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The scattering lengths quoted in Ref. 10 are slightly
too large owing to the lack of a correction for the long-
range potential. If we take this into account, the singlet
e -H scattering lengths given by Temkin and Lamkin
become 6.3ap (exchange adiabatic) and 5.6ap (their po-
larized orbital), respectively. The exact value is
5.965ao, dueto Schwartz (Ref. 11). However, the po-
larization potential used by Temkin and Lamkin in their
adiabatic-exchange approximation is not the same as the
Bethe potential used here in the AED. Our value for the
corrected scattering length in the AED is 6.15ao, which

is closer to the exact value than the corrected result of
the Temkin-Lamkin method.
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The localization of electronic states in one-dimensional disordered systems is examined in
terms of the reflection and transmission coefficients. The transfer-matrix method is used.
The main body of the work deals with a one-dimensional liquid model in which the central
part of the potential remains the same in all cells, and only the lengths of the flat arms vary
from cell to cell. It is found that the contribution of the initial phase of a wave at the zeroth
cell to the phase at the nth cell is reduced by a factor (1 —

I xl)/(1+ Ixl) every time in passing
through a cell. When the phase memory is completely lost, 4 - fItlj, where the reflection
coefficient of the jth cell is x =

Ingle

j. If 4 - obeys a uniform or nearly uniform probability
distribution, the wave function always grows exponentially. It is shown that in most cases,
especially when cell size distribution has a wide spread, P(C) is nearly always uniform. All
wave functions are localized in a completely disordered system, but in the one-dimensional
liquid model nonlocalized states do exist.

I. INTRODUCTION

The existence of localized states in disordered
systems is of fundamental importance in the under-
standing of the electronic properties of systems
like random impurities and alloys, amorphous sub-
stances, and liquids. ' As an example, when the
wave functions are localized, the electrons can
move only by activated hopping. The transport
properties are therefore quite different from those
of the usual propagating solutions. An exact dis-
cussion of the general problem in three dimensions

is difficult even in the independent one-electron
approximation.

In one-dimensional disordered systems, it has
been conjectured by Mott and Twose' that all solu-
tions of the Schrodinger equations are localized.
A wave function in one-dimensional space is said
to be localized if, starting from a point xo, the
envelope of its amplitude decays or grows expo-
nentially with the distance (x-xo( (see Mott, Ref.
1, p. 52). Proofs have been provided by Borland,
Hori, and Minami. ' These have been reviewed and
commented on by Mott' and Halperin. Here we
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shall use the method developed in the previous
works, ' and study the Mott conjecture in terms of
the reflection coefficient r and the transmission
coefficient t of the individual potential cells. This
provides a clearer understanding of the problem.
For this reason, the main body of this report deals
with a simplified case —the "one-dimensional
liquid. " The discussion can easily be extended
to the general one-dimensional cases. A formula-
tion of the latter is sketched in the Appendix.

Let us consider a strongly localized potential
symmetric about the center of the cell C,C, [see
Fig. 1(a)]. It has two flat arms CQ and FC, of
equal lengths d, and a central part XY which
varies rapidly with position. A homogeneous real
liquid may be looked upon as a collection of the
same atoms arranged at random separation from
one another. An infinite chain of the one-dimen-
sional cells, CpC1, C1C2, . . . , C„1C+&n-~, with
the same central parts XY but varying arm lengths
4, is regarded as the model of a one-dimensional
liquid [Fig. 1 (b)]. The quantity d is taken to be a
random variable obeying certain distribution prob-
ability.

It is shown in the following sections that almost
all the wave functions are localized in this dis-
ordered system. The effect of the probability dis-
tribution of d on localization is discussed. Pecu-
liar to this one-dimensional liquid model, non-
localized solutions do exist. This is not contrary
to the original conjecture; for in a completely dis-
ordered system in which the central parts XY of
the potentials also differ from cell to cell, these
states no longer exist.

