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A theory of collective motions in classical liquids, which is valid at short wavelengths and

high frequencies, is presented. This theory is based on a self-consistent-field method,
which can be viewed as a generalization of the random-phase approximation. The existence
of collective effects is considered at the outset by introducing a self cons-istent "polarization"
potential that provides the restoring force and a "screened" response function. The density
response function is expressed in terms of these two functions. The local field corrections
enter the polarization potential via the static structure factor of the liquid. Various approx-
imations for the polarization potential and the screened response function, and their relation
to the first few moments of the spectral function of the density response, are examined.
These approximations are tested by explicit numerical calculations of the spectral function of
the longitudinal current correlations for liquid argon. It is found that an over-all good agree-
ment with the data is obtained for the case in which the screened response function is equal to
the response function for the self-motion of atoms and the polarization potential is determined
through the zeroth-moment sum rule. There are no adjustable parameters in the theory.

I. INTRODUCTION

Recent inelastic neutron scattering experiments
have furnished valuable information on the dynamic
structure of liquids. There is a remarkable sim-
ilarity' be tween the scat tered- neutron spec trum of
the liquid and that of the polycrystalline solid near
the melting point. Since the spectrum in the solid
can be understood in terms of its collective modes,
i. e. , the phonons, attempts have been made in the
past to describe the spectrum in the liquid by means
of solidlike phenomenological models. '&' Although
these models have been reasonably successful in
describing the observations, 4 the analogy between
the solid and the liquid has, undoubtedly, been tak-
en much too literally. Further evidence to the ex-
istence of collective effects in classical liquids in
the region of high frequency and short wavelength
has been provided by recent molecular-dynamics
calculations' and neutron scattering data' in liquid
argon. These have shown that the wave vector de-
pendence of the peak in the spectrum of the longi-
tudinal current correlations is correlated with the
static structure factor, in a manner reminiscent
of the ordinary dispersion curve for phonons in the
solid. The purpose of this paper is to develop a
theory for these collective aspects from basic con-
siderations. While the theory attempts to explain
the observations by postulating the existence of
some collective motions, it does not interpret the
observations in terms of "solidlike" phonons. In

fact, an unambiguous interpretation of the obser-
vations' as a dispersion curve for collective modes
would be possible only if the peaks in the spectrum
were reasonably sharp.

The existence of collective motions in liquids in
the domain of small frequency and long wavelength,
i. e. , in the hydrodynamic region, has been known
for a long time and is well understood in terms of
the Navier-Stokes equations. In the region of high
frequencies and short wavelengths, the existence
of a zero-sound mode was conjectured by Pines. '
In this region, where hydrodynamics is inapplicable
and where the microscopic structure of the liquid
plays an important role, a self-consistent-field
method, which can be viewed as a generalization of
the random-phase approximation (RPA) for the elec-
tron liquid, has been used to describe the collective
motions. ' As in the BPA, one considers explicitly
at the outset the existence of collective effects by
introducing a self-consistent "polarization" poten-
tial that provides the restoring force for the collec-
tive mode and a "screened" response function which
describes the response to the sum of the external
potential and of the polarization potential. Of
course, short-range correlation effects in the po-
larization potential, which are quite important in
the electron liquid, are here essential because of
the hard-core character of the interparticle po-
tential.

The starting point of the theory is, in fact, for-
mally equivalent to the formal generalization of
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hydrodynamics, valid for any frequency and wave
vector, given by Kadanoff and Martin. ' Since the
polarization potential and the screened response
function which occur in the theory are not known

exactly, we shall in this paper examine the various
approximations that we may consider for these two
functions and their relation to the first few mo-
ments of the spectral function of the density re-
sponse. These approximations are tested by ex-
plicit numerical calculations of the spectral function
of the longitudinal current correlations for liquid
argon. We find that an over-all good agreement
with the data is obtained, except at very small
wave vectors where in any case the theory is in-
applicable, when one takes the screened response
function equal to the response function for the self-
motion of atoms' and one determines the polariza-
tion potential through the zeroth-moment sum rule. '&'

We shall in Appendix A give a justification for
the former choice using Kerr's approach' for the
coherent motions in classical liquids. The conclu-
sions arrived at in this paper are valid for fre-
quencies greater than the inverse characteristic
relaxation time for local thermal equilibrium and/
or for wave vectors greater than the inverse mean
free path, i.e. , in the zero-sound region. In the
former circumstance one is examining the behavior
of the liquid over times shorter than the average
time between collisions; in the latter, over dis-
tances shorter than the mean collision distance.
No attempt has been made to join the theory to or-
dinary hydrodynamics.

