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The dissipation of energy in the flow of an ideal incompressible Quid is described by a the-
orem whose derivation relies upon the exact three-dimensional Magnus formula discussed in
the previous paper. The theorem, which explicitly demonstrates the role of vortex motion
in the process of energy dissipation, can be used to calculate the trajectories of vortices.
Also derived is a detailed Josephson equation —an extension of Anderson's "new corollary
in classical hydrodynamics" —which provides an exact non-time-average relation between
chemical potentials and vortex motion.

In this paper, we study the dissipation of energy
in the flow of an ideal incompressible fluid (e. g. ,
superfluid helium). The fluid velocity field v is
uniquely separated into a potential flow and a vor-
tex velocity field. With a convenient choice of
boundary conditions, we eliminate the energy of
interaction between these fields and obtain an en-
ergy dissipation theorem and a detailed Josephson
equation for ideal classical fluids.

The energy dissipation theorem provides a de-
tailed analysis of energy transfer, via vortex mo-
tion, between the potential flow and the vortex
system. The theorem can also be used to cal-
culate the trajectories of vortex lines in the flow
channel; an example is provided to illustrate such
calculations.

The detailed Josephson equation, which is a
generalization of both the "pressure equation" in
hydrodynamics' and Anderson's "new corollary to
classical hydrodynamics, "' provides a detailed re-
lation between chemical potentials and vortex mo-
tion. The relation can be applied to both static and
accelerated flows without relying upon time av-
erages or assumptions about "quasisteady" flows.

Throughout this paper we will consider the flow
of an ideal incompressible fluid through an orifice
or channel connecting two long cylindrical reser-
voirs, as shown in Fig. 1(a). We will explicitly
assume that the fluid velocity v is uniform for a
finite depth at the open ends of each reservoir,
having values v, and v, at fixed horizontal surfaces
S, and S„which lie just below the free surfaces.
(In practice, it should be possible to add sufficient-
ly long tubes to an experiment so that there will be
no vorticity and v will be uniform near the ends of
the reservoirs. ) In our discussion, V will be the
volume bounded by the fixed surface S consisting
of S, and S„and the fixed channel walls which we
will call S. It is assumed that V is a singly con-
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FIG. 1. (a) Flow channel between cylindrical reser-
voirs; |b) Core of a vortex in the flow channe1.

nected region.
In the absence of any vorticity in V, there will

be pure potential flow with v = vy= Vy, where vy is
completely determined by the values of vy, v„and
the geometry of the flow channel. Because of our
assumption that v is uniform at the ends of the flow
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channel, the shape of the streamlines of v~ within
V (below S, and S,) will not change as the free sur-
faces move. When vorticity is present, we can
define a vortex velocity field vv by the relation
vv =-v —v, so that we have in effect separated the
velocity Iield v into a potential and a vortex veloc-
ity field given by

v=v +v (1)
V

To prove that this separation is unique, we use
the theorem that a vector field is uniquely de-
termined in a singly connected region by specifying
the field's curl and divergence in the region and
its normal components at the boundary. For a
given vorticity ~ = Vxv in the flow channel, we
chose as conditions upon the three vectors v, vy,
and vv'.

V~v =0, VXv =~, v ~ ni -v, v ~ n~ =0;
Szv

V v =0, Vxv =0, v ~
~ 1= 1, v ~

2
——

2, ~
~

~S =0; (2b)

V ~ v =0, Vxv =~, v ~ n~S= 0.
.v v v

(2c)

Mathematically, Eqs. (2a)-(2c) uniquely specify
v, v~, and v„; we then prove that these vectors
are related by Eq. (1), by noting that the two vectors
v and (v~+ v„) have the same curl and divergence
in V and the same normal components at S, and
thus must be the same uniquely determined vectors.

Having separated the velocity field into a poten-
tial and vortex part by Eqs. (1) and (2), we can
now separate the energy E of the fluid into a
stream energy Z~ and a vorte'x energy Z„. To do
this, we use Eq. (1) to write

Z= f~-pv~'dr= f ~2pv 'd7+ f —,'pv 'dv

+f&pv ~ v d7=Z +Z +Z.
v v int

'

tial Q. The equation of motion for the fluid is

v = —Vp, +vX +g (5)

where v =Sv/Sf; e =-Vxv; and the "chemical po-
tential" p. is defined as

p, = 0+P/p+ 2v

(7)

An equation for v is obtained by remembering
that the shape of the streamlines of v~ does not
change. Thus, v~ (t+ 5t) must be proportional to

(f) and one gets

v = ~(f)v =V(o. g) .

