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A general formalism is described for treating diabatic coupling processes in highly excited
molecular states. The method treats electronic and nuclear motion quantum mechanically,
and uses the adiabatic Born-Oppenheimer states as basis functions. The present paper con-
centrates on diagnoses of vibronic coupling matrix elements, with Rydberg and continuum

states of H2 as the test cases. The principal contributions come from the excited electron's
interactions with the oscillating finite monopole of the ion-molecule core. The electronic
factors in the transition amplitudes are definitely dependent on internuclear distance, partic-
ularly in the cases of p and d states. The transition amplitudes accumulate their magnitudes

over the full classically allowed range of internuclear distance, especially in the cases of s
and p states. Specific application is made to vibronic coupling perturbations in pa and pm

Rydberg states of H2.

I. INTRODUCTION

The ground electronic states of molecules are,
for the most part, well described by wave func-
tions satisfying the Born-Oppenheimer approxima-

on. It is becoming increasingly clear that the
same does not hold true for molecular excited
states. In small molecules, the coupling of nuclear
kinetic and electronic energy is responsible, at
least in part, for autoionization and predissocia-
tion. The same sort of coupling may give rise to
associative ionization and associative detachment
or to their inverses of dissociative recombination
and dissociative attachment.

Penning ionization, electronic excitation tr ansfer,
and vibrational relaxation by electron-molecule
collisions can also be induced by transfer of energy
between nuclear kinetic and electronic degrees of
freedom. Radiationless coupling among bound ex-
cited molecular states is associated with broad ab-
sorption bands, with anomalously long fluorescence

lifetimes, and with "missing" luminescence; the
mechanism of this coupling is generally accepted to
be due in major part to breakdown of the Born-Op-
penheimer approximation.

It is our purpose here to develop a general theo-
retical and computational approach to handle a rath-
er large class of phenomena, particularly for small
molecules. These include autoionization, predis-
sociation, associative ionization and dissociative
recombination, excitation transfer, vibrational re-
laxation of molecule ions by collision with electrons,
and the phenomenon developed most fully in this
paper, the vibronic coupling of Rydberg states. %e
have given a preliminary account of our results for
autojonization and predissociation. ' These topics
along with associative ionization and dissociative
recombination, will be developed in subsequent
work. Our approach, as we shall see, is restrict-
ed to relatively low energies, up to a few eV for the
collision processes. In the present work, in the
background' and preliminary application' present-
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ed previously, and in the work immediately follow-
ing this, we restrict our computations to excited
bound and free states of H, . This restriction per-
mits us to make simplifications that would make
our results less trustworthy for some more com-
plicated molecules but that are entirely valid for
H2.

The class of problems of interest to us is, in the
main, the set of phenomena involving weak coupling
of bound or free excited molecular states with free
states. It is both natural and important to include
also bound-bound coupling. The study of bound-
state perturbations is not central to our long-range
intent. It provides useful examples and is absolute-
ly necessary for cases involving higher-order cou-
pli.ng. Our emphasis throughout is primarily on the
microscopic aspects of the coupling rather than on
the phenomenology.

Coupling of states may be considered as either a
mathematical artifact of an approximate represen-
tation for an energy eigenstate or a time-dependent
phenomenon arising from the manner in which a
system is prepared. Which description one chooses
is a rnatter more of taste than of substance. The
cogent point is that one begins with a representation
that one presumes makes the Hamiltonian approxi-
mately diagonal, and then introduces the coupling
by examining those parts of the Hamiltonian that are
not diagonal in the initial representation. The gen-
eral phenomenological treatment of this coupling
is very naturally carried out by Feshbach's meth-
od of projection operators. 3

Many operators in the Hamiltonian may be respon-
sible for the coupling. The electron-electron re-
pulsion operator couples bound atomic and molec-
ular electronic functions to give configuration
interaction (CI). Fano showed' how the concept of
configuration interaction can be extended to the
coupling of bound and free (ionic) states of atoms;
Fano and Cooper' and Comes and Salzer' carried
out calculations describing coupling of quasibound
autoionizing atomic states with the continuum in
which these states are imbedded. Mies' has re-
cently extended this work to the case of several
closely spaced quasibound states interacting with
and through a continuum.