II. THEORY

x[V (q, ~}+V (q, &u}] .
ext pol

It then follows that the density response function is
given by

(4)

Of course, the functions %(q) and y (q, z) are not
known 0 Priori. Expressions having the structure
of Eq. (4}are very well known; for instance, in the
ca,se of the electron liquid, if one identifies 4(q)
with the bare Coulomb potential 4me'/q', X (q, v)
in the language of the many-body perturbation the-
ory is then given by the sum of the proper polar-
ization diagrams. The simplest approximation for
y c(q, z) consists in assuming that it is the density
response function for a free-electron gas, which
corresponds to the RPA of Bohm and Pines. " In
this approximation, the interparticle interaction is
accounted for only through the average Coulomb
potential of polarization charges, exclusive of ex-
change and correlation effects. In a recent gen-
eralization" of the RPA, corrections in 4(q) aris-
ing from short-range correlation effects were tak-
en into account. As mentioned in the Introduction,
these effects play an essential role when the inter-
particle potential has a hard-core component.

It is easy to show that Eq. (4) is equivalent to the
expression of the density response function given
by Kadanoff and Martin' by a, generalization of hy-
drodynamics, provided that 0 (q) is chosen accord-
ing to

A. General Considerations

We shall consider the response of the system to
a weak potential Ve~ (q, +}which describes an ex-
ternal probe coupled to the density fluctuations in
the system. In a translationally invariant system,
the induced density change &p(q, ~) & is related to the
external potential by

(5)

Indeed, Eq. (4) can then be written in the form

X '(q, ~) —
X '(q, o) =X„'(q,~) —g -'(q, o), (6)

&p(q, ~)& =y(q, ~) V, t(q, (u),

where y(q, z} is the density response function. For
the purpose of developing approximations to this
function, it is useful to consider explicitly at the
outset the collective aspects of the problem. This
can be done by introducing the average self-consis-
tent potential due to the polarization of the system
in the form

and the dispersion relation that Kadanoff and Martin
have proved for y '(q, &o} —y '(q, 0) holds also for
the screened response":

&„'(q»- X.,'(q, 0)

d~' r(q, ~')

Vpol(q, (u) = +(q)&p(q, (u)&,

and by defining a new response function ysc(q, e),
which describes the response Uf the system to the
sum of the external potential and of the polarization
potential:

Here, M is the particle mass, e is the number den-
sity, and I'(q, v) is an unknown real function which
in the hydrodynamic limit is related to the trans-
port coefficients. Equations (4), (5), and (7) lead
to
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—(n/M) (oq r(q, (u)

[~'+nq'/Mx(q o) —&v'P f(d~'/7() r(q ~')/r(q, (d')/((d —~'}(~—(d')]'+ I~(f'r(q, ~)]'

This expression is the same as that given by
Kadanoff and Martin. Equation (7) relates the func-
tion 1(q, ar) to the screened response function. In
the hydrodynamic regime where I"(q, (d) has a direct
physical meaning, it is preferable to use the for-
mulation of Kadanoff and Martin. ' On the other
hand, in the zero-sound regime the screened re-
sponse function has a more direct physical meaning
and, as such, it is perhaps easier to envision
physical approximations for this function.

B. Moments

where (('(q, t) is the Fourier transform of X(q, (d),
and 8 (t) is the usual step function, 8 (t) =1 for t & 0
and 8 (t) = 0 for t & 0. Therefore

»om Eq. (4), it follows that,

(q, t}+~(q) f'"dt'

According to the fluctuation-dissipation theorem,
the dynamic structure factor S(q, (d) is related to
the imaginary part of X(q, &u). In the classical
limit this relation reads

x)( (q, t t'} R(q, t }

(q, t)+e(q) f dt'

xg (q, t t')g(q t ) (16)

S(q, (d) = —(k T/m(o) ImX(q, (0), (9)

(~ )
1

~ ImX(q~ (L) )
y q, or =— de' (lo)

where kg is the Boltzmann constant and 7'is the
temperature. Using the Kramers-Kronig relation,

The last step in the above equation follows by noting
that both gsc (q, t) and (('(q, t) vanish for t & 0. This
equation can be solved by iteration. In practice,
since only the first few moments of S(q, &o) are
known, it is sufficient to consider the first few
terms in the small-time expansion of gsc((T, t).
Writing

where q is a positive infinitesimal; one finds that
the zeroth moment of S(q, (d), the static structure
factor S(q), is given by

where

(q, t) = -(nq'/M) e(t) [t —p(q) t'+. . .], (17)

s(q) =-(a T/n) x(q, o).