II. REFLECTION AND TRANSMISSION
COEFFICIENTS

For a strongly localized symmetric potential
[Fig. 1(a)], it is easily seen that the transfer
matrix M defined by'

A and 8 are coefficients of the wave function at
C' +=A iek~+Be ik~ and k=v E. Mc is the trans-
fer matrix of the central part XY of the potential
and is of the form [Eqs. (6) and (10) of I]

u

v*+v =p.
C C

M~ is the same for all cells in the one-dimensional
liquid model. It is also shown in I that for local-
ized symmetric potentials the matrix elements of
M are expressible in terms of the reflection co-
efficient r and the transmission coefficient t:

. 1t rt
M=,.

r/t (1/t)* )
(4)

is a product of three matrices describing the re-
gions C,X, XY, and YC, :

ik4
) (

-ikd

(2)
zkl c

p
zkd

Co

d d

CI Also, r and t have the following properties (see
Sec. III of I):

Itl'+ lrl'=1, r *t+r t*= 0 .

di

c

(a)

dg

C3

Equating (2) and (4), we immediately obtain the
following results in the one-dimensional liquid
model: (i) I tI =I/Iucl is independent of the cell.
If we have l t l = 1 for certain energy values in one
of the cells, ltl =1 for all cells. This leads to the
nonlocalized states mentioned in the Introduction.
(ii) Ir I =1 —It I is also independent of the cell.
(iii) We can define the reflection coefficient r of
the jth cell as

r. = l rl e

(b)
P&

can be found from

FIG. l. (a) A central localized potential; (b) Model

of one-dimensional liquid. Callus= +i), vs=i@. We have
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t' sin(2kd. ) —~ cos (2kd. )
tan j $ cos(2kd. )+ &u sin(2kd. )

Since d is a random variable obeying certain
probability distribution P(d), &f& is also a random
quantity. (iv) From Eq. (5) we see that

IA I'/IA I'=(1+8') P,n 0

where
n

P = Q (1-1cos@),
j=1

(i4}

In fact, if we define

2ig
(s)

4.=26. +Q. ;—1

6 =tan '(tan(6 +2[/ +(2n+1) v]]R)+ —,'P

t.= )t) e y. = y. + —,'(2n+1)v,j
where n=0, y1, ..., +m.

HI. LOCALIZATION OF WAVE FUNCTIONS

A, = IA, I (e '/t~*) + (r, /t, ) e

B,= IAo I (e /t~)+ (y; /t, ) e
(9)

We see that B,=A,*. It is obvious from the prop-
erties of the transfer matrix M that when we
choose Bp=Ap, Bj=Aj for all j.

Let us call A, = )A, ) e ' and B,= )A, ) e
Eq. (9) becomes

Following Borland, ' we shall consider a real
wave function of the form of a cosine at Cp Ap

)Ap) ei5p B,= )Apl e-imp~ and examine what are
the coefficients An~ B„atC„.' From direct multi-
plication of (1) at C„we have

Let us first examine the phase 5n. It is related
to the previous 5n -1 with the &dition of a random
quantity —,

'
p . The contribution of 6 1 to 6 is

further reduced by the factor R which is always
less than 1. It is this reduction factor that makes
5n practically forget about the initial 5p. This
loss of memory of the initial phase has been dis-
cussed in detail by Borland' and by Mott. ' For
the convenience of discussion, we shall call the
case )x) & )t), a strong scatterer, and )r) & )t),
a weak scatterer. (Of course, this classification
depends on the specified energy under considera-
tion. ) The stronger the scatterer, the smaller
the reduction factor. Memory of 5p is nearly com-
pletely lost in a chain of very strong scatterers
after a few cells. Even when the scatterers. are
weak, memory is lost if n is large enough. The
values of the variable P will cover up the contribu-
tion of 60 to &n.

Let us now look at the amplitude function. Sup-
pose the average spacing of the cells is a. We
define

IA I

i6x IAn I

(t
&6o

t s i6o) (9') I =a/8' .