In this paper, we describe the model, the general
conclusions, and some specific inferences, partic-
ularly about bound-bound couplings, for vibronic
coupling in H, . Many of the inferences are as apt
for heavier molecules as they are for H„and
others deserve investigation to determine the ex-
tent of their applicability. In the following papers,
we apply the method described here to the problems
of autoionization and predissociation, and of as-
sociative ionization and dissociative recombination.

II. MODEL

The setting up of the coupling problem falls nat-
urally into two main parts, the choice of represen-

tation and the choice of coupling operator. The
most attractive representation is one which cor-
responds closely to a realistic initial state of a
time-dependent system, and is tractable for com-
putation. We choose a Born-Oppenheimer basis
set of zero-order functions and describe the cou-
pling in terms of mixing among the Born-Oppenhei-
mer states. Thus, if 4~ is the total wave function
for the state n of the molecule of interest, we
represent +~ as a product of an electronic func-
tion, a vibrational function y &~((R}), and a rota-
tional function eo, off (ur). For the situations we
shall describe, we may represent the electronic
wave function as a product of a function 4 describ-
ing the core electrons and a one-electron function
Po, (r, (5})describing the active electron. Thus,

~ (& },&R})=~ y (, (R})~ ((R})e ( ).

We let (r } and (R}denote the totality of electronic
and nuclear coordinates. The unindexed electron
coordinates r are those of the active electron. We
simplify immediately to a diatomic so that (R}
can be replaced by the single variable R.

The coupling operator may be the electron cor-
relation operator, the nuclear kinetic-energy op-
erator, the spin-orbit coupling operator, or some
combination of these. Others could also be used
but may often be shown to be derivable from one
of these three. For example, the dipole-dipole
coupling operator used in the weak interaction
coupling for excitation transfer and associative
ionization model of Katsurra, Watanabe, and
Mori' "can be derived from the use of the nu-
clear kinetic-energy operator and Born-Oppen-
heimer basis functions. For present purposes, we
restrict ourselves to the nuclear kinetic-energy
operator F~. It is this restriction which permits
us to write the electronic function in terms of the
product of the core function 4 (which does depend
on 8) and the wave function g~(x, B) of the active
electron. For the H, problem, in the energy re-
gion of the ionization threshold, correlation cou-
pling or bound-free configuration mixing is not im-
portant. In other molecular cases, e.g. , NO", it
may be as important as coupling through nuclear
kinetic energy or even may become the dominant
mechanism.

III. ELECTRONIC FUNCTIONS AND FACTORS

Whatever the coupling operator may be, if the
wave functions are written in the form (I), we rec-
ognize immediately that a large variety of process-
es can all be viewed as special cases of the general
phenomenon of diabatic coupling. Distinctions
among the cases depend entirely on whether the
initial (i ) and final (f) states, electronic and vi-
brational, are bound or free. For example, if
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gi and lti are both bound and gy is free while (y
is bound, the process corresponds to autoion-
ization. If $y is bound but yy is free, the process
is predissociation. Table I contains a classifica-
tion of most of the processes that fall into the
general category of diabatic coupling.

