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A description of the parametric amplifier and frequency converter is presented without in-
troducing the classical (i.e. , parametric) approximation for the pumping field. Constants of
the motion are found which reduce the solution of the Schrodinger equation to the diagonalization
of a matrix. This diagonalization is accomplished numerically, and the eigenvalues and eigen-
functions of a. system with fixed energy are calculated. The time-dependent behavior of the
mean number of photons in the amplified or frequency up-converted field is presented. The
time evolution of the probability distributions is illustrated. The technique is extended to the
proble~ of coherent spontaneous emission from a system of N two-level atoms interacting
with the radiation field where both the atomic system and the radiation field are quantized.

1. INTRODUCTION

Recently, there have been great advances made
in the construction of light amplifiers and frequency

converters. These devices are based on the cou-
pling of light waves in nonlinear dielectric crystals
such as Liwb03. '~ A photon from an intense
monochromatic laser beam, the pump, couples
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with a signal photon to induce emission of a photon
in the idler field. In parametric application, the
idler photon is emitted at the difference frequency,
whereas in frequency conversion the idler photon
is emitted at the sum frequency. In a particular
crystal, one or the other process is suppressed by
the requirements of phase matching. Frequency
up-conversion of infrared wavelengths into the
visible is now finding application in infrared image
converters. '

The microwave versions of the parametric am-
plifier and frequency converter have been used in
electrical engineering applications for some time.
At optical frequencies, photons have sufficient
energy to be individually detectable; thus, mea-
surements of photon statistics are possible which
provide much more information about the field
than do spectroscopic measurements alone. The
spontaneous emission of quanta, which is not pre-
dicted by classical theory, is an important con-
tribution at optical frequencies. Thus, a theoret-
ical description of the amplification and frequency
conversion of light must take quantum effects into
account.

Quantum-mechanical models of the parametric
amplifier and frequency converter were first
proposed by Louisell, Yariv, and Siegman. ' De-
tailed analyses of the statistical properties of these
devices have been made based on these models. '~ '
In these models, the incident laser or pump field
is treated as a classical electromagnetic field of
constant amplitude, and is termed the parametric
approximation. The parametric approximation
does not take into account the depletion of the laser
field with the result that the mean number of am-
plified photons in the parametric approximation
grows exponentially with time. An analysis of the
amplifier that takes into account the depletion of
the pump field has been made by Bloembergen
et a/. ,

' where all three coupled fields are treated
classically. This classical analysis treats the
spatial behavior of the three interacting fields,
whereas our quantum-mechanical treatment will
give only temporal effects. As such, our analysis
is applicable to three standing waves coupled in a
cavity. An example of how quantum theory may
treat traveling-wave situations has been given by
Tucker and Walls. '

We present in this paper a quantum-mechanical
model for parametric amplification and frequency
conversion without introducing the parametric
approximation. Thus, the depletion of the laser
field is automatically included in a full quantum-
mechanical context. Our calculation refers to an
idealized device, since no account is taken of the
damping of the modes, which is present in any
practical situation. A quantum-mechanical analy-
sis of parametric oscillation including the damping
of the cavity modes has been made by Graham and
Haken. ' Their solution is reached by introducing

the parametric approximation below threshold and
by using a quasilinearization technique above
thr eshold.

We have also studied the problem of coherent
spontaneous emission from a system of X bvo-level
atoms interacting with the radiation field, where
both the atomic system and the radiation field are
quantized. The technique we employ is not limited
to the above problems but is applicable to related
problems in nonlinear optics, for example, Raman
and Brillouin scattering.

2. BASIC HAMILTONIAN

The presence of an electromagnetic field in a
dielectric causes a polarization of the medium.
Following the now standard procedure, ' we assume
that the polarization P(r, t) can be expanded in
powers of the instantaneous electric field:

P(r, t) =X ' E(r, t) +X: E(~~ t)E(~~ t) + ' ' ' ~

Here, the first term defines the usual linear sus-
ceptibility; the second term defines the lowest-
order nonlinear susceptibility. The time-depen-
dent Hamiltonian H, (t) describing the interaction
of the electromagnetic field with the dielectric
medium is

H, (t) = —fE(r, f) ~ P(r, t) d'r . (2)

The electric field operator can be expanded in
terms of normal modes" as

Here a&(t) and a+(t) are the annihilation and cre-
ation operators or the kth mode; they obey the
boson commutation rules

(4)

V is the normalization volume, ey is the dielectric
constant evaluated at frequency ~~, and ey is a
unit polarization vector with the usual polarization
indices omitted for simplicity.

