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The polarized-orbital method and many of the common variations and approximations of this
approach are tested in a computation of the binding energy of the negative hydrogen ion H . It
is found that if a trial wave function for H" is constructed from a distorted atomic wave func-
tion in which the first-order perturbed orbital is simply added to the undistorted atomic func-
tion, the result is a very poor approximation (binding energy —0.0094 Ry). However, if the
trial function is modified, as suggested by Drachman, with the introduction of an additional
independent function multiplying the perturbed orbital, the result is quite good, the binding
energy being -0.0544 Ry. For comparison, the exact value (due to Pekeris) is -0.0555 Ry.

I. INTRODUCTION

The polarized-orbital method and its variants
have furnished reasonably popular procedures in
the study of electron-atom scattering. Originally
introduced by Bethe, ' the polarized-orbital (PO)
method was revived by Temkin, ' and, in connec-
tion with a solid-state problem, by one of us. ' In
numerous applications in scattering problems, a
varying degree of success has been obtained. The
simplest approximations work rather well, but re-
finements may do more harm than good. Recently,
the method has been criticized by Mittleman and
Peacher as arbitrary and lacking in predictive
ability. 4 However, the possibility of using vari-
ational methods to remove arbitrary elements has
not been adequately explored, and we believe that
further investigation into the nature and merits of
the PO method is desirable.

To this end, we have calculated the energy of the
negative hydrogen ion H, using the PO method
and many of the common approximations derived
from it. The PO method can be formulated in a
variational manner: That is, the problem of cal-
culating the energy of H is stated as that of min-
imizing the expectation value of the Hamiltonian
with a certain trial function. The calculation is
thus free of arbitrariness, although this is not the
case for some of the usual simplifications of the
full PO method which are not derived from a vari-
ational principle. Since an improvement in the
trial wave function must give a lower energy,
closeness of approach to the known exact value for
the energy of H serves as a reasonable criterion
for the adequacy of the assumed wave function.

Our conclusions are as follows: The conven-
tional definition of the PO wave function yields a
very poor value for the binding energy of H:
-0.0094Ry, as compared to the presumably exact
value of Pekeris': —0.0555 Ry. This is actually
inferior to the result obtained in the static-ex-

change (SE) approximation (or open-shellSE
Hartree-Fock): —0.0265Ry. The wave function
of the SE approximation does not attempt to in-
clude correlation effects explicitly. We also con-
sider a modification of the PO method recently
proposed by Drachman, ' which will be described
in detail below. This yields a binding energy of
—0.0544Ry, which is rather good. It is also shown
that the simple adiabatic-exchange (AE) approxi-
mation, including only the dipole part of the polar-
ization potential, also yields a reasonably good
binding energy, —0.0513 Ry. This approximation
is, however, not variational, and therefore it does
not necessarily yield an upper bound to the binding
energy.

The plan of this paper is as follows: In Sec. II,
the definition of the basic method and the various
approximations are presented. Section IQ con-
tains a description of our methods of calculation.
Our results are presented in Sec. IV.

II. METHOD

The essential idea of the PO method is that the
distortion of an atom or an ion in the field of an
external electron or positron must be included in
a calculation of scattering, or of the binding en-
ergy of the additional particle. The method is not.
completely defined until a prescription for calcu-
lating the distortion is stated; this is, that pertur-
bation theory is to be used to obtain the correction
to the atomic wave function due to the external
particle, which is regarded as fixed. To be more
specific, we specialize to the system of a neutral
hydrogen atom plus an additional electron. Let
the coordinates of these particles relative to the
proton (whose mass is regarded as infinite) be
denoted by 1 and 2. The assumed wave function
for the system is

e (1, 2) = 2 '"$u (1)+ X(1, 2)] Q (2)
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+[u, (2)+ y(2, i)]y(1)js(1, 2). (2. 1)