The method of obtaining Born-Oppenheimer wave
functions was described, previously. 2 We use a
model Hamiltonian based on the H,+ wave function
of Bates, Ledsham, and Stewart. " The effective
potential, Coulomb and local approximation to ex-
change, is expanded in spherical harmonics. We
have used only the monopole Coulomb and exchange
and quadrupole Coulomb parts of the potential.
Electronic wave functions and, for Rydberg states,
energy eigenvalues were determined by numerical
integration (Numerov procedure) for values of R
from 1 to 5 a.u. Vibrational wave functions were
also determined by Numerov's method. For H2,
the potential curve of Wind, ' based on the calcu-
lations of Bates, Ledsham, "nd Stewart, 'swas used;
this curve was also used to represent Rydberg
states with n&6. For lower Rydberg states, we
used the potential curves corresponding to our com-
puted electronic-energy eigenvalues. We also car-
ried out some calculations, particularly for the case
of associative ionization, with a potential curve
given by Davidson" for the higher 'Z state dissoci-
ating to H(n=l)+H(n=3). This curve crosses the

H, curve at about R=1.5 a.u. and, therefore,
serves as a model for exploring the importance of
curve-crossing. All integrations were outward
only. For bound states, the smallness of the eigen-
function in the classically forbidden region at large
R was the criterion for an approximation eigenvat. ue
and eigenfunction. For continuum functions, the
integrations were carried to sufficiently large R that
the computed function fitted smoothly with the appro-
priate asymptotic form: spherical Bessel functions
in the case of vibrational continuum functions, and
Coulomb functions for electronic continuum func-

tions. Thus, the basis functions for the calcula-
tion are a self-consistent set of adiabatic-state
functions of the compound system.

The choice of such a set is important for several
reasons; some are fundamental to the physics and
some are useful for facilitating the calculations.
Let us first point out the most important reason
for using adiabatic compound-state functions. We
calculate initial and final electronic-state functions
and initial and final vibrational-state functions all
on the same basis, with the same total adiabatic
Hamiltonian, whether the functions represent bound
or free states.

A second reason for the choice of our Hamiltonian
and compound system model is that the basis func-
tions remain eigenfunctions of the Born-Oppenhei-
mer Hamiltonian at all times and are, therefore,
also orthogonal throughout a collision or decay pro-
cess. The orthogonality and retention of the same
Hamiltonian for all times conserve particles and
eliminate any "post-prior" problems which occur
in some treatments of rearrangement collisions.
Furthermore, the property that the electronic wave
functions are eigenfunctions of the Born-Oppenhei-
mer Hamiltonian is useful for calculating the elec-
tronic factor of the most important type for our
system:

F(ntm; k&p; R)

Because the functions g~ are eigenfunctions of the
static electronic Hamiltonian

X =& + g(r, R),el

so that

TABLE I. Classification of molecular excited-state radiationless coupling processes.

Type of process

B
B
B

B
B
B
F
F

B
B
B
B

B
B

B

B
B
F

Bl
Fl

B
B
F

B
F
FI
B'
F

Configuration mixing or vibronic coupling
Auto-ionization
Predis sociation
Dissociative recombination
Associative ionization (inverse of dissociative recombination)
Penning ioniza, tion or collisional ionization
Electronic excitation transfer
Vibrational relaxation by electron collision
Dissociation by electronic collision

aSome three-body processes are omitted and, with one exception, inverse processes are also not specifically
named.

B,B'=bound; F,F'= free; i= initial, f=final; / =electronic function; g=vibrationaI function.



386 R. S. BERRY AND S. E. NIELSEN

we may construct the commutator [R„S/&R] to
derive the relation

F(nlm; kXp, ;R)

nlm Np k&p, sR nlm
(5)

In general, (5) is considerably easier to compute
than is (2), particularly when one or both ( are a
continuum function.

The total vibronic perturbation consists of the
(negatives of the) two terms

the motion. Our calculations have been carried
out for many different K states, particularly for
the collisional problems for which contributions
from relatively large impact parameters may be
important.