When Eq. (3) is substituted into Eg. (2), the re-
sult is a complex coupling of the modes of the in-
teraction Hamiltonian H, . This expression simpli-

.fies considerably if we assume that only three
modes are coupled strongly. This situation could
be realized by the requirements of phase matching
for three modes coupled in a cavity. Based on this
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assumption, the interaction Hamiltonian becomes

H, (t) =h/&[a(t) b (t) c (t)+a (t)b(t) c(t)],

where the three modes are labeled a, b, c, and v

is the coupling constant (taken to be real for con-
venience). The free-field Hamiltonian H, (t) for
these modes is

H0(t) = h~ a (t)a(t)

+h&u b (t)b(t)+hru c (t)c(t) .
b c

The total time-dependent Hamiltonian is

(7)

This Hamiltonian can represent the parametric
amplifier, provided we identify a(t), b(t), c(t) as
the annihilation operators of the laser, signal, and
idler modes, respectively. Our Hamiltonian can
also describe the process of frequency conversion
in which a signal photon and a laser photon com-
bine to form an idler photon at the sum frequency
if we make the following identifications: a(t) is
the idler mode, b(t) is the signal mode, and c(t) is
the pump mode.

The same Hamiltonian, in addition, can also be
used to study the problem of coherent emission
from a system of N two-level atoms interacting
with a single mode of the radiation field. The first
quantum-mechanical treatment of this problem is
due to Dicke" who based his solution on first-
order time-dependent perturbation theory. Fur-
ther computations on this problem have been per-
formed by Abate and Haken, "Tavis and Cum-
mings, "and Bonifacio and Preparata. " The
Hamiltonian describing this system is the sum of
H, and H„where

With this substitution, the Hamiltonian in Eq. (9)
and the Hamiltonian in Eq. (7) for the parametric
amplifier are formally identical. We may make
the identification: laser pump equivalent to the
upper atomic level; signal photon equivalent to
the lower atomic level; idler photon equivalent to
the emitted photon.

The eigenvalues of a~a and b ~b are the actual
occupation numbers of the upper and lower levels,
respectively, provided the cooperation number"
J of the N atom system is a maximum, i.e. , J=
—,'N. If J is not a maximum, i. e. , 0&J& —,'N, then
the eigenvalues of a ta and blab are the effective
occupation numbers of the upper and lower levels,
respectively. '4 We have assumed J= —,'N in our
analysis, thus the eigenvalues n~ and nb can be
identified as the actual occupation numbers. This
means that the amplifier system and the two-level
atom system are formally equivalent and possess
identical eigenvalues and eigenfunctions. The re-
sults for one system are directly applicable to the
other.

3. AMPLIFIER, SPONTANEOUS EMISSION

We shall now present an exact solution of the
quantum-mechanical amplifier as described by the
Hamiltonian given in Eq. (7). The resultant
Heisenberg equations of motion are nonlinear
operator equations. Rather than attempt a direct
attack upon these equations, we employ an in-
direct attack and search for constants of the mo-
tion. Two constants of the motion can be found
and the SchrMinger equation of the system solved.

Under conditions of perfect energy conservation,
i. e. , ~ = ~b+ &c, it can be shown that the
Hamiltonians H, (t) and H, (t) commute with each
other:

[H,(t), H, (t)] = [H(t), H, (t)] = [H(t), H, (t)]= 0. (ll)

II =~cc +~J
0 8'

H, =he(cJ +c J'

where c is the annihilation operator of the single
mode of the electromagnetic field with frequency

The J operators are defined in terms of oz
(z components of spin for each atom), o+, and o

(spin-flip operators for each atom) thus,

(9)

Thus, H, (t) and H, (t) are themselves two constants
of the motion. Since Ho(t) and H, (t) commute with
each other, a representation of H(t) exists in which
the Hamiltonian is diagonal. Once H(t) has been
diagonalized, the Schrodinger equation has been
solved. The advantage of this approach lies in the
fact that we have reduced the intractable nonlinear
problem to a tractable linear one.