Here, we have dropped the index 1 from )t), since
) t) is the same for all cells in the one-dimensional
liquid model. In the following we shall only con-
sider this model unless it is mentioned otherwise.
Let us study the amplitude A and the phase 6
separately:

lim (IA I'/IAOI')= lim (1+x/nI. )
n ~00 n 0 n ~00 n

lim P
n~QQ n

(is)

Calling x=na, we can put Eq. (14) in the following
form:

6, = tan '(tan {6o+—,
' [P,+ (2n+1) w]) R)+ —,'P, ,

where R=(1 —Irl)/(1+ Irl) & 1.
(12)

These expressions can be extended formally to
the nth cell. At Cn, we have

IA, I'/IA, I'= (1+8')[1—& cos(26o+ Qg)], (10)

where

8' = 2(l r I'/I t I') and & = 2 I r I /(1+ I r I'); (11)

The ratio of the square of the amplitude at the nth
cell to that at the zeroth cell is a product of two
factors: one increases exponentially with x inde-
pendent of the variation of the arm lengths dj, and
the other factor lim P which depends on P& and
is correlated to the initial phase 5p through the
"phase memory. " A wave function is localized
if this ratio either increases or decreases expo-
nentially with distance. The cases for the ratio to
be 1 as n-~ are extremely rare, but its prob-
ability is nonzero as we have indicated in Sec. Il.

As a side note, we see that I. defined in (17}is
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n
limP =lim II 1—
pg~oos~ooj1n

X7 COSCI'.j
na

- lim (1 —x/na} = e
n -x/a

This is not small enough to overpower the first
factor ex/I, since I=a/8 2«a for very strong
scatterers. Therefore, a wave function nearly
always increases exponentially with distance
when the scatterers are strong. In weak scat-
terers, thefactor lim Pz may overpower the
first factor and make the ratio decrease exponen-
tially.

To study the problem more precisely, let us re-
turn to the expression (10) and write

Ix I'/I& I'= ll o.
n 0 (20)

where [see Eq. (15)],

o'. = (1 —
I r I

') ' [1+ Ir I' —21r I cos 4'. ] .j
First, we note that nj lies between

(21)

not the mean free path. I & 2 a for strong scat-
terers, and I. & —,'a for weak scatterers. It ap-
proaches the mean-free-path definition of Mott
for weak scatterers.

Let us get a rough idea of the contribution of the
factor zlim I'~ on the product in terms of the
strength of the scatterer. For very strong scat-
terers, even when all the Qj are biased to give the
same positive cos(4&) so that we can take r cos@j
= 1 for all j (this gives an estimate of the smallest
lim P ), we have

n 00 n'

1 —)xi 1+ )rf
1+ Irl j 1 —lrI ' (22)

For a given value of )
x' (, the allowed region of

greater than 1 is always larger than that of aj
less than 1, except at I

r'
I

= 0 (see Fig. 2). If all
nj & 1 the wave function grows approximately ex-
ponentially, and if all o. & 1 the wave function de-
cays exponentially. In oth cases the electronic
state is localized.

Consider the case when the memory of the phase
5j is completely lost so that we can treat 4j as a
random variable uncorrelated to the other 4y,
k 0j. We shall show that the wave function always
grows exponentially in this case. Let us further
assume that the random variable 4 which lies be-
tween + w obeys a uniform distribution P(C )
= (2v) '. This ansatz will be discussed later. A

transformation of the variable 4 to y =cos4 gives
the probability density distribution of y:

P(y)=(v)-' ~ (~I-y )-

[see Figs. 3(a) and 3(b)]. It is more probable for
y to have values near the two ends, i.e. , + 1, than
the values near zero. This means that the values
of a are more probable to be near the two limits
(1+ I r I )/(1 —

I r I ) and (1 —
I r I )/(1+ I r I ). We also

note that the distribution of y is symmetric about

y = 0. This means that the occurrence probability
of +)y ) is the same as that of —ly ). When 4 are
uncorrelated, o& are also uncorrelated [Eq. (21)].
We can, therefore, rearrange the products of a so
that we pair the o'(+ly I) o'(- ly I) together for a
given value of ) y ) . In other words, when n -~, we
take the product of the right-hand side of Eq. (20}
not according to the natural order of the potentials
in the chain, but according to the absolute magni-
tudes of cos4. For any value ly I, each pair gives

n(1y I )o.(- I y I ) = [1/(I —
I r I')'] [(1+ I r I')'