The procedure in the calculations was generally
as follows. For a given bound electronic state n,
the electronic energy e~(R) and electronic eigen-
function Pa (r, R) were determined by numerical
(Numerov) integration. Segmental linear fits were
made to the functions:

E (R) =e (R)+E(H2, R)+0.55556 a.u. ,a
7' =[& 1l ~(sgf/sR)(s~. /sR)],

(in units of 2fi'/MH),

(6)

(7)

with values calculated at R=1.0, 2. 0, 3.0, and 4. 0
a. u. The constant 0. 55556 a. u. is the negative of
the energy of H(n=l)+H(n=3), relative to that of
2H++2e, all far apart and with zero kinetic ener-
gy. From the effective potential

(We let M& = mass of the hydrogen atom. )
(The term in &'y/sR' vanishes when it f and, of
course, is included in the diagonal terms )Fo. r the
H2++e case considered here, and for the Po and Pm
states we have examined, the term in 8'pf/8R'
makes a contribution only a few percent of that of
the term in (8/&/BR)(s&/BR) and has, therefore,
been neglected. " It must be included when compu-
tations reach the level of accuracy of optical spec-
troscopic measurements.

We have thus far considered no perturbations
arising from the rotational part of the kinetic en-
ergy. These are known to exist and reflect them-
selves as l-uncoupling. " However, time-scale ar-
guments given previously" imply that the vibration-
al perturbations are considerably more important
than rotational perturbations for nuclear rotational
quantum numbers R'- 15 or 20. The neglect of the
rotational coupling terms keeps E as a constant of

U(R) =E (R)+Pi K (K+1)/MQ,

the bound eigenvalues for vibration and the bound
and free vibrational functions y ~ (R) were gen-
erated numerically. The electronic factors F[nlm;
k(or n)Xp; R] were computed from Eq. (5) for
several values of 8 and fit with a series of linear
interpolations for intermediate values of R. Then
the matrix elements T, were evaluated, and from
them the appropriate cross section or lifetime, de-
pending on the case at hand.

The analytic expressions for the electronic en-
ergies E~(R) are as follows: (States are identified
by the united atom notation for the orbital of the
series electron. The second electron is always in
the 1sa& or 0&1s orbital, and no singlet-triplet
splittings are taken into account. Energies are in
atomic units of 27. 210 eV. )

4so: E(R) = 0. 0802 f 1 —exp[- 0. 825 (R —2. 038)]j'+0.0037 exp[- 4(R -4)'] —0. 0802

3do': E(R) = 0. 1070 1 1 —exp[- 0. 'l87 (R —1.998)])'+0.0021 exp[ —4(R -4)'] -0.1070,

4do: E(R) =0.0794 f 1 —exp[ —0. 873 (R —1.992)]]'+0.0072 exp[ —4(R —4)']-0.0794,

5po: E(R) =0.0708 ( 1 —exp[- 0. 917 (R —1.995)]j'+0.0081 exp[ —4 (R —4)']-0.0708,
Q

3P w: E(R) = 0. 1111( 1 —exp[ —0. 753 (R —2. 02)])2-0.0012 exp[ -4 (R-4)'] —0. 1111,

4pn: E(R) =0.0813 1 1 —exp[- 0. 0857 (R —2. 00) ])2+0.0062 exp[ —4 (R -4)'] —0.0813,

4dw .'E(R) = 0.0792 $ 1 —exp[- 0. 827 (R —2. 045)]j2+ 0. 0052 exp[ -4 (R -4)'j —0. 0792,

5dm: E(R) = 0. 0680 ( I —exp[ —0. 921 (R —1.991)])2+ 0.0080 exp[ —4 (R- 4)'] —0. 0680,

E(R) = 0. 1040(1 —exp [-0.754(R —2.048}]j' —0. 0017 exp[- 4(R —4)'] —.p. Ip4p
g
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IV. NUCLEAR INTEGRATIONS AND CLASSIFICATION
OF DIABATIC TRANSITIONS

One diagnostic study was particularly enlightening
with regard to the role of curve crossings and the
portion of the range of R over which transition am-
plitude is accumulated. We examined several typ-
ical cases corresponding to associative ionization
processes by performing a partial integration of the
matrix element from the origin to successively
larger values of the outer limit R. This function

(a)
l.0—

C 0.5—
3s,4s

5s, 6s

t.o—

0.5— 3P,4P,5P

(g}
O.l-

o
0

U -0 I— 3d

l I I I 4d.5d
I 2 3 4

R (O.u. )

FIG. 1. Electronic factor E(nlm;kXp;R) of the tran-
sition amplitude, as a function of the internuclear dis-
tance R [see Eq. (5) of text].