The eigenstates of the free field Hamiltonian Ho
are the number states of the form Ina, nb, nc),
where

However, the angular momentum operators, J
and J, can themselves be represented in terms
of two operators a, b obeying the boson commu-
tation rules, Eq. (4), such that"

a a n, n, n =n n, n, n

b b ~n, n, n ) =n ~n, n, n ),

J =ba, J =b a.+ (10) c c n, n, n =n n, n, n



FREQUENCY CONVERSION WITH TRILINEAR HAMILTONIAN 449

If we assume that there are na initial laser photons
and nb initial signal photons, then the possible
eigenstates of Hp are

~=(~n, n, 0&, ~n -I,n +1, 1&, ... ,

&&
~
0, n +n5, n5, ) )

the eigenvectors of Xz labeled in the form Mfj
with i denoting the particular eigenvalue of A~
and j the component. (This labeling is contrary
to standard practice but is very convenient for our
purposes. ) Thus, the eigenvalues of H, are:
X0@K XI@K,~, X+ Kv and the eigenstates ItIj of Hl' ''' na
are given by

all with eigenvalues ~a(na)+~I, nf, . The eigen-
states of the interaction Hamiltonian H, are as yet
unknown, but we will attempt to express these
eigenstates as linear combinations of the eigen-
states of Hp The result of the interaction Hamil-
tonian operating on the eigenstates of H, can be
written in matrix notation as

H Q= NKA
1 na

C=U
na

where C=($, $, .. ., $ )0 1'"' n,

We note the inverse transform

O'=U C =U
na na

and the orthonormality relation

(20)

where Az is an (na+I) x(na+1) symmetric ma-
trix, all of whose elements are zero except those
on the two diagonals immediately above and below
the principal diagonal:

(21)

The eigenstates Qj of Hf are also eigenstates of
H, and are thus eigenstates of the total Hamilto-
nian, H. The eigenvalue equation for H is

A
na

0 a, 0 0

a, 0 a2 0

0 a, 0 a,
0 0 a, 0

~ ~ ana
a 0
na

(15)

Hg. =h(n (o +n~(u +X.v)P. .j a a b b j j (22)

We first consider the case of spontaneous
emission in which the number of signal photons
initially is zero, nb =0. In the atomic system this
situation corresponds to all atoms initially ex-
cited, i. e. , m =J is the eigenvalue of Jz. As an
example, the case na = 24 was calculated using a
high-speed computer to obtain the eigenvalues and
eigenfunctions of An .

The probability P(n, X) that the eigenstate having
eigenvalue X contains n idler photons is given by
)u~ I'. A plot of some typical values for n =24
is shown in Fig. 1. We note that the eigenstate

and a =[(n —x 1+)(n +r)]'+, (y'= I, 2, . .. , g ).r a b ' ' '''' a'
(16)

This matrix was derived by induction. Since An
is symmetric, its eigenvalues are real. In addi-
tion, An is a continuant matrix. " It is possible
to prove from the theory of such matrices that the
eigenvalues are symmetrically displaced about the
value zero.

In order to find the eigenstates and eigenvalues
of H, we must diagonalize the matrix Ana. Suppose
the orthogonal matrix which diagonalizes Ana is
Una, then

U A U =diag(X0 XI X2, . . . , X ),
na na na 0' 1' 2' '' na

40—

30
CL

~ 20
Q

IO

CQ

CL

~ 20-
C)

&- l5-I—

LQ 6
QD

5O
CL

00

X=+ 45@2

20

0
20—

l5—

IO—

24 0
0

X=+ 9I.23

I I I I

l8 24

where Una Una = I and the elements of Un arena

FIG. 1. Probability distribution J'(n, X) for n~=24,
&~=0 for eigenvalues: X=0, +4.58, +45.92, +91.23.
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with X = 0 has a high probability of containing the
full 24 idler photons, while it has zero probability
of containing an odd number of photons. The
eigenstates with X = + Xm~, that is, the ground
state and the most highly excited state, have ap-
proximately a Poisson distribution. Calculations
for other values of n~ (i. e. , n~ =12, 13, 23) are
qualitatively similar.

The probability of having n idler photons at
7 =-vt is

p(n, 7)

-n, n, n) exp( fa-fga) )n, O, O) )'(n n—)

(23)

0
Z0I—
O

0
IQ

hi

I5
LL
O

0
LLI 20—
CQ

Z~ I0

20

A =2

f1 =9
0

In order to evaluate Eq. (23), we expand )ne, 0, 0)
into a linear combination of eigenfunctions using
Eq. (20), and using the eigenvector [Eq. (22)] we
obtain

P(n, 7) = (n —n, n, n
)
Z U Oe

I
P&)

l=o " (24)

This expression is further reduced when we em-
ploy Eq. (18) and the orthonormality relation,
Eq. (21). The final result is

n 2

P(n 7)= ZU U e E

l=o " '" (25)

TABLE I. Amplifier eigenvalues X~ for n~ = 24.