Using Eq. (4), this becomes

[s(q)] -' = (~/I ~T)&e(q) —[x (q, o)] -'& . (12)

(IS)

(&u } =q'(k T/M)[6P(q)+(nq'/M)@(q)] . (19)

p(I) (=—," d(d ~'Im X (q, v),6mnq' sc

one finds that the second moment of S(q, ~) is al-
ready satisfied, and the fourth moment is given by

The above equation uniquely determines the polar-
ization potential once one has made a choice for the
screened response. The small-time behavior of the
screened response is determined by the higher
moments of S(q, (()).

From Eq. (9), the higher even moments of S(q, ~)
are given by

The exact expression of the fourth moment is
known. "

C. Approximations

We shall now consider various approximations
for the screened response function. The simplest
approximation is to take this function equal to the
response function for a noninteracting gas:

x „(q,~) = x (q, ~). (20)

where g, (q, t) is the Fourier transform of ImX(q, ~).
The odd moments, of course, vanish in the classical
case. Using Eq. (10}, it is straightforward to
show that

In this case, one has

Im X (q, (d) = —(wn&o/k T) (M/2mb Tq')'"

g(q, t) = 2te (t)g, (q, t), (14) &' exp( —M&@'/2k Tq'), (21)
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and, making use of the Kramers-Kronig relation,
one obtains

1 2

Rey (q, (d) = — — 1+in . mMm

p(r)istheinterparticlepotential. We see that in
this approximation 4(q) is again given by Eq. (25).
On the other hand, the fourth moment of S (q, (d) is
given by

2 12-
xex

2k ' 2k T ' . 22
((d4) = 8 q4 3k T+—, dr

av — B q'
M

One also finds

(q, o)= —n/~ Tsc ' B

and P(q) = q'(g T/2M)

(23)

(24)

x g(~), + n @(q)
8'q (~)

The exact expression for the fourth moment is"

If one determines )I)(q) from Eq. (12), one finds M

e(q) =(a T/n)[I/S(q) —1] . (25)

(~') = (k T/M')q'[3k T +n+(q)] . (26)

In Ref. 6 it was suggested that a more suitable
approximation should be to relate ysc(q, (d) to the
self-motion of the atoms, i.e. ,

Imp (q, (d) =- (mn/u T)(uS (q, (d), (27)

Thus, in this approximation, 4(q) is related to the
direct correlation function. ' Of course, with the
above choice, the fourth-moment relation is not
satisfied and one finds

dr g(x) cos(qx}, . (32)
1"- 8'9) (y )

Clearly, in Eq. (31) one has approximated the "non-
self" contribution to the fourth moment by n4'(q).
Contrary to the results based on Eq. (20), this pro-
vides a, rather good descriPtion of (&o')av excePt at
small wave vectors, as we shall see in Sec. III.

In the calculations presented in Ref. 6, the choice
of 4'(q) was based on an approximate analysis of the
equation of motion" for the density fluctuations,
rather than on the exact sum rule (12). The expres-
sion adopted for +(q) in the large-wave-vector re-
gion was

where Ss(q, (()) is the Fourier transform of the self-
correlation function. This suggestion was based on
the physical idea that, having taken account explic-
itly of the collective aspects of the motion, one
should also make some allowance for the fact that
only in the large-wave-vector limit does the single-
particle motion approach the free-particle behavior.
At smaller wave vectors, this motion is rather
complicated and has both diffusive and vibratory
aspects. It will be shown in Appendix A that one
indeed can obtain Eq. (4) with ysc(q, (d) determined
according to Eq. (27), and 4'(q) determined accord-
ing to Eq. (12}from the approach of Kerr. 'o From
Eq. (27), one immediately finds that

f +Op

(q, 0) =— Imp (q, u&) = ——,(28)
de n

sc 7T J -oo (d sc k T

4m
+(q) = —, [ sin(qr) —qr cos(qr)]

q

~(~)
o. 6k~T

xg(r) + dr+
dy'

(33)