The electronic factors E(nlm; kXp; R) of Eq. (5)
depend very much on the internuclear distance R.
However, they are almost independent of the prin-
cipal quantum number n of the bound electronic
state, for a given l (fixed for both initial and final
states) and a given energy 2k2 for the electron in its
free state. Some examples of the functions E(R) are
shown in Fig. 1. Clearly, evaluation of vibronic
coupling requires the determination of the electronic
functions over a wide range of R, particularly for
the p and d states. Unfortunately, we cannot expect
to get useful information about these processes by
evaluating E(nlm; khan; R) at R =Re, except when at
least one of the states of interest is in a very low
vibrational state.

The independence of the electronic factors E(nlm;
kX p, ; R) with respect to n is a reflection of the de-
pendence of the amplitude of the inner part of the
bound-state wave functions pnfm and of the similar-
ity of these funct1ons for various values of n but the
same values of 1 and m.

40
(a)

—-4.0-
CL

I
— 40

(b)

I I

2
R(a.u. )

4 5

FIG. 2. Transition amplitude integrals T~(R') for
associative ionization and dissociative recombination,
as functions of the upper limit R' of integration. Note
that the functions T~(R') for the p state, in (a), do not set-
tle down to their final value until R' -4 a.u. : (a) bound

Rydberg orbital, 5po', nuclear kinetic energy in the dis-
sociated state, 10 a.u. ; vibrational state of H2, v=4;
rotational state, K=4; and (b) bound Rydberg orbital,
5A; nuclear kinetic energy in the dissociated state,
10 a.u. ; vibrational state of H2, v=4; rotational state,
K=4.

R' 8X

&,(R')= f q (R)E(f;f;R),„' dR

-7", as R' -~

shows quite explicitly where the transition ampli-
tude arises. Admittedly, this kind of diagnosis
depends on what form one uses for integration.
Suppose we were able to transform the R derivative
into an operator proportional to 8 E~(R)/8 R as we
did with 8(/8R or as one does in making the trans-
formation of optical transition amplitudes from
dipole velocity to dipole length. Then we would
find an R dependence of T,(R') differing from that
of the form just given. This is quite analogous to
the different distance dependences of the dipole-
length, velocity, and acceleration expressions for
optical transitions. Despite such ambiguities, if
we calculate T, (R') in the same way for several
types of transitions, we can make a useful com-
parison among them.

Figures 2(a) and 2(b) show two straightforward ex-
amples, the transition amplitude for H(n = 1)
+H*(n=3) colliding to give H,++e. These curves
are taken for initial relative kinetic energy of H
and H* of 10 ' a.u. , for final vibrational and ro-
tational quantum numbers v =4 and K=4. Figure
2(a) corresponds to the 5Po~ state, and Fig. 2(b) to
the 5dm& state, in the united atom notation. Clearly,
the 5po~ example shows accumulation of probability
amplitude everywhere between circa R = l. 2 and
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8.0

- 8.0—
(a)

04—

-04—
I

3
R' (a.U. )

(b)

FIG. 3. Transition amplitude integrals T~(R') for
associative ionization and dissociative recombination as
functions of R', the upper limit of integration, for that

o& bound state that is 4s-like for small R: (a) s-wave
component; nuclear kinetic energy of dissociated state,
10 a.u. ; vibrational state of H2, v=4; rotational state,
&=4; (b) d-wave component, for the same states.

R =4 a. u. The 5d7t example is governed in a large
part by the behavior near the left-hand turning
point when 1.2 ~R &2 a.u. This is due in part to
the zero in the electronic factor F(f;i;R) near
R = 2. 5 a.u.

