1
E&g (E +g e + g [y (g)Z "]e ), (60)

0 n
n =.2

E(x) E -xe =p~e
0 1

2
nn=2

(54)

This means that of all conceivable Pade approxi-

where X„(z) are rational functions of Z determined
by Eq. (27). Our test is based on extremely accu-
rate perturbation-theory calculations by Midtdal,
Lyslo, and Aashamar. " The basis employed was
constructed with functions of the type
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TABLE I. Various expansions of Rayleigh-Schrodinger quantities for H . The number in parentheses indicates the
highest perturbation order which is included in the calculation. c in tables redefined as en Z "

+ e -tN, N]
0 I

(2N+ 2)

+e -fN, N-I]
0 I

(2N+ I)

N+I
f +6 + Q g E

0 I nn
n=2

(2N+ I)

2N+ I
+E' + E

0 I nn=2
(2N+ I)

I
2

3
4
5

6

7
8

9
10
11
12
20

—0.5247737
-0.5272299
—0.5276480
—0.5278070
—0.5277385
—0.5277449
—0.5277499
—0.5277512
—0.5277508
—0.5277507
-0.5277508
—0.5277509
—0.5277508

—0.5244223
—0.5242083
—0.5274622
-0.5276770
—0.5277468
—0.5277424
—0.5277507
—0.5277501
—0.5277508
—0.5277508
—0,5277510
—0.5277509
—0.5277508

-0.5010702
—0.5207961
—0.5255182
—0.5 269640
—0.5274631
—0.5276435
—0.5 277105
—0.5 277357
-0.5277452
—0.5277488
-0.5277501
—0.5277508
—0.5277508

—0.523 9675
—0,5258925
-0.5268776
—0.5272861
—0.5274856
—0,5275917
—0,5276518
—0.5276874
—0.5277093
—0.5277231
—0.5277320
—0.5277379
—0.5277500

1-2$' n m lg(su f) f=e s u f
nml

s=r, +r„0(
i
ti& u( s( &;

n, m, l positive integers, (61)

Q = t"g2~ l even;

and 204 terms were selected according to their
maximum contribution to c,. For details we refer
to the work of Midtdal et a/. " Numerical results
are given in Tables I-V. %e report values for H-,
He, Li+, and Be++ because they illustrate the in-
creasing convergence with larger Z. In the first
four tables we compare the linear series (6), the
variation-perturbation formula, (31), and the Pade
approximants obtained by inner projection (55) and

(56). Clearly, the variation-perturbation formula

is always an upper bound, whereas the other three
do not yield, in this case, rigorous bounds.

The comparison of convergence rates is of inter-
est. The linear series does not differ too much
in convergence properties with respect to the
variation-perturbation result, and in the case of
H, the latter converges faster in the long run. '

The expressions involving Pade approximants con-
verge appreciably faster, though a bit erratically
at the beginning, when E,(1/Z) and E,'(1/Z) agree
with each other, one seems to have reached a very
good result. For H this requires, as input infor-
mation, about e, up to 62p and to recover a similar
result from the linear series, one needs twice as
many perturbation energies, and something similar
is required to reach the same accuracy by the var-
iation-perturbation scheme.

It should be observed that the variation-perturba-
tion result for N= 1 is not very good and that E,'(X);
A. = 1/Z, for N=1, is a "geometric" approximation

TABLE II. Various expansions for He.

E= e + e —fE, N]
0 I
(2N+ 2)

E= e + e —fN, N-I]
0 I

(2N+ I)

N+I
E=K +E +

0 I nn—2

(2N+ I)

2N+ I
E=c +6 + Q E

0 I n

(2N+ I)

—2.9035283
—2, 9037212
—2, 9037243
—2, 9037244
—2, 9037244
—2, 9037244

—2.9034334
—2.9031624
—2.9037237
—2.9037243
—2.9037244
—2.9037244

—2.8954538
—2.9032771
—2.9037013
—2.9037322
—2.9037243
—2.9037244

—2.9033169
—2.9036686
—2.9037186
—2.9037236
—2.9037243
—2.9037244
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TABLE III. Various expansions for Li .