+(q) =—,1 [sin (qr) —(qr) cos(qr)]g(x)
3q

dp (r) 1 d'rp (r)
d'v 2 A'

(34)

The constant term in the above equation was added
to fit the height of the first peak of the structure
factor and was found to be of importance only in a
narrow region of wave vectors around the position
of this peak. On the other hand, in the small-wave-
vector region, 4(q) was taken as

T
((d ') =, q' 3k T+"—,s av B q

r Z(r)
"

) ()0)

Here, g(r) is the pair correlation function, and

and p(q) = (M/6k Tq~)((g 4)
s av

where (&()s')av is the fourth moment of Ss(q, (0) and
is given by"

%e shall show in Appendix 8 that this expression in
the limit q- 0 gives the correct potential contribution
to the instantaneous compressibility.

Very recently, Hubbard and Beeby" have also used
a zero-sound approach in developing a theory of col-
lective motions in classical liquids. They calculate
approximately the response function for a disordered
static system and then extend the result to the non-
static case. In their approximation, the screened
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response is related to the self-correlation function
Gs(q, t) through

(q, t)= (n—q2/M)e(f)t C (q, t) .

This relation can also be expressed as

, as (q, (o)

Imp (q, u)) = v
'fEg . S

sc '

It then follows that

(35)

(36)

Ã 2

(q, o)= ~, s (q, (o), (37)

while P (q) is again given by Eq. (24). Therefore,
in the approximation of Hubbard and Beeby, the
fourth moment of S (q, &e) is given by

(~') =(~ T/M')q'[3u T+n~(q)]. (38)

S (q, &o) = (k Tq'/2M &o')f (w }+0(q') . (39)

In the other extreme of large wave vectors, Ss(q, w)

is well represented by its free-gas value. In the
following calculations, as was done in Ref. 6, we
will use these two limiting behaviors and smoothly
join their results in the intermediate region. One
~ie'ht take recourse to using a theoretical model
for Sq(q, ~), but because of lack of appropriate ex-
oerimental data, one cannot reliably determine the

In their approximate theory, @(q) is such that Eq.
(38) gives the correct value of the fourth moment

[ Eq. (32)]. On the other hand, the determination
of the zeroth moment from the sum rule (12}re-
quires, in this approximation, an accurate knowl-
edge of Ss(q, &u) at small frequencies, as is apparent
from Eq. (37). These authors disregard this sum
rule on the ground that their theory is not applicable
at small frequencies. We also note that in the limit
of large q, where Ss(q, ~) takes its free-gas value,
Eqs. (36) and (27) are identical.

D. Computation

A knowledge of +(q) and ysc(q, ~) enables us to
calculate the dynamic structure factor S(q, &u). As
we have seen in the preceding discussion, 4'(q) can
be determined from the pair correlation function,
which is known experimentally, and from the inter-
particle potential. On the other hand, a precise
knowledge of the self-correlation function is not
available. What is known with fair accuracy from
molecular-dynamics calculations" is the velocity
autocorrelation function in liquid argon. The Fou-
rier transform of this function f (a) gives S (q, +) in
the limit of small wave vector and finite frequency,
according to the relation"

parameters of the model. It would be highly desir-
able to have a complete knowledge of Ss(q, ~), both
from inelastic neutron scattering experiments and
from molecular-dynamics calculations.

The calculations presented in Sec. III were car-
ried out for liquid argon at 76 K, for which tem-
perature molecular-dynamics calculations of g(x)
and of the spectral function of the longitudinal cur-
rent correlations ~'S (q, &e) are available. ' We
have adopted the 6-12 Lennard- Jones potential with
the same values of the parameters as used by
Rahman. We have used for f(~) the values reported
by Rahman" at 94.4 'K; the variation of this func-
tion with temperature does not seem to be such as
to affect significantly our conclusions. These data
can be represented analytically" by the formula

f ()2MD(-v&a'A~2-2 l&u I /™),(40)
mk~T

where &@0=0. 25kIiT/h, v~ = 0. 37lrgT/h, A'=61. 48
(5/k~T)2, and D is the diffusion coefficient. Using
Eqs. (39}and (40) in Eq. (27) and the Kramers-
Kronig relation, one obtains

ReX (q, ur)= ———e ' erf-nDtp $1T -(d /+0 f (g

SC 71k (d

2~y—A'e +2A'e dy sin ~ (1 ~y2) ' . (41.)
Q m

This result holds only for finite frequencies because
of the restrictions on the validity of Eq. (39). On
the other hand, the calculation of ysc(q, ~) from
Eqs. (36) and (39) is not possible because of the
invalidity of the latter equation at small frequencies.