A more complicated example, but equally en-
lightening, is the state whose united atom descrip-
tion is the 4sog for small values of R. The 4sog
and 4'& curves show an avoided crossing between
R =2 and R =3 a. u. The energies of these states
are discussed in Sec. VI. The lower energy of the
two is 4s-like for R &2 and 4d-like for R ~ 3. The
accumulation of transition amplitude for the process
H+H*-H,++e in this case is of some interest. For
small values of R, the principal contribution to the
outgoing electron wave is the s wave, and, as Fig.
3(a) shows, this amplitude accumulates over much
of the range of R from 1.2 to 2. 7 a. u. Over this
same range, a small negative d-wave amplitude is
developed, originating largely near the left turning
point, at about 1.5a. u. When the state changes
character from s to d, a sharp osciQation develops
in the d-wave amplitude; this is most clearly dem-
onstrated by the sharp peak at about 3. 3 a.u. in
the d-wave amplitude, as shown in Fig. 3(b). The
net result of the oscillation leaves the total d-wave
amplitude relatively small and positive. The out-
going s wave is the larger by far and develops
at relatively small internuclear distances, while
the smaller d-wave contribution develops primarily

in the region of the pseudocrossing and secondar-
ily near the left turning point. This kind of be-
havior can be expected to show itself in such phe-
nomena as the dependence on vibrational quantum
number of the angular distribution of photoelec-
trons or, more probably, of electrons from auto-
ionization of Rydberg states. Calculations of the
type used to generate Fig. 3 were also carried
out with a potential curve that crosses the H,+

curve. " When such a curve is used, the results
are virtually identical to those in Fig. 3. In other
words, the proximity of the curves of H+H* and
H ~ H+ and the relatively small change in nuclear
momentum associated with the transition make
the entire range of R important for this transition.
In this example, the effects of a crossing point
are entirely negligible.

This conclusion has led us to suggest that Pxe-
dissociation may occur from high vibrational
states of one Rydberg state into the vibrational
continuum of a lower Rydberg state. ' The poten-
tial curves of the two states may be virtually iden-
tical, except for a vertical displacement. Such a
predissociation process does not, at first sight,
fit into any of the Franck-Condon cases of type 1
(electronic) predissociation classified by Herz-
berg. " However, we must look at this judgment
in light of our conclusion about the unimportance
of classical crossing points for transitions be-
tween similar and relatively close potential curves.

It becomes useful to classify curve crossing or
diabatic transitions in a manner that differs a
little from Herzberg s classifications of predis-
sociation. Our classification is a generalization
insofar as it encompasses all the processes in
Table I; it is also a modernization insofar as it
reflects our growing ability to make semiquanti-
tative theoretical analyses of diabatic transitions,
as well as inferential analyses from spectral data.
We define three categories of diabatic molecular
transitions, according to the range of R over which
transition amplitude is principally accumulated:
(i) the classic "crossing-point" case in which

the dissimilarity of the two states makes the tran-
sition amplitude oscillate rapidly and average
quickly to zero, except in the region of a crossing
point [Fig 4(a) j; (i.i) the "turning-point" case in
which the curves never cross but transitions do
occur between them, with amplitude gathered pri-
marily near the classical turning point for the
initial and final states. These turning points must
lie at values of R close together with respect to
the widths of the turning-point lobes of the wave
functions of initial and final states. Note that we
must deal explicitly with separate effective poten-
tials, including the centrifugal potential, for each
rotational state of the molecule, in using the
turning-point model. This case may be important
for some cases of associative and Penning ioniza-
tion, e.g. , in He*(2'S, 2'S)+Ar or Hg [Fig. 4(b)];
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(aj (b)

