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which is the exact classical Josephson equation.
Perhaps the most convenient way to interpret
Eqs. (31a) and (3lb) is to write

KJ
Q crossed i Qi

We then use our original interpretations, but say
that when v~ is not uniform over short sections of
vortex core, we must use Eq. (32) for calculating
the rate at which vortex lines (or vorticity) is
crossing the potential current.
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The classical binary-encounter model for the ionization of ions by impact of electrons given

by Thomas and Garcia has been extended to calculate the excitation cross section of ions. The

electron-impact excitation cross sections for the Bs-3p and the Bs-Bd transitions in Mg, the
2s-2p transition in Be+, and the 4s-4p transition in Ca+ have been calculated. The results are
compared with calculations based on the close-coupling and the Coulomb-Born approximations.
Our results agree better with close-coupling calculations than with calculations based on the
Coulomb-Born approximation.

INTRODUCTION

In recent years, considerable effort has been
devoted to the study of the electron-impact exci-
tation of atoms. ' Very few attempts, however,
have been made to calculate the excitation cross
section of positive ions because of the difficulty of
including the Coulomb field which acts upon the
incident electron throughout its trajectory and dis-
torts the linear path. The quantum-mechanical

calculations using the Coulomb-Born and the close-
coupling approximations have been made for a few
ions. '~ The classical binary-encounter model, '
which provides a simple method of estimating the
ionization and the excitation cross sections of
atoms, ~" has not yet been used to calculate the
excitation cross section of ions.

Recently, Thomas and Garcia" have discussed
a model solution of the problem of the ionization
of ions within the framework of the binary-en-
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counter approximation in which they have taken
into consideration the residual field of the ion.
Here, we have extended the same approach to cal-
culate the electron-impact excitation cross sec-
tion of the positive ions Be+, Mg+, and Ca+. The
transitions studied are: Be+(2s-2p), Mg+(3s- sP
and 3s-3d), and Ca+(4s-4P).

proach analogous to that of Thomas and Garcia,
the expression for the total excitation cross sec-
tion from the ground state to the state n of the ion
is given by

2g'r Z'
1+ 1+

pi~' p& p-g

THEORY

In the binary-encounter model, the significant
interaction is the energy exchange between the
incident charged particle of velocity v, and an
atomic electron in the ith shell of velocity v2~.
The excitation cross section from the ground state
to a state n of any atom due to an incident electron
of kinetic energy E» under classical impulse ap-
proximation, is given by

U
=Z.2/. ,

U
o (v, v .)d(aE),"n

g" g' (/2 1/2) 2

(p,'- p, )' (3)

Here Z = U2cr, Z'= U2o', p, —@,/U
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if —(&'+ l)(h,
R'=U 1/U, and M'=U /Un+1 n

For excitation, 4 is given by

&= (p, —M ) '[(p, /M —1P/2+1].
where U„and Un+ y are the relative energies of
the states n and n+ 1, o~e f is the cross section
for the exchange of energy AE, and nz is the num-
ber of electrons in the shell whose energy is U~.
Equation (1) is to be averaged over the velocity
distribution of the bound electrons.

In the case of ions of effective charge Z',
Thomas and Garcia assumed that the binary colli-
sion took place at a distance $ from the nucleus
which resulted inan energy transfer AE. If ioniza-
tion energy is U, then for ionization hE ~ U, where-
as for excitation Un& M & Un+ y. The kinetic en-
ergy at the collision radius t is E,'= E, + Z'/$ =- E„
so that the total cross section for the energy ex-
change collision is

The factor to the right of —4'Z' in Eq. (3) represents
the magnification due to the curvature of the path
of the incident electron in the field of the ion.
he» y &Un+ y, Z' is given by

if 0» P2 ~P' —R'

7/ 2p, + 3M' 3 2(p,' —R')3/'
3p' M' p'- p p '/2R'

if P~-R ~P2~P( —M2

n

if E' &U
+

(2a)