In this equation, uo is the wave function for the
ls state of the hydrogen atom, Z(1, 2) is the func-
tion representing distortion of the atom by an ex-
ternal point charge fixed at coordinate 2, S (1,2)
is a normalized two-electron spin function for the
singlet or triplet state, and the+ or —sign is
chosen in accord with the spin state to give an
antisymmetric wave function. The H- ion exists
only in the singlet spin state, and our numerical
results are restricted to this case. The function
y(1, 2) is obtained by solution of the differential
equation of first-order perturbation theory,

[H (1)-e ]g(1,2)

(2. 2)

where H, is the Hamiltonian for an undistorted hy-

drogen atom (energy @is) and Vc is the electro-
static potential of the atom [see Eq. (2. 9b) below
for a definition]. The function y(l, 2) was obtained

by Dalgarno and Lynn. ' Their expression for y is
rather complicated as it is expressed in confocal
elliptic coordinates. It is frequently more con-
venient to expand y in partial waves, as follows:

In a calculation of positron-hydrogen scattering,
Drachman has proposed a generalization of the PO
wave function, ' which can be stated as follows for
the electron-hydrogen system:

(1, 2) = 2 '~' $u (1)y(2)+ X(1, 2)F (2)]

+[u (2)g(1)+ y(2, 1)E(1)]]S(1, 2) . (2. 4)

The introduction of an additional independent func-
tion E into ( clearly increases the flexibility of the
wave function and should lead to an improvement
in the binding energy of H and in scattering phase
shifts. We will call this modified polarized-orbital
method (MPO).

Two approaches exist for the determination of the
energy of the system: (i) We may substitute the
trial wave function g(1, 2) into the variational prin-
ciple, vary P and E, and obtain a pair of coupled
integro-differential equations. (ii) Alternately,
we may assume some expansion of P and E in a set
of known functions, and determine the coefficients
variationally. We contend that the use of a varia-
tional principle frees the PO method from the
charge of arbitrariness in the sense described by
Mittleman and Peacher. 4

The use of standard variational methods, follow-
ing approach (i), yields the equations

)((1,2) =Zf Xf(rl, r )Pf(cose 2) (2. 3)

fu (1)[H-Ejy (1, 2)dr =0, (2. 5a)
in which e» is the angle between the coordinates
of the two electrons. Expressions for the X~ were
obtained by Reeh. '

We have also considered a case in which binding
energy of H is calculated from a function of this
type, (2. 1), however, using only the l = 1, or di-
pole, component of the perturbed orbital. This
will be referred to as the PO-dipole method.

f*(1,2)[H-Ej( (1, 2)dr = 0
x

We write H=H, (1)+H,(2)+ V(1, 2)

where V(l, 2) = e'/ ) r,—r, [

(2. 5b)

The basic equations (2. 5) can be written more explicitly, with the aid of (2. 2), as follows:

[H (2)+ V (2)-e]P(2)aJu (1)[& —@+V(1, 2)]g(1)dr u (2)=-V (2)E(2)

v Ju (l)[el —e+ V(1, 2)]y(2, 1)F(l)dr w fu (1)[V (1)-V(1,2)]E(1)dr u (2) (2. 7)

and (N(2)[H (2) —&] —V (2)+V (2)+ W(2)+V (2) VjE(2) + Jy (1, 2)[e+ V(1, 2)]

&&y(2, 1)E(1)dr + Ju (1)[V (2) —V(1, 2)]y(2, 1) (1E)dr + Jy (1, 2)[V (1)— (V1, 2)] (E1) rdu (2)

= —V (2)&p(2)v fy (1, 2)[el —e+ V(1, 2)]p(1)dr u (2)
p 18

v Ju (1)[V (2)- V(1, 2)]P(1)dr u (2) (2. 8)
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1s (2.9a)

In Eqs. (2. 'I) and (2.8) the upper sign in each
case refers to the singlet state, the lower to the
triplet state. The other quantities are defined as
follows:

+y(1, 2)] [e -e+ V(1, 2)]y(2, 1)p(I)drl

v J g (1, 2)[e —e + V (1)]p (1)dr u0(2)

v fu0(1)[V (2) —V(1, 2)]g(2, 1)p(1)d&I

(2. 12)
v (2)= f lu (I)l'v(1, 2)d~,

V (2)= J y (1, 2)V(1, 2)u0(1)dvi

V, (2)= f l)((1, 2) I'V(1, 2)d7',

W(2) = J g (1, 2)(- V ) y(1, 2) dv, ,

(2. 9b)