Because of the conditions V ~ v„=0 and vv ~ n~S=O,
we get

Z =f pVQ .~ v d7= J V ~ (pPv )d7

pyv ~ n~ dS=O.

Thus, there is no interaction energy, and we have

The spatially constant o, (t) can be evaluated at S„
giving o, (t) = a, /v„where a, is the downward ac-
celeration of the free surface above S,. o, (t) is a
measure of over-all accelerations, such as one
has in the case of U-tube oscillations; when the
total current is constant, ~ is zero.

The equation for v is obtained from Eqs. (5) and
(7) with the result

E=E +E
v

(4)
v =v —v = —V(p, +o.P)+v&«u+g

v e' (8)

To obtain the rate of change of Zy and Zv, we
will assume that we have an ideal incompressible
fluid where (i) all vorticity + is confined to small
but finite fluid cores of vortices; (ii) there can be
external forces ge (per unit mass) which act only
on the fluid in or near the vortex cores' (the
localized region where either ~ or ge is nonzero
will be called the "core region"); and (iii) that all
other forces acting on the fluid are conservative
body forces g~ ———Vg, derivable from the poten-

We will now use Eqs. (5), (7), and (8) to cal-
culate

aZ
Z =, and Z

v

Equation (5) gives

Z= f pv ~ vd7'
U

= —f pv ~ Vp, dr+ f pv ~ (vxu&+g )dr.e
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The first integral on the right-hand side of Eq. (9)
becomes (since V ~ v =0)

—f & ~ (pZzv)dr= —f S pZz(v ~ n)dS=J(iz - Zz ),
1 2

where J= —fS pv ~ ndS = fS pv ndS is the total
mass current zn the channel. Noting that v (v x &u )
= 0, Eq. (9) can now be written in the form

E=J(Zz —p )yf pv ~ g dr (10)

The interpretation of the following results will re-
quire that the two terms on the right-hand side of
Eq. (10) be formally distinct. One can show that
the term involving ge cannot be written as part of
j'(p, , —p, ,) if there exists some path C(1,2) in the
fluid connecting $1 and S2, such that AC(1 2 g .Bl
=0. This condition on ge can be considere a
minimum formal condition for what we have been
calling a "localized" force.

Using Eq. (I) and the fact that V ~ v~ = 0, we get
for Ey,

Z = f pv v dr f pv v(ny)d7.

S po, Qv ~ ndS,
1 2

= «(42 —41) ~

E = f pv ~ v d7'= —f pv ~ V(g+ay)d7
v V v v V v

where our boundary condition vy ~ n = v ~ n at S, and

S, allows us to equate the total current J and the
total potential current.

The rate of change Ev of the energy of the vortex
system is calculated using Eq. (8):

g exactly.
In Eq. (14), we have already used the fact that

~ and ge are zero outside the region of the vortex
cores to reduce the integration volume from V to
the core region. For our approximate evaluation
of X, we will assume that v& is sufficiently uni-
form over the volume occupied by a reasonable
length of vortex-line core that v~ can be taken
outside the integral in Eq. (14). Consider a, short
length of line as shown in Fig. 2, assume v is
uniform over this length, choose the y axis to be
in the direction of v~, and slice the vortex by a
series of xy planes a distance &zz apart. Then
the contribution to X from this section of vortex
line can be written in the form

g = —Q.pkz.v, , f (vx~+g ) dS,
z z (yj S e p

(15)

Using Eq. (16) in Eq. (15) gives
Ag .~X.

y = Zp'U )AZKV .= KQ (p'U
( ))

AREA SWEPT OUT
BY VORTEX

ZBZ; hX;

where ny(&) is vy, assumed to be in the y direc-
tion, and So~ is the surface area, in the ith xy
plane, across the core region.

From a study of the exact three-dimensional
Magnus formula, ' it was found that the x component
of the velocity of the c.m. of the vortex line (the
coordinate X of the c.m. of the line being defined
by KX= fS &z dS) is given by

KV = —f (vx(d+g ) dS=K . (16)
vx S, ey

+ f pv .(v x &u + g ) d7' .
v e

(12)

The first integral on the right-hand side of Eq.
(12) is zero because v„~ n( =0. Since v ~ (vx~)v
= —v~ ~ (vx~), because v ~ (vxup) =0, and since
v„.ge =v ~ ge —vy ~ ge, Eq. (12) can now be written

E = —pf v ~ (vx~+g )d7+ f pv ~ g d7 (13).
v V e V e

Before we summarize and interpret our results,
it is necessary to interpret the term

V ~ (VX~ +g d7',
core region P ge (14)

which appears in Eq. (13).' We will first derive
an approximate but convenient form for y, a form
that leads not only to a simple interpretation of
the energy equations, but also allows us to use
these equations to predict the motion of vortex
lines. At the end of the paper we will evaluate

FIG. 2. Area swept out by a vortex line crossing the
potential current &y.