(p/ M 2)3/2 (pP R2)3/2

3p,' p,'" M4 R4

if p,'- M2& p, (4a)

v', v dm,
n

For the case Un & Ey~ Un+ y, the expression for
Z' is

if U &E'& U
n 1 n+1 (2b) 2P2+3M 3

&'(pi p2) =3p~ 'M4 —
pI p1 1 2

Here ( ) denotes the average over the speed dis-
tribution of the bound electron. Following an ap- if 0& P2~ P~

—M
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(P,'- M')'/'
SP 1/P 2'~ M4

if Pl —M &
P2 (4b)

y(u) = (32/~)a'/(1+ a')4,

where k2 = P2, we get

Here P, = E,/U, and E, is the kinetic energy of
bound electron. If we use a hydrogenic velocity
distribution function for the bound electrons.

(~'&= f Z'(P,', a, R')f(u) du .
0

With the help of Eqs. (4)-(8), if El & U
can write

(8)
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where C = P,'+ 1

The corresponding expression for the case when U~ & El & U„ 1 is obtained by replacing R' by p,
' in Eq. (7).

RESULTS AND DISCUSSION

The electron-impact excitation cross sections
were calculated on the basis of the above formula-
tion for the ions Mg+, Be+, and Ca+. Figures
1(a) and 1(b) are plots of the excitation cross sec-
tion, cr against incident energy for the 3s-3p and
ss-sd transitions of Mg+, and Figs. 2(a) and 2(b)
display cr for the 2s-2p transition in Be+ apd the
4s-4p transition in Ca+, respectively. The re-
sults are compared with the close-coupling cal-
culations of Burke and Moores' for Ca+ and Mg+.
The results of calculations of Bely et al. ' for Be+
and Mg+, and Petrini" for Ca+, based on Coulomb-
Born approximation are also shown. No experi-
mental data are available for the excitations of
these ions. The energies of various eigenstates in
Ca+ and Mg were taken from the paper of Burke
and Moores. For Be+, these energies are from
the compilation by Weise, Smith, and Glennon. "

For the 3s-3p transition in Mg+, we observe
that our results are in good agreement with the
calculation of Burke and Moores based on the
close- coupling approximation with exchange. The
Coulomb-Born results of Bely et al. give a very

high value of the cross section as compared to
our calculation. For the 3s-3d transition in Mg+
and the 4s-4p transition in Ca+, our results deviate
within a factor of 2 from the close- coupling re-
sults with exchange. The Coulomb-Born results
of Petrini yield a high value of the cross section
at the threshold. For the 2s-2P transition in Be+,
our results agree with the Coulomb-Born results
of Bely et al. beyond the value 12 eV of the inci-
dent electron energy, but at lower energies there
is a marked disagreement between the two calcula-
tions. It can thus be seen that the classical binary-
encounter model gives fair estimates of the elec-
tron-impact excitation cross sections of ions,
especially at higher impact energies. The
quantum- mechanical calculations give a nonzero
value of the excitation cross section at the thresh-
old, whereas our calculations yield a cross sec-
tion which vanishes at threshold.
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FIG. 1, (a) Electron-impact excitation cross section
of Mg+ (3s-3p) transition: dashed line, close-coupling
calculations of Burke et al. , dot-dashed line, Coulomb-
Born calculations of Bely et al. ; solid. line, present cal- &.

culations. (b) Electron-impact excitation cross section
of Mg (3s-3d) transition: dashed line, close-coupling
calculations of Burke et al. ; solid line, present calcula-
tions.

FIG. 2. (a) Electron-impact excitation cross section
of Be (2s-2p) transitions: dot-dashed line Coulomb-
Born calculations of Bely et al. ; solid line, present cal-
culations. (b) Electron-impact excitation cross section
of Ca+ (4s-4p) transition: dashed line, close-coupling
calculations of Burke et al. ; dot-dashed line, Coulomb-
Born calculations of Petrini; solid line, present calcula-
tions.
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