(2.9c)

(2.9a)

(2.9e)

Equation (2. 12) may be obtained by setting F= P
in (2. 7) and (2. 8) and adding the results. The
normalization may be obtained from (2. 1) in a sim-
ilar manner.

f lg (1,2)l'd& d& = J[1+N(2)]Q'(2)
po ' 1 2

& dv, + [fu, (2)g(2) dr, ]' +J &j&(2)g(1)

[2u (I) )((2, I)+ g(1, 2)y(2, I)]dv, dv, . (2. 18)

N(2)= J ly(1, 2)l'dw,

V (2)=- V,N(2)

(2. 9f)

(2. 9g)

f ly (1, 2)lmd~ d7 = f[y'(2)

+ N(2)F'(2)] dT2+ [f uo(2)p(2) dr2]'

+ 2 Ju, (1)g(2, 1)p(2)F(1)d7, d7,

+ J y(1, 2)y(2, 1)F(2)F(1)dr, d7', . (2. 10)

Thus, & is the binding energy of the extra elec-
tron in the case of H-. V~ is the ordinary Coulomb
potential of the static-charge distribution. Vp is
the usual polarization potential containing all mul-
tipole components, and V, is a, third-order polar-
ization potential. The notation for these quantities
differs slightly from that of Drachman. The re-
maining quantities W, N, and V~ coincide with
the definitions given by Drachman, who gives a
table of their values. '

Also, we have the normalization integral (singlet
state only)

It is obvious that both the coupled pair of Eqs.
(2. 'I) and (2. 8), and the single equation (2. 11)of
the more usual approach, are quite complicated,
and as a result, most authors who have used the
PO method have made certain approximations in
order to simplify their calculations. These ay-
groximations include dropping some or all of the
exchange terms involving the distorted function g,
and the neglect of some of the direct terms as
well. Use of either Eqs. (2. I) and (2. 8) or (2. 12)
will lead to a variational bound on the binding en-
ergy of H which is destroyed by most common
approximations. It is desirable, in order to eval-
uate the utility of approximations, to compare
their results both with the known exact answer and
with the consequences of the variational problem
which they are intended to approximate. We will
now turn to a description of several approximations
which have been employed.

The simplest approximation involves neglect of
the perturbed function y in all terms (both direct
and exchange). This leads to the relatively simple
equation

[&0(2)—&+ V, (2)]y(2) =+ J'u0(1)

If the PO wave function (2. 1) is used in the vari-
ational method, a single equation is obtained,

x [e —e+ V(1, 2)]p(I) drlu0(2)1s (2. 14)

f [u, (1)+)((1,2)] [H- E]g(1, 2) d7', =0 . (2. 11)

This leads to the explicit form

f[I+N(2)][H0(2)- e]+ V (2)+ V (2)+ V (2)

+ W(2) + VN(2) ~ v}g(2) = v fu0(I)[el -&+ V (1)

+ V (2)- V(1, 2)]p(1)drlu0(2)v J [u (1)

This will be called the SE approximation. It does
yield a variationa1 bound. The SE approach is a
slightly restricted form of the open-shell Hartree-
Fock procedure.

Our principal interest is in those methods which
attempt to include some of the consequences of the
distortion of the atom by the external particle.
The simplest of these, the adiabatic-exchange ap-
roach, includes only the polarization potential in
addition to those terms already in the SE equation
(2 ~ 14). Even so, there are many possibilities:
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vP(2)=XI v I(~2),
Pp

(2. 15a)

One may use the full polarization potential (2. 9c),
which was given by Dalgarno and Lynn. ' This wi11
be called the adiabatic-exchange-total (AET)
method. Alternately, on substituting the potential
(2. 6b) into (2.9c), and expanding both (r, —x, (

-'
and the perturbed orbital y in Legendre polyno-
mials [see (2. 3)], we have

by the distortion potential, whose introduction
leads to the extended-polarization method (EP). '4