nb=0

+4.58
+ 10.05
+ 16.25
+ 23.00
+30.23
& 37.88
+45.92
+54.33
+ 63.09
6 72.17
+81.57
+ 91.28

+ 5.48
+ 11.39
+ 17.84
+ 24.79
+32.18
+39.97
+48.15
+56.69
+65.56
+ 74.76
+84.76
+ 94.09

nb =4

+ 7.01
+ 14.16
+21.56
+29.25
+37e27

+45.61
+54.27
+63.26
+72.55
+82.13
+ 92.01

+ 102.17

nb=24

0

+ 11.81
+ 23.64
+35.51
+47.43
+59.43
+ 71.52
+83.72
+ 96.03

+ 108.47
+ 121.04
+ 133.76
+ 146.64

Thus, P(n, 7') has been expressed as the absolute
square of a finite trigonometric series. This
series is not a Fourier-type series because the A.

~

are not constant multiples of each other. The
series is actually an almost periodic series"
and P(n, v) is actually an almost periodic function.
The mean number n (&) of idler photons at time
& is given by

0 4 6 8 IO

NORMALIZED TIME T

FIG. 2. Mean number of idler photons for n~=1, 2, 9,
23, 24 as a function of the normalized time.

n
a

n (~)= Q nP(n, 7') .
n=o

(25)

Since n (r) is a sum of almost periodic functions,
it is also an almost periodic function. A typical
set of eigenvalues is listed in the first column of
Table I; inspection of the numerical values con-
firms that they are not constant multiples of each
other.

The mean number of idler photons as a function
of time is plotted in Fig. 2 for na= 1, 2, 9, 23, 24.
Number conservation ensures that the mean num-
ber of laser photons at time ~ is

n (~) = n (O) —n (~) .
a a c (27)

We note the oscillating (almost periodic) behavior
in direct contrast to the exponentially increasing
solution predicted by the parametric approximation.
The fluctuations are due to the fact that the vacuum
fluctuations for the spontaneous emission are am-
plified. The contributions from the vacuum will
always have an appreciable effect for a small num-
ber of photons. If, however, a large number of
photons are present, then the vacuum fluctuations,
though initially the source of the field, are quickly
masked. As the number of photons becomes very
large the classical limit is reached and the mean
number of photons behaves as an elliptic function. '4

The probability distribution P(n, w) is plotted in

Fig. 3 at several fixed times for the case na = 24.
For very short times (7'~ 0.05), the probability
distribution follows a power-law distribution. '4

This result may readily be seen by observing that
for short times we may replace a(t) by a constant
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FIG. 3. Probability distribution I'(n, v) for n~= 24 as
a function of n.

FIG. 4. Mean number of idler photons, n~(7'), for:
(a) n~=24, ng=l; (b) n~=24, nb=4; (c) n~=24, ng=24.

classical amplitude o.e ~~& . The Hamiltonian (5)
then reduces to that of the parametric amplifier
which leads to emission of photons in a chaotic
state. 4 However, as the time increases, the dis-
tribution becomes peaked about increasingly higher
values of n~ out to the first maximum of n~ at &

=0.6 (see Fig. 2). The probability distribution in
the vicinity of & = 0.6 has zero probability for con-
taining an odd number of photons. This phenome-
non is due to the fact that the eigenstate with X = 0
(Fig. 1) dominates near nmax. The photon distri-
butions exhibit an oscillatory behavior with re-
spect to time similar to that of the mean numbers
of photons.

Due to the conservation relation m+n = 2N, the
probability distribution may also be considered as
a function of m, P(m). It has been advocated"
that a means of preparing a superradiant state is
to completely invert the system m= J and let it
decay by spontaneous emission. However, one
sees from Fig. 3 that there is no peak of the
probability distribution P(m) about m = 0(n = 12),
at least for this small number of atoms. Thus,
it appears that the back reaction of the emitted cha-
oticphotons onthe atoms prevents the formationof a
superradiant state by this method. (The authors
are indebted to Dr. H. Thomas for this observa-
tion. ) The other method suggested by Dicke for
preparing a superradiant state, by starting with
the atoms in the ground state m = —J and pumping
the system to the m = 0 state is discussed in Sec. 5.

ny & 1.' Thus, the presence of a finite number of
signal photons is sufficient to mask the effects of
the vacuum fluctuations. The eigenvalues are
listed in Table I for the various values of ng. As
n~ is increased, the eigenvalues tend toward be-
coming constant multiples of each other with the
result that the behavior of ne(&) approaches truly
periodic behavior.