III RESULTS

Figure 1 gives the values of 4'(q) as obtained from
various approximations. These are, specifically,
the results based on Eq. (25) (curve 1), Eq. (33)
(curve 2}, Eq. (34) (curve 3), and Eq. (38} (curve
4). Curve 1 could not be extended to small wave
vectors because of large uncertainties in the ex-
perimental structure factor. It is apparent that
the approximation (33) agrees quite well with the
result based on the zeroth moment for q & 2 A ', as
was anticipated. If the approximations (33) and (34)
are smoothly joined, as was done in Ref. 6, the
resulting curve provides a rather good represen-
tation of the zeroth-moment result, except at
q 0. 5 A '. This good agreement implies that the
potential (33), together with the potential (34), gives
a fairly good representation of the static structure
factor S (q), as was shown in Ref. 6 and is illus-
trated in Fig. 2. On the other hand, the potential
obtained from the fourth moment [ Eq. (38)] gives
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s(q)

0
0 2

q(I '}

FIG. 2. Static structure factor S(q) versus the wave
vector q, as calculated from Eqs. (12) and (23) using

$(q) from Eq. (33) (curve 1), Eq. (34) (curve 2), and

Eq. (38) (curve 3). The solid circles are the results of
the machine computations of Bahman (Ref. 5).

+(q} given by Eq. (25) (curve 1), by Eq. (33}
(curve 2), and by Eq. (38) (curve 3). At small
wave vectors, we give, in addition, the results based
on the approximation of Eq. (41) for ysc(q, ur) and
on the values of +(q) given by Eq. (25) (curve 4)
and by Eq. (34) (curve 5). The results of the ma-
chine computations of Rahman' are shown by solid
circles. There are several points to note in this
figure. First of all, the approximation of the
screened response by the free-gas response gives
a spectral function which is much too sharp for the
whole range of wave vectors of interest. At large
wave vectors, this merely implies that the high-
frequency tail of the observed spectral function is
missing from the calculated one, at least for those
model potentials that account satisfactorily for the
position of the peak. However, at small wave vec-
tors, one would predict in the gas model the ex-
istence of very sharp collective modes, which is
contrary to the observation. On the other hand,
the description of the screened response through
the self-motions [Eq. (27)] in the small-wave-
vector approximation of Eq. (41) gives a fair ac-
count of the observed facts. It seems very likely
that, if one had an expression for the true self-
motion applicable at larger wave vectors, one
would obtain a much better representation of the
spectral function, including its high-frequency tail.
This conjecture is based on the fact that the free-
gas response, being a, Gaussian function, falls off
much too rapidly at high frequencies, whereas all
the available evidence indicates that the spectral
function for the self-motion falls off much more
slowly.

The position of the peak of the spectral function
of the longitudinal current correlations is plotted

in Fig. 5 as a function of the wave vector. The
various curves are labeled as in Fig. 4. In the
same figure the crosses represent the experimen-
tal data' and the solid circles represent the results
of the molecular-dynamics calculations of Rahman. '
It may be noted that curves 4 and 5 tend to a finite
frequency at small wave vectors as a consequence
of the inapplicability of Eq. (41) at small frequen-
cies. These curves would indeed pass through the
origin if one were to use the proper choice of
Ss(q, e). It is apparent that the choice of 4'(q)
based on the zeroth moment gives an over-all fair
description of these data, essentially independently
of the choice made for ysc(q, ur). Of course, as we
have seen in Fig. 4, the choice of ysc(q, &o) is es-
sential in determining the shape of the spectral
function. As was shown in Ref. 6, a smooth joining
of the potentials of Eqs. (33) and (34) also provides
a fair description of these data. On the other hand,
the choice of +(q) based on Eq. (38) yields values
of the peak position which are much too high at
large wave vectors; this is, of course, a conse-
quence of the fact that 4'(q) itself is rather large,
as is evident from Fig. 1.

The position of the minimum in all these curves
coincides with the position of the main peak of
$ (q) given in Fig. 2.