In this approach, one drops the third-order direct
term V, and all of the contributions from the per-
turbed function y to the exchange terms. All
second-order direct terms are retained; however,
a transformation can be found which removes N,
VN, and 5', and replaces them with the distortion
potential VD, which is, for the case of hydrogen,

V (2) = J I & y(1, 2) I dv 1. (2. 17)
4me'

where V I=(2I 1) Ju0(1)

xq(~, r )(r / )~ dr, , (2. 15b)
l l+1 2

The EP method thus considers the equation (again
for the electron-hydrogen system)

[a (2) —e+V (2)+V (2)+V (2)]y(2)

in which x (r ) is the lesser (greater) of r, and
Because the perturbed function y is orthog-

onal to u,

Ju, (1)y(l, 2) d7, = 0 (2. 16)

the l = 0 (monopole) component of the polarization
potential falls off exponentially at large distances.
The dipole component (/= 1) is the longest-range
component (r, 4) of the polarization potential; and
many authors have retained only this term. We
call this the adiabatic-exchange-dipole (AED) ap-
proximation. The expression for V~ 1 that we
use was first given by Bethe. ' An additional ap-
proximation is sometimes made in which one re-
tains only the "outer" part of the perturbed orbit-
al: That is, one imposes the condition that x, ~r,
in the calculation of y1 and Vp 1.'~'~' This lat-
ter restriction leads to considerable complications
in calculations if handled consistently, and makes
relatively little difference to the final results:
We will not consider this in detail.

The AED approximation is surprisingly success-
ful in yielding reasonable values of scattering
phase shifts; consequently, it has been employed
by many authors. For systems with relatively
small polarizabilities, it tends to underestimate
slightly the attractiveness of the effective poten-
tial (compare Temkin and I amkin~o with Schwartz
"); however, when the polarizability is large, too
much attraction may be present. An example of
the latter case is the triplet metastable state of
helium (2'S)." If the complete polarization poten-
tial (AET) is employed, the results are much less
successful, as the effective potential is now consid-
erably too attractive. " The difficulty has been
attributed to the monopole (I= 0) component of Vp.
Although this term decays exponentially at large
distances from the atom, it is quite significant at
small distances.

The excess attraction produced by the monopole
component of the polarization potential is canceled

=v Ju0(1)[e —e+ V(1, 2)]p(1)dr u (2)

(2. iS)
As a practical matter, this equation differs from

that used in the AET approach only by the inclu-
sion of the repulsive distortion potential VD. This
term corrects the excess attraction obtained when
the complete polarization potential alone is con-
sidered. Unfortunately, evidence from the pres-
ent calculation and Refs. 12 and 14 indicates
that the correction may, in a practical sense, be
too large: The effective potential is too repulsive.
In view of this, one may ask whether matters
would be improved by inclusion of the third-order
terms in (2. 16). It is known that if the wave func-
tion for a system is given to first order in some
perturbation, the expectation value of the Hamil-
tonian with this wave function will be correct
through terms of third order in the perturbation.
We have, therefore, also investigated an approxi-
mation in which all terms on the left-hand side of
(2. 12) are retained, but only the undistorted ex-
change is used. Unfortunately, this approximation
is not an obvious improvement, as the additional
terms are, on the average, repulsive.

A different scheme of approximation was pro-
posed by Temkin and Lamkin. Their method in-
volves the following: (i) Only the dipole compo-
nent of the perturbation function is retained. (ii)
Project on the unperturbed orbital only [i.e. , use
(2. 5a) with E= P]. (iii) R.etain only the portion
of the perturbed orbital g, (r„r,) in which r, ~r, .
The equation solved may be obtained from (2. 7),
subject to these modifications. It is to be noted
that the second step of this procedure destroys
the ability of the method to give a variational
bound to the energy of H (or to give stationary
phase shifts). Nonetheless, the method of Temkin
and Lamkin has been found to yield good results
for electron-hydrogen scattering, '0 and electron-
helium scattering, "although it is less successful
in positron-hydrogen scattering where it closely
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resembles the AED approximation.
Sloan modified the equation of Temkin and Lamkin

by observing that there was a contribution from
derivatives of the step function e(r, —r, ) which is
introduced in accord with (iii}.' In the present
case of H, the function Q is purely s type, so
that these terms do not contribute. The equation
of Temkin and Lamkin for spherically symmetric
function P(r) is