—41r I
'

I y I '] = 1+4(1 —
I y I')( I r I'/I t I'}~ I, (23)

since fy J
= )cos4 / is never greater than 1. This

inequality immediately implies that

Iim (Ia I'/Ia I')=
all values

of ly I

x [I+4(1 —Iy I )(Ir I'/I t I')] - e (24)

FIG. 2. Allowed values of G. (shaded region). For
a given value of l r I, 0,

&
can take up any value along the

line LN. NM is always longer then MI, except when

I
w'

I = 0.

where e is the average value of 4(1 —Iy I')(I rI'/
It I') of the whole chain [see Eq. (18)]. This
shows that the wave function always grows expo-
nentially. The growth rate increases with the ratio
Irl/It I, i.e. , the strength of the scatterer.

The above argument is valid as long as the dis-
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P(2k&-p)

I

29'

(e) small F

P(y)

ry
I

(b)

(c) (g)

P(2kd-p)
ik

(d) large E

FIG. 3. Probability distribution functions: For a
uniform distribution function {a) of 4, the corresponding
distribution function of y=cosC is shown in {b). In

general, the distribution of d is nonuniform (c). A flat
distribution (d) of (2kd-P) gives a nearly uniform dis-
tribution {f) of 4, and a peaked distribution (e) of
(Nd-P) gives a nearly uniform distribution with a
smoothed peak (g) ~

tribution P(y) is symmetric or nearly symmetric
about zero. This condition is very likely to be
satisfied as n- ~ even when the 4» are correlated.

We shall now justify our assumption that 4 has
a uniform or nearly uniform distribution. Under
the uncorrelated situation, we can take 4&

-
Q&

[Eq. (15)]. We can explicitly calculate P& from
Eq. (V):

y. = cos4 . -cosp. = cos(2kd. —p),j j j
where cosp= 5/(u'+ 5 ')' '. w and $ are the real
and the imaginary parts of u~, and are the same
for all cells. It is the separation d that fluctuates.
If we assume that all values of d can occur vrith
equal probability, this implies a uniform prob-
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ability distribution of @&, i. e. , P(@)=2m '. A

more realistic picture is that d fluctuates about
some mean value with a certain distribution P(d)
[Fig. 3(c)]. The distribution P(2kd -P ) follows
immediately. Note that the elements of M of the
central part X~ of the potentials contribute only
to P. This does not change the shape of the prob-
ability curve in the transformation from P(d) to
P(2kd —p), but only shifts the curve as a whole.
The multiplication of k=ME does change the flat-
ness or the spread of the curve. For large en-
ergies, the curves become flatter [Fig. 3(d)] and,
for very small energies, the curve has a smaller
spread [Fig. 3(e)]. The range of 2kd-P runs from
—~ to ~, but the range of 4 is taken to be within
—m and m. The probability distribution P(C') is,
therefore, obtained by folding the distribution
P(2kd-P) into the region —m to v. This folding
action tends to make the distribution function of
C more or less uniform. (i) When the distribu-
tion P(2kd —P) is flat and spreads over regions of
several 2m, the assumption that 4 has a uniform
distribution is a good one [Fig. 2(f)]. (ii) When
the curve P(2kd —P) is very narrow and strongly
peaked at certain value, the folding process will
still smoothen the distribution somewhat, but the
peak may remain significant [Fig. 2(g)]. This
gives a distribution curve for y similar to Fig.
2(b) but with a bump somewhere within + 1. In
turn it will cause the occurrence of e to be biased.
It may occur that n values are biased to cause the
wave function to decay. In most cases, especially
when energies are large enough, we have only to
consider situation (i).