(iii) the "broad-range" case in which transition
amplitude accumulates or oscillates over much of
the range of the potential well, as in the associa-
tive ionization of H, [Figs. 2, 2, and 4(c)j. This
third category appears to require the fullest treat-
ment for its quantitative development. The first
two cases lend themselves to distinct simplifica-
tions and, in some cases, to quite elegant treat-
ment. " " There will be other cases, such as
that of transitions between curves that are close
in a narrow range of R but never cross; such
cases are trivial deviations from the three main
categories and can be considered with them.
There are also going to be cases that are clearly
intermediate situations; these may require the
full and perhaps heavy-handed treatment of cate-
gory (iii). The classification also applies to large
molecules with multidimensional potential sur-
faces, but we are only beginning to understand the
role of Franck-Condon factors in diabatic transi-
tions in these molecules. "~"

It is clear from Fig. 3 that the autoionizing
transitions and some associative-ionizing transi-
tions we are examining for H, fit category (iii) and
Fig. 4(c). There is no reason to believe that this
category is any more general than the other two.
Transitions in category (iii) presumably tend to
satisfy the vibrational propensity rule"

prob(&v = a 1)»prob(bv = a 2)»

FIG. 4. Three cases of dependence of transition
probability on internuclear distance: (a) Probability & 0

only near crossing point; (b) probability & 0 only near
classical turning point, and no crossing or near-crossing
occurs; (c) probability &0 over a, wide range of inter-
nuclear distance. Transitions in all three cases are
between states A and B.

be the more available, short of doing rather full
calculations.

An interesting phenomenon in associative ioniza-
tion arises from certain low-energy collisions.
This is the appearance of a sharp maximum in one
set of the transition probabilities for associative
ionization, from the (united atom) 4sv, K=6, chan-
nel into various vibrational states of H~+. It occurs
when the kinetic energy of relative motion of H and
H* is 1.2 x10 'a. u. (~ of normal thermal energy).
From an integral development like those of Figs. 2
and 3, the peak appears to be a straightforward re-
sult of a fortuitously good match of the free vibra-
tional function and the distance derivative of the
bound vibrational function, especially between 1.5

and 1.7a.u. , and again between 1.8 and 2. Oa. u.
Examples of the nuclear wave functions are shown
in Fig. 5. The cross sections for three vibra-
tional states of H,+ are shown as functions of en-
ergy in Fig. 6; clearly the vibrational state influ-
ences only the magnitude of these resonancelike
curves. Note that although the peaks of the curves
are high, their contributions to ordinary experi-
mental-rate constants are small because the cor-
responding low-energy collisions are rare.

V. VIBRONIC INTERACTIONS AMONG
RYDBERG STATES

We have investigated the vibronic coupling of
Hydberg states by way of a model, albeit a rather

(b)
I

For autoionization of H„ this seems to be the
case, but for auto-ionization of N, it appears
otherwise, according to recent work of Berkowitz
and Chupka. " Sometimes we can expect only one
category of transition to be available. However,
when more than one category is open, we do not
have any ready way, as yet, to decide which will

FIG. 5. Nuclear wave functions for states showing
resonancelike peak in associative ionization cross sec-
tions: (a) Bound function for H2, v=4, %=6; (b) free
function for the 4scr state, with E= 5 and kinetic energy
of 1.2 && 10 a.u. , corresponding to the maximum tran-
sition probability.
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D YNAMIC COUP LING IN MOLE C U LAR. E XCIT E D ST AT E S.

trying to interpret specific shifts in the spectrum
of H„we can expect such shifts to appear and to
be large enough to cause some difficulties in as-
signments. It may be possible in time to infer
experimental values of the coupling terms by de-
perturbing experimental spectra taken under suf-
ficiently high resolution. "