E= e + e —fN, N]
0 I
(2N+ 2)

E= e + e —fN, N-I]
0 I

(2N+ I)

N+I
E=E +E + Q X E'

0 I nnn=2
(2N+ I)

2N+ I
E=E' +E +

0 I nn=2
(2N+ I)

—7.2798622
—7.2799131
—7.2799134
—7.2799134

—7.2798191
—7.2802763
—7.2799133
—7,2799134

—7.2759642
-7.2798262
-7.2799116
—7.2799134

—7.2797667
—7.2799039
—7.2799130
—7.2799134

TABLE IV. Various expansions for Be

Z=& +& -tN, N]
0 I
(2N+ 2)

&=~ +~ —tN, N-I]
0 I

(2N+ I)

N+I
E=6 +6 + Q X E

0 I nnn=2
(2N+ I)

2N+ 1
E=c +E +

0 I ~ nn=2
(2N= I)

—13.655546
—13.655566
—13.655566

—13.655521
—13.655598
—13.655566

—13.653276
—13.655539
—13.655566

—13.655492
—13,655563
—13.655566

to the series (6)

Z, '(X) = e, +~a, —&2[X,X- i]

(62}

with respect to a basis consisting of the zeroth-
order wave function and its approximate higher-
order corrections.

A previously discussed variation-iteration method
was shown to give upper bounds to the total energy
in the form

The last formula can be obtained by assuming that
the higher orders form a geometric series with
ratio e„/e„y = k. Of course, this does not hold,
hut nevertheless (62} is a very good approxima-
tion since it is a lower bound to an upper bound. "

In Table V we present results obtained with ex-
txaPolated values of the e~ according to the pre-
scriptions given by Midtdal. 23

VI. DISCUSSION

The variational solutions to the energy correc-
tions of even order in the Rayleigh-Schrodinger
perturbation theory were shown to be identical to
a matrix formulation of the RS inhomogeneous equa-
tions. This includes the solution to the Hylleraas
problem as well as those of higher orders.

The exact RS theory and the approximate one ob-
tained here turned out to have the same structure.
%'e showed how this allows to construct matrix ele-
ments of the Hamiltonian

K+1
EKE +e + Q A E

0 1 nn' (64)

TABLE V. Energies for He in various treatments.

Upper bound and result of Pade analysis —2.903724362
Pekeris's extrapolationa —2.903724376
Midtdal extrapolationb —2.903724376
Pade analysis of Midtdal's extrapolation —2.903724377

where the e„could be chosen as approximate per-
turbation energies obtained by conventional varia-
tional procedures.

Calculations for the ground state of the isoelec-
tronic sequence of He were carried out. The re-
sults show that the combined use of the variational
principle and perturbation theory is always better
than linear perturbation expansions. The methods
outlined here, compared to simple variation theory,
retain the formal properties of perturbation meth-

H=Ho+ V (63)
See C. L. Pekeris, Phys. Rev. 126, 1470 (1962).

bSee Ref. 23.
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ods, show numerical stability, and have good con-
vergence properties. Furthermore the particular
approach used leads to the construction of certain
approximants of Pade type, which yield alternate
ways of computing the final results and thus pro-
vide useful checks. There is an additional feature
about the Pade approximants considered, namely,
their use in locating singularities of the function
E(X) and in finding the radius of convergence of the
expansion (4).

There has been much work about convergence of
the Z expansions of two-electron ions. " Midtdal
et al. 3 used a very interesting procedure, namely,
investigating the zeroes of the norm of the wave
functions

(85)

andincreasedthe number p of terms employed.
They applied a theorem by Jentzch~ stating that for
every power series, every point of the circle of
convergence is a limit-point of zeroes of partial
sums, and could extrapolate a power series not
having zeroes outside the circle of convergence.
Stillinger" approached the problem by using ad hoc
numerical considerations. We would like to em-
phasize the use of (48) and (51) in order to locate
singularities of E,b.). We are carrying out such
calculations now and they will be reported else-
where.
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