Finally, we return to the discussion of the states
which are not localized. When ) t (

= 1 at one of the
cells, it is perfectly transmitted through the cells.
That is,

)A )'= )A ) = ~ ~ =)A )0 1 n
when I tl =1 ~ (26)

IV. CONCLUSIONS

All other nonlocal states, if they exist, must have
energies close to these Itl =1 values [Fig. (4)].

In a completely disordered system, i.e. , when
all the central parts XY of the potentials are dif-
ferent from each other, it is unlikely that energies
for which ) t) = 1 for one cell also give ) t) =1 for
all the other cells. Since ) t) & 1, an infinite ar-
rangement of different potentials is certainly a per-
fect reflector of any wave. Nonlocal states cannot
exist.

FIG. 4. Nonlocalized
states.

tt) = I

spectrum
n onloca I ize a

states

systems. We see that (i) the correlation of the
phase 5 between sites is weakened by a factor
(1 —

I rl )/(1+ Irl) [Eq. (16)] every time in passing
through a cell. The memory of the initial phase
5p is easily lost in very strong scatterers, and in
weak scatterers the memory is lost if we take n
large enough. (ii) When the phase memory is
weak, 4& are uncorrelated. If 4 has a uniform
or nearly uniform distribution, the wave function
always grows exponentially with the distance. The
growth rate increases with the strength of the scat-
terers: (r(/)tl. These statements are true even
if the 4» are correlated so long as the occurrence
probability of + ) cos4 ) is the same as that of
—)cosC'I when n- ~. (iii) The uniform probability
distribution of 4 is a good one for large energies
and large fluctuations of the cell size d, so that
MEd extends over several 2m regions and the dis-
tribution curve is Qat. A sharp bump in the curve
P(4) may cause the wave function to grow or decay
exponentially. (iv) In the one-dimensional liquid
model, nonlocalized states, defined as „lim )A„)/
)Ap) = 1, do exist. The ) t ) = 1 states are quantized
states of the well, and are independent of the posi-
tion of the well. The three-dimensional analog of
this certainly exists. (v) Nonlocalized states are
unlikely to exist in a completely disordered one-
dimensional system. Perhaps the Mott conjecture
should be reformulated to state: "If there is any
scattering by a noncrystalline array of center, the
states are localized. '"
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Using the reflection and the transmission coeffi-
cients and relating them to the transfer-matrix
technique developed previously, ' we have obtained
some further understanding of the localization of
electronic states in one-dimensional disordered

APPENDIX

In a general one-dimensional disordered system,
we can use the formulation of I to obtain an expres-
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sion for the amplitude of the wave function at the
nth cell:

a =~ '~ 1''"~1 '
a

n 0

+(1+8.') '(n. u.u.
+

p ~ ~ e

+ n". v.v. ),j+ 1~ ~ ~ ~ pn

where Mj
' is the inverse of Mj, the transfer ma-

trix referring to the j th cell:

("~

(v*. u. )
It can be shown that

(M -') ~ ~ ~ (M ') (M ') ~ ~ ~ (m ')
1 n n 1

(A2) ~ ~
= (1+8.') '

j p j+ 1
y ~ ~ ~ p

n j

x Re(n . . u.v". ) .
jp j+ p ~ ~ 0 p

n j j

Hence, the ratio of the amplitudes becomes

(A3)

n

)= II (1+8.')(1+P. .
jp j 7'~~)nj=1

IA I2+ I& i2
n n

0 + 0 j 1 j
1

X

Q
1) 2s ~ ~ ~ )n

1 x (1+p. . ) [1+2Re= ],j)j+ p ~ ~ ~ p
n -nO '

where 8.' = 2 I v. I ',
where -no I&, I + I&, l

(A4)

n. = 2u.v./(1+ 8.'),

Q. = (1+P. . ) ' n.
j~j+ 1~ s ~ ~ ~n j~j+ 1, ~ ~ ~ pn

If all the potentials are symmetric, we can use the
reflection coefficient rj and transmission coeffi-
cient t& of the jth cell in place of the uj, vj in the
matrix Mj.
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