335IPATIoN THEO REM ANDE NERGY- DIS

g .gx;is thesee that K$1From Fig. 2 w
ossed by the vprtexarea, iin the&& Plane,

' 't, 'tis the areaTo be mpre P
1' e " a line con-

ex lici, 1time &t
pf masscrossed by

' the points pf the
the ' cen —

. c.m. ostruc ed by connect "g
Since vy isf the xy planes.vprticzty '

lane, we have
in each o e
the &~ plan,

gg. dX.6J
y crossed It ( V

rossed in athe potential curreng'

&t and Eq. (16 cantime b, an

wi]1 call theEquations (20) a
for ideal fluids~dissipation theo

dissipation

"energy
pdel fpr energys&ecific

rk Pnly Pn the Po
give us

e fprces dP wPr
' ate

Th conservative o
t ] flow can disslp

pr-
tential flow, and

pnly by having volt gains this way o
. The energy dls-the potential c

the vortex

the energy
' current.tices cross e

low goes j.nto esipated by
~

) an
the potential f o

d the vprtex(at the ra«K~ crosse
(at a rate

system a
te t is energy asys etern can disslpat

locali. zed npncp-if there are
f~~ces acti g

d t calculate
n pn the vor

the
serm

E (2]) ca,n be us
'llustrated

In addition, q
' a stream, as lpf vprtices ln

the stream-
trajectories o

e have drawFl ~ 3a w
~ . e spacing

jn Fig ~ 3'
through apptential flolines for p

Q crossedQ crossed

ate at which the potentiald'b'" wt""1
c em. crosse y s.

'1 ho th tJg
dpositive w en

of v xT& (i. e. , V~ vy0 vp . . ' v K

'stinct vortex
(f which cross the en1 nes each of w lc

ent J'), then
ln

the entire currenline crosses e

cm /sec

vJ -tv,
Q crossed

the frequency at whic
'

h lines cross.
ted and linese situation is mor e

art way, X=~J
}1 o t' lc

the vortices. In
rt sections of vor exfo ove sho

must use the resu s owe mu

and E~
Eq. (32).

t'ons for E, E~, ang gour equa i
,10), (13), an[using Eqs.

+ pv'g& =&(ul —V2)+

MICRQNS —
IQQ25—

20

v *IO cm/sec

ATH S

2 Q crossed1 (20)
IO— v~* I cm/sec

v *.I cm/sec

+ fE = +
v cr (21) (b) 0— VELOCITY IN THE 0ORIF ICE*AVERAGE FLUID V

E . 20) be-lna i', ' E . (11)f rZo~, Eq.In addition, using Eq.
comes

= Ki . (22)g )- (p, +ay )]=Ki

-called "energy eque uation"
ssible fluid.. ' lttll t t
b conservativeg s energy e

) and because of t e te~X- &2 ~

forces doing work a a

-10—

-20—

-25—
IO 20 30 4Q

I

50 p

t al flow through ans for poten iaFIG. 3. a
~ (b) Trajectories o vorifice;

orifice.



336 EI ISHA R. HUGGINS

the streamlines so that equal currents 6Jy flow
between them, and choosing an orifice 8 p, in diam
in order to match the experimental conditions in
the ac Josephson experiment of Khorana and
Chandrasekhar. ' To plot the trajectories of vor-
tices blown at the orifice, we note that a vortex
which moves from point A to point B crosses a po-
tentia, l current b, J~ and thus gains an a,mount of
energy z6 J'~. Using the relation

E(r+ nr) =E(r)+ )&AJ (23)

we can calculate ~r and the point B at which the
next streamline is crossed. Figure 3(b) shows
the vortex-ring trajectories for various average
fluid velocities (8=pv A) in the orifice. The re-
sults, which assume ge -0, are approximate only
because we have neglected the effects of images
and used the standard formula

E(r) = ,pre'r[l—n(8r/a) —z ]

tz'=-t +0 =&+A/p+z~+n4

must be constant throughout V. According to Eq.
(22), even if there is vorticity present but there
is no net motion of vortex lines across the poten-
tial current, then

for the energy of the ring.
Equation (22), which we have referred to as the

"detailed Josephson equation for classical fluids, "
has several interpretations. One is as an exten-
sion of the "pressure equation"' which states that
if there is no vorticity in V, then a "dynamic chem-
ical potential"

Z(tz' —p. ')= —p f v (vx(u+g )d~ . (26)