[H (2}+V (2)+ V 1(2)—e]Q(2)+ Ju0(1)c

x [e —e + V(1, 2)]P (1)dr u (2)

+ J u, (1)V(1, 2)Q (1)y(2, 1)dw, = 0 . (2. 19)

III. METHODS OF CALCULATION

W(R) = VD(R)+ (1/R+ —,
' d/dr)V (R) (3. 1)

The direct terms V~, V3, and VD, based on the
Dalgarno and Lynn' function y (1,2), can be written
as the sum of the products of infinite integrals and
integrals over angles. The infinite integrals were
calculated using Gauss- Laguerre quadrature, and
integrals over angles were calculated using
Gaussian quadrature. The function VN was obtained
by numerical differentiation of N, and finally, 8'
is obtained as follows:

the term G(r). Numerov's procedure is then em-
ployed to integrate Eq. (3. 5) outward from the ori-
gin and from a distant point inward. These solu-
tions are carried to a matching point. A solution of
Eq. (3.5) with G(r) =0 is added to the inward solu-
tion, so that the inward solution at the matching
point coincides with the outward solution.

The resulting wave function is a solution of Eq.
(3. 5) except at the matching point. Froese has
given a correction formula for the eigenvalue
based on the discrepancy at the matching point. "
A better approximation to the binding energy is
obtained using this formula. The process is iter-
ated until the inward and outward solutions at the
matching points agree. The iterations are finally
stopped when (a) the energy correction is less than
10 ' Ry; and (b) the inward homogeneous solution
being added is such that the ratio of the homoge-
neous to inhomogeneous solution at the matching
point is less than 10 '. We tested the stability
of our solutions by varying the matching points.
A step of 0 04Qp w as used and the starting point
for inward integration was taken to be 25Qp.

In order to avoid the complications of solving
directly the pair of coupled integral equations [(2.
7} and (2. 8)], and to confirm the surprisingly low
value of the magnitude of the binding energy ten-
tatively obtained from (2. 11), we decided to pro-
ceed by conventional variational techniques. The
functions P and F were expressed as combinations
of Slater orbitals:

The function VN was also differentiated numerical-
ly. Additional details can be found in Appendix A
of Ref. 6.

The integro-differential eigenvalue equations con-
sidered are of the general type:

$(1)= Z.a.f.(1) (3.8)

(3. 7)

P(0) = 0; P(r)-0, as r-

and J, [P(r)] dr=1

(3.3)

(3.4)

Since Eq. (3.2) is essentially homogeneous in P,
one may seek solutions satisfying (3.3) and, once
such a solution has been obtained, the normaliza-
tion condition may be easily satisfied. In prac-
tice, Eq. (3.2) may be written

P' '(r) = [E(r)—e]P(r)+ G(r) (3. 5)

To solve (3. 5) one initially guesses the eigenvalue
and a corresponding wave function proportional to
exp [—(I & I )'~'r] This gue. ss is used to evaluate

P' '(r)=[E(r) —e]P(r)+ JS (r, r')P(r')dr'
(3. 2)

The pair of Eqs. (2. 7) and (2. 8) was treated by a
different method. We need solutions which satisfy
the boundary conditions

where f =[(g ) /~ ] e. (3. 8)

The functions f are normalized, but not orthogo-
nal. Standard variational techniques enable us to
determine the binding energy & from the lowest
eigenvalue of the system (e =E —mls):

Hu =ESu (3. 9)

where u denotes a vector consisting of the coef-
ficients ai and b. when the trial wave function is
(2. 4), and the af alone when (2. 1) is used. H and
S are the Hamiltonian and overlap matrices on the
basis of the ff. Most of our calculations employed
five exponential functions and, for convenience,
the same functions were employed in the expansion
of both g and E.