VI. CORRECTION

In the course of this work, we discovered an
error in our earlier computation' of the zero-
order adiabatic s states in the potential of H+, .
We have recalculated the Rydberg-term values for
the ns and nd states (n = 3-6) in the spherically
symmetric potential Vpgg and then diagonalized
the matrices of the mf = 0 (s and d states) in the
monopole-plus quadrupole potential Vpc, E+ V2g.
These results, corrections to Table I and Table II
of Ref. 2, are given here in Table III. We also
include the 3da and 4da states in order to show how
the avoided crossing of 3s and 3da, and of 4s and

4do, is introduced by the l —spoiling potential V, .
The previous results placed the ns levels below

the corresponding nd' s at all internuclear distan-
ces. This is physically incorrect, as Mulliken has
emphasized. " We had originally attributed this to
an artifact of the model; fortunately it is not, and
was due only to a program error. The corrected
level diagram is now consistent with the known
level shown for H, .

We have already referred to the curve-crossing
behavior in the 4so and 4do states. A similar ef-
fect occurs with the other curves (n= 3, 5, and 6)
between 8=1 and 8=2 a. u. The mixing and
avoided crossings induced in these states by the
nonspherical potential are the most dramatic exam-
ple of l spoiling in the model. This behavior nat-
urally gives rise to large contributions to vibra-
tionally induced transition amplitudes because of
the large values of &(/&8 in the crossing regions.

The worst l spoiling in the 0& states occurs in
the neighborhood of the equilibrium separation
because of the avoided crossing in the adiabatic

TABLE III. Corrected eigenvalues for the adiabatic states. (Energy in Hartree a.u. 27,21 eV; distances in Bohr
radii) .

A. Rydberg states in the potential V0&E

ns

nd

1.0
—0.0697
—0.0368
-0.0227
-0.0154

2.0

—0.0603
—0.0331
—0.0209
—0.0144

3.0
—0.0532
—0.0302
—0.0194
—0.0135

4.0

—0.0472
—0.0276
-0.0181
—0.0128

—0.0578
—0.0324
—0.0206
—0.0143

—0.0587
—0.0328
—0.0208
—0.0143

-0.0584
—0.0328
-0.0208
—0.0143

—0.0583
—0.0324
—0.0206
—0.0142

B. Rydberg gerade states with mE = 0, in the potential V0~E+ V2~.

6d

5s
5d
4s
4d
3s

3d

-0.0154

—0.0144

—0.0227
—0.0207
—0.0368
—0.0326
-0.0697

—0.0582

—0.0144 70%s,
25%d

—0.0145 70%%uod,

25%s
—0.0208
-0.0212
—0.0332
—0.0324
—0.0600 65%s,

30%%u~

—0.0609 65%d,
30%s

—0.0135

—0.0146

—0.0194
—0.0214
-0.0301
—0.0341
—0.0531

-0.0628

-0.0128

—0.0146

-0.0181
-0.0215-0.0275
—0.0344
—0.0471

—0.0648

aStates are listed according to whether the l =0 or /= 2 component dominates. For n=3 and n=6, the ratios of
dominant component to the other component are circa 2.2: 1 and 3:1, respectively, so that these are actually mix-
tures of s and d states.
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limit. This is a reflection of the transition that
occurs around R=2 from the separated-atom to
the united-atom situation. Over most of the range
1 &It c4 a.u. , for the 4s and 4d states, about 10%
of the minor component appears in the other; for
5s and 5d, about 12%; and for 6s and 6d, for which
the zero-order states are almost degenerate, 25%
of each component mixes with the other. For
large R, e. g. , R=4a. u. , the mixing is much less
than for R = 2, and consists of about equal amounts
mixing of states n'l and of states n with a given
nl' state. Note that one must be cautious not to

make very specific inferences about l spoiling in
real rotation-vibration states of H, on the basis of
the model, insofar as the occurrence of near de-
generacies and therefore the specific values for
shifts and mixing coefficients are very model-
sensitive. The model is useful to tell us about how
large the maximum l spoiling will be, and to give
us a rough idea at about what R value this can be
expected, but one must not trust the present model
for quantitative reproduction of the detailed prop-
erties of H, .
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