The special case for which n~ =ng is equivalent
in the atom system to the superradiant state m = 0,
where the total number of atoms is n~+nb (see
Fig. 4(c) for n~ =nb =24). A smooth classical-type
behavior is exhibited. The probability distribution
of the emitted photons, as shown in Fig. 5, closely
follows a Poisson distribution for very short times
(i.e., «0.05). This distribution is the same dis-
tribution of photons as is present in a coherent
state." This result may be seen by observing that
for short times we ma, y repla. ce the operators a(t)
and b(t) by classical amplitudes ne ~~&t and
Pe-~~b . The Hamiltonian (5) then reduces to that

h

CL

Z T=.0I6

Z=.26

4. AMPLIFIER STIMULATED EMISSION

Now consider the case where there are n~ inci-
dent laser photons and nb signal photons (i.e., stim-
ulated emission). The mean number of idler pho-
tons for n~ =24 is shown in Fig. 4. We see a con-
siderable smoothing of the behavior of nc(w) as the
number of signal photons is increased. The be-
havior becomes almost completely classical for

'?=.I95

0
0 20 24

FIG. 5. Probability distribution &(n, w) for nz=&g=24
(superradiant state) as a function of n.
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The process of frequency conversion corresponds
to pumping an atomic system from the ground level
to the excited level. This is the second method ad-
vocated by Dicke" for preparing a superradiant
state. If one considers the probability distribution
in Fig. 7 as a function of m, one observes that be-
tween & = 0.065 and 7 = 0.130 a state peaked about
m=o, (n=12) will be formed. Thus, this appears
to be a suitable method for preparing a superradi-
ant state.

ACKNOWLEDGMENT

The authors wish to thank Professor R. J.
Glauber for useful discussions.

FIG. 7. Probability distribution &(n, w) for n~ =50,
nb = 24 as a function of n.

Work supported in part by the Air Force Office of
Scientific Research under Contract No. AF49(638) -1380.

~Present address: Institute of Theoretical Physics,
Stuttgart, Germany.

~On leave of absence from Itek Corporation, Lexington,

Mass.
J. A. Giordmaine and R. C. Miller, Phys. Rev. Let-

ters 14, 973 (1965); J. E. Midwinter and J. Warner, J.
Appl. Phys. ~38 519 (1967).

J. E. Midwinter, IEEE J. Quantum Electron. QE-4,
716 (1968).

W. H. Louisell, A. Yariv, and A. E. Siegman, Phys.
Rev. 124, 1646 (1961).

B. R. Mollow and R. J. Glauber, Phys. Rev. 160,
1077 (1967); 160, 1097 (1967).

J. Tucker and D. F. Walls, Ann. Phys. (N. Y. ) 52, 1
(1969).

J. A. Armstrong, N. Bloembergen, J. Ducuing, and

P. S. Pershan, Phys. Rev. 127, 1918 (1962).
J. Tucker and D. F. Walls, Phys. Rev. 178, 2036

(1969).
R. Graham and H. Haken, Z. Physik 210, 276 (1968);

R. Graham, ibid. 210, 319 (1968); 213, 420 (1968);
211, 469 (1968).

N. Bloembergen, Non-Linear Optics (W. A. Benjamin,

Inc. , New York, 1965).
R. J. Glauber, in Quantum Optics and Electronics,

edited by C. deWitt, A. Blandin, and C. Cohen-Tannoudji
(Gordon and Breach, Science Publishers, Inc. , New'

York, 1965).
In the notation of R. Dicke [Phys. Rev. 93, 99

(1954)], ~ is denoted by &, the "cooperation number. "
A discussion of the physical limitation to the value of
the cooperation number has recently been given by F. T.
Arrechi and E. Courtens (private communication).

V. E. Abate and H. Haken, Z. Naturforsch. 19A, 857
(1964).

$3M. Tavis and F. W. Cummings, Phys. Rev. Letters
25A, 714 (1967); Phys. Rev. 170, 379 (1968).

R. Bonifacio and G. Preparata (to be published).
J. Schwinger, in Quantum Theory of Angular Momen-

tum, edited by L. C. Biederharn and H. van Dam (Aca-
demic Press Inc. , New York, 1965).

A. C. Aitken, Determinants and Matrices (Oliver
and Boyd, Edinburgh and London, 1958).

H. Bohr, Almost Periodic Functions (Chelsea Publish-
ing Co. , New York, 1951).

R. J. Glauber, Phys. Rev. 130, 2529 (1963); 131,
2766 (1963).