We decided not to attempt the complicated ex-
change integrals using the full Dalgarno-Lynn func-
tion for y. Instead, we employed the expansion of
y in spherical coordinates (2. 3), and retained the
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TABLE I. List of variations and approximate forms of the general PO method.

Approximation

SE
AED
AET
EP
All direct terms (DT)
PO
Polarized orbital,
dipole (POD)

Temkin-Lamkin (TL)

Modified polarized
orbital (MPO)

Direct terms
retained

Vc
Vc Vp, 1
V, Vp

Vc, Vp, N, S; V~
All
All

components of
above resulting
f

lorn

gg

V, Vp 1(part)

Al.l

Exchange

undistorted
undistorted
undistorted
undistorted
undistorted
distorted
distorted
components
from y~

portion of
distorted com-
ponent from ggg

distorted

Variational
bound?

yes
no

no
no

no

yes
yes

no

yes

first three terms. This amounts to inclusion of
monopole, dipole, and quadrupole terms. For
consistency, the quantities of Eq. (2.9) were com-
puted in the same approximation. The differences
with respect to the same quantities computed from
the full Dalgarno-Lynn functions are generally
small. The agreement is excellent at both large
and small x since the dominant components in both
regions have been retained. The difference is
largest at intermediate x (for example, the relative
difference of Vp is largest at r= 3a„where it
amounts to I.8%). The elements of H and S are
found by substituting the expansions for Q and F
into (2. I), (2. 8), (2. 10), or (2. 12) and (2. 13).
Since the expressions for these elements are quite
lengthy, and their calculation is straightforward,
we will not give their explicit forms here. Matrix
elements involving the perturbed function y, and
those containing the auxiliary functions of Eqs.
(2. Qc) —(2.9g) were computed by numerical inte-
gration. Exchange integrals were carried out to
approximately 20ao; others to 40ao.

We have not attempted to optimize the choice of
exponents f in an extensive manner, nor have we
investigated the effects of inclusion of more than
five functions ff in the expansions of P and F.
However, the results obtained when only four func-
tions are considered differ from those involving
five functions by only 0. 003 Ry. This indicates to
us that further improvement resulting from addi-
tional functions would probably be small.

IV. RESULTS, CONCLUSIONS, AND DISCUSSIONS

The binding energy of H, calculated according
to the various approaches listed in Table I and
discussed in the text, is presented in Table II.
The conclusions we draw from these results are
as follows:

TABLE II. Binding energies of H in various approxi-
mations. See Table I for a list of the characteristics
of the various approximations. All results (except the
"best value" ) have an uncertainty of about 1 or 2 in the
last decimal place given.

Approximation

SE
AED
AET
EP
DT
PO
POD
TL
MPO

Best value (Pekeris)

Binding energy (Hy)

—0.0265
—0.0513
—0.0769
—0.0295
—0.0241
—0.0094
—0.0273
—0.0642
—0.0544

—0.0555

(a) The PO wave function (2. 1) is a very poor
approximation for H-. It is actually a worse
function than is obtained if correlation is neglect-
ed and one uses the SE approximation.

This result may seem paradoxical at first be-
cause one feels that the addition of the perturbed
wave function y to uo should have given the total
wave function increased flexibility, and so should
yield a lower energy. Such a supposition is not
correct, however, since a prescribed function
has been added, and only the single function &P can
be adjusted in either case.

(b) If the PO wave function is modified, as sug-
gested by Drachman, by the insertion of an addi-
tional independent function multiplying the per-
turbed orbital y [see Eq. (2. 4)] a good approxima;
tion is obtained. The binding energy in this ap-
proximation, —0. 0544 Ry, differs from the exact
value by approximately 2%%uq. This function is thus
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better than a 6-parameter Hylleraas-type wave
function (which yields c =-0.0529 Ry) but not so
good as an 11-parameter Hylleraas function (e =
—0.0551 Ry). " The introduction of the additional
function F into (2.4}evidently gives the wave func-
tion essential additional flexibility.