For an exact evaluation of Eq. (26), divide the
volume V into a bundle of infinitesimal tubes
whose walls consist of streamlines of vy. Set dv
= &Ai d li where d li is an infinitesimal vector
along the length of the ith tube, and b.A; is the
cross-sectional area of the tube at d 1-. Equation2'
(26) becomes

J(tz' —tz') =-Z. f '[pv (vx v+g )](LZ. 'dl. )

=-p. f'(pv .~.)[(vx~+g ) ~ di. ],
(27)

where we obtained the last expression by noting

vy is parallel to &lz. Now, pv~ .bA; = 6J~z is
the potential current in the ith tube; since
is conserved (not a function of lz), it may be taken
outside the integral giving

&(tzl —P2)= —2 .&& . fl (vxu&+g )'dl. . (28)i z 1 e i'

Assume that the i th tube passes through the core
of a vortex in the flow channel, as shown in Fig.
1(b). Because &u and ge are zero outside the core
region, the line integral in Eq. (28) can be taken
around the closed contour C3 giving

where v is called the Josephson frequency. '
Equation (22) is a generalization of Anderson's

"new corollary in classical hydrodynamics" in
that it gives a detailed non-time-average relation
between &p, ' and the motion of vortices. Even so,
it contains the approximation we used in evaluating

X [Eq. (14)]; the exact classical equation is

tzl+ nfl = p, +n&f& (J =0),crossed (24) J(tzl- tz2)= —Z. &7 . gC (vx&u+g ) ~ dl . (29)
z z C, e

i.e., the reservoirs must be at equal dynamic chem-
ical potentials p, '.

Another interpretation of Eq. (22) ha. s applica. —

tions particularly in the study of superfluid helium
where K is quantized in units of h/m. Assume
that vortex lines cross the entire stream at a fre-
quency v, so that y =«p r csoesd-«[Evq (19)],
then Eq. (22) can be written

(u, +no, ) (p. +nA. ) -tz,'- tz.' &tz'
K K K

which is the rate at which vortex lines must cross
the channel when there is a difference &p, '= p, ,' —p.,'
in the dynamic chemical potentials of the reser-
voirs. In the special case of a "quasiequilibrium
flow, "where 8 is constant, n = 0 and 4 p, '= ~p, =gy,
we get

v= v. =-(tz —tz )/q =gy/q=mgy/h,j 1 2

To evaluate Eq. (29), take the curl of Eq. (5),
which gives 2= Vx(vx~+g~). Integrating this
equation over the surface S, bounded by C, in Fig.
1(b) gives

bJ
(31a)

(tz, +ny, )- (tz„+ny, ) =-g ' ', (3lb)

~(tz,'- tz.') = -g

f &u 'dS= f vx(vxru+g ) dS
S3 S3 e

(vxu)+g ) dl. (30)
3 e

Now fS v .dS, the rate at which vorticity is in-
creasing within the fixed curve C» can be written
as DKz/b t, where &vz is the amount of vorticity
being carried across the line (1, 2) during the time
&t. Writing &~z/&t for fS ~ ~ dS, Eqs. (29) and (30)

3
give
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which is the exact classical Josephson equation.
Perhaps the most convenient way to interpret
Eqs. (31a) and (3lb) is to write

KJ
Q crossed i Qi

We then use our original interpretations, but say
that when v~ is not uniform over short sections of
vortex core, we must use Eq. (32) for calculating
the rate at which vortex lines (or vorticity) is
crossing the potential current.
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The classical binary-encounter model for the ionization of ions by impact of electrons given

by Thomas and Garcia has been extended to calculate the excitation cross section of ions. The

electron-impact excitation cross sections for the Bs-3p and the Bs-Bd transitions in Mg, the
2s-2p transition in Be+, and the 4s-4p transition in Ca+ have been calculated. The results are
compared with calculations based on the close-coupling and the Coulomb-Born approximations.
Our results agree better with close-coupling calculations than with calculations based on the
Coulomb-Born approximation.

INTRODUCTION

In recent years, considerable effort has been
devoted to the study of the electron-impact exci-
tation of atoms. ' Very few attempts, however,
have been made to calculate the excitation cross
section of positive ions because of the difficulty of
including the Coulomb field which acts upon the
incident electron throughout its trajectory and dis-
torts the linear path. The quantum-mechanical

calculations using the Coulomb-Born and the close-
coupling approximations have been made for a few
ions. '~ The classical binary-encounter model, '
which provides a simple method of estimating the
ionization and the excitation cross sections of
atoms, ~" has not yet been used to calculate the
excitation cross section of ions.

Recently, Thomas and Garcia" have discussed
a model solution of the problem of the ionization
of ions within the framework of the binary-en-