IV. CONCLUDING REMARKS

IOO—

oJ
3

3
IO—

FIG. 3. Fourth moment of S(q, cu) versus the wave
vector q, as calculated from Eq. (31) with $(q) deter-
mined from Eq. (25) (curve 1), Eq. (33) (curve 2), and

Eq. (34) (curve 3), and from Eq. (26) with P(q) deter-
mined from Eq. (25) (curve 4). The solid circles are
calculated from the exact expression of the fourth mo-
ment fEq. (32) ],

We have seen that in the high-frequency and large-
wave-vector region, where hydrodynamics is inap-
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Using the standard definition

s (q, ~) =—f e'" F(q, t) dt, (A2)

I
O
V)

bl
0
0

y (q, (o) = (~/0 T) tpF(q, p) —S (q) ], (A3)

where F(q, t) is the intermediate scattering function,
and (Al), it is easy to show that

where p =- i~.
Similarly, we have for the self-part of the re-

sponse function
0

2

q(E () y (q, (o)=(n/u T)QF (q, p)-1] . (A4)

FIG. 5. Peak frequency in the spectral function of
the longitudinal current correlations versus the wave

vector. The theoretical curves are labeled as in Fig. 4.
The solid circles give the results of the machine cal-
culations of Bahman (Bef. 5), and the crosses give the
experimental results of Skold and Larsson (Bef. 4),
as reported in Bef. 6.

(assumption made by Singwi et al . ') and @(q) given
by Eq. (25), is identical with Eq. (6. 12)
Kerr. ' The latter equation was derived under cer-
tain simplifying assumptions discussed in detail by
this author.

From Eqs. (9) and (14), it follows that

g(q, t) = e(t) —f e '
s(q, &u) d~. (A1)'8

Substituting (A3) and (A4) in Eq. (4) of the text and
using Eq. (25) for 4'(q) we have

s(q)F (q, p)
F(q, p)= I+nC(q) [pF (q, p) —1] ' (A6)

where C(q) is the Ornstein-Zernike direct corre-
lation function. Equation (A5) is identical with
Eq. (6. 12) of Kerr. " If, in the above equation,
Fs(q, p) is replaced by its limit for free particles,
we arrive at the result of Nelkin and Ranganathan, '
who obtained it by solving the linearized Vlasov
equation. It is important to realize, as has been
shown in the text, that the latter approximation
gives a poor quantitative agreement with experi-
ment. The relation between our previous work'
and that of Kerr" has also been pointed out inde-
pendently by Nelkin. "

APPENDIX B

The classical equation of motion for the density fluctuations p is
q

ti +Q (q ~ v.)'e 'q i++ p(q')(q q'/M)p, p, =0,
q . i

z q
I q —q q

where y(q) is the Fourier transform of the interatomic potential. In the limit q-0, this equation should
take the form of an undamped wave equation, i.e. ,

p»= —Q» p)»2

q q q'
(S2)

with

iq' ~ (r. —r. )
co '= — . q v, '+ p q' i' r e

q i2

The last term in the large parentheses can be written

p(q", Q —
q,

~ (r. -r )e ~ 2, p(q') —q )Idrq r e
' i'M .. 2 j i

i2

6(r+r. —r.)=- dr q r q ~

2M
6(r +r. —r.)i
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n' (q ~ r)~ dp(r)

Equation (B3) becomes

(u-'=-,'q'
d

(Q v. ') — 3~ dr r'g(r), d, 4mq' t, dq(r)
q dn . i 3M

2''q' " d, sg(r) dq(r)
3M „~n dr (B4)

where the last term involves the implicit density dependence of the pair correlation function.
In the zero-sound regime, where we do not allow any relaxation to take place, we are interested in an

"instantaneous" sound velocity" as opposed to the adiabatic sound velocity in the hydrodynamic regime.
Mathematically, this implies that the density change occurs without any rearrangement of the particles,
loco

elf'
g(r, n+&n) =g(r- —6n n).

dn

Substituting this result in Eq. (B4) and integrating by parts, we have

q' M d + 4 ~ () dy() I dp()) (B6)

The first term in Eq. (B6) is the kinetic contribution, which in our approach is accounted for in ysc(q, &u).

The second term in the above equation is the potential contribution, which is the same as the expression of
+(q) given in Eq. (34) in the limit q-0. Since we do not know how to join this value of 4(q) at q=0 with the
expression given in Eq. (33), which we anticipate to be reasonably accurate at large wave vectors, in Eq.
(34) we have assumed a tentative form. It may be noted that the second term in Eq. (B6) is identical with
the potential contribution to the instantaneous compressibility expression given by Schofield. "
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