(c}. The best of the approximations of a non-
variational type considered is the AED. The ap-
proximation of Temkin and Lamkin also yields a
relatively good value of the energy. Qualitatively,
these results are consistent with the rather good
scattering lengths for singlet e -H scattering
which these approximations produce. " However,
since these approaches are not variational in char-
acter, it is not possible to conclude that the wave
function used is correspondingly good.

(d). The other nonvariational approaches studied,
AET, EP, and DT (see Table I), are less satis-
factory; the errors being in the direction described
in Sec. II.

In the case of the EP method, the present results
show that the combination of po1.arization and dis-
tortion potentials is too strongly repulsive at small
distances. In problems less dependent on the inner
region of the effective potential, and more sensi-
tive to the behavior at large distances, such as the
calculation of the low-energy p-wave phase shifts
for e -H scattering, the EP method gives decid-
edly better results than either AED or the Temkin-
Lamkin approximation.

(e). The poor results of the PO method appear
to be associated with use of the adiabatic per-
turbed orbital y in the inner region of the atom.
This conclusion is not a new one4; and in support
of it, we observe that if a variational calculation
is made using only the l = 1 component of y (polar-
ized orbital dipole), the resulting binding energy
of —0.027 Ry, although not particularly good in

TABLE III. Exponents (fi) and coefficients ai and b

appearing in the expansions [Eqs. (3.6) and (3.7)] of the
functions @ and F.

ai

.10-

O

0
C

.05

O
l3
D
R.

10

l (a.u, .)
15 20

FIG. 1. Radial wave functions ft) and F (each multi-
plied by radius r in atomic units) from Eq. (2.4) are
shown in curves I and II, respectively. Curve III pre-
sents the function ft) from Eq. (2.1) (also multiplied by
r).
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The scattering lengths quoted in Ref. 10 are slightly
too large owing to the lack of a correction for the long-
range potential. If we take this into account, the singlet
e -H scattering lengths given by Temkin and Lamkin
become 6.3ap (exchange adiabatic) and 5.6ap (their po-
larized orbital), respectively. The exact value is
5.965ao, dueto Schwartz (Ref. 11). However, the po-
larization potential used by Temkin and Lamkin in their
adiabatic-exchange approximation is not the same as the
Bethe potential used here in the AED. Our value for the
corrected scattering length in the AED is 6.15ao, which

is closer to the exact value than the corrected result of
the Temkin-Lamkin method.
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The localization of electronic states in one-dimensional disordered systems is examined in
terms of the reflection and transmission coefficients. The transfer-matrix method is used.
The main body of the work deals with a one-dimensional liquid model in which the central
part of the potential remains the same in all cells, and only the lengths of the flat arms vary
from cell to cell. It is found that the contribution of the initial phase of a wave at the zeroth
cell to the phase at the nth cell is reduced by a factor (1 —

I xl)/(1+ Ixl) every time in passing
through a cell. When the phase memory is completely lost, 4 - fItlj, where the reflection
coefficient of the jth cell is x =

Ingle

j. If 4 - obeys a uniform or nearly uniform probability
distribution, the wave function always grows exponentially. It is shown that in most cases,
especially when cell size distribution has a wide spread, P(C) is nearly always uniform. All
wave functions are localized in a completely disordered system, but in the one-dimensional
liquid model nonlocalized states do exist.

I. INTRODUCTION

The existence of localized states in disordered
systems is of fundamental importance in the under-
standing of the electronic properties of systems
like random impurities and alloys, amorphous sub-
stances, and liquids. ' As an example, when the
wave functions are localized, the electrons can
move only by activated hopping. The transport
properties are therefore quite different from those
of the usual propagating solutions. An exact dis-
cussion of the general problem in three dimensions

is difficult even in the independent one-electron
approximation.

In one-dimensional disordered systems, it has
been conjectured by Mott and Twose' that all solu-
tions of the Schrodinger equations are localized.
A wave function in one-dimensional space is said
to be localized if, starting from a point xo, the
envelope of its amplitude decays or grows expo-
nentially with the distance (x-xo( (see Mott, Ref.
1, p. 52). Proofs have been provided by Borland,
Hori, and Minami. ' These have been reviewed and
commented on by Mott' and Halperin. Here we


