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The quadrupole polarizability e which measures the induced quadrupole moment produced

by an external field gradient has been calculated for three ions: Rb+, Cs, and Bi, and for
the neutral alkali atoms. The present calculations for Rb+ and Cs, using the appropriate
Hartree-Pock wave functions, represent a considerable improvement over our previous cal-
culations, in which Hartree wave functions (without exchange) were employed. The values ob-

0 5tained for n& of the alkali atoms are very large, ranging from 60.0 A for Li to 440.8 A for
Cs. In Sec. III, we have collected the values of n& for 11 ions, as obtained using the author' s
method of direct solution of the inhomogeneous wave equation. Wherever possible, these
values have been compared to those obtained by other methods. The agreement is generally
very good.

I. INTRODUCTION

The purpose of this paper is to present the re-
sults of calculations of the quadrupole polariz-
ability a& of several ions and the alkali atoms.
The quadrupole polarizability is defined as the
ra, tio of the induced quadrupole moment Oind of
the ion (or atom) to the external field gradient
8Ez/8z, which gives rise to find. Thus,..=-'-( ')

'

in the same manner as the dipole polarizability
nd is defined as nd -=Pi dn/E, where E is the ex-
ternal (homogeneous) electric field and Pind is the
resulting induced dipole moment. Effects of the
quadrupole polarizability of the ion core were
originally considered by Mayer and Mayer, ' in
connection with their discussion of the spectral
term defects of the alkalis. Subsequently, the
polarizability e was defined, and the va.lues of
o.q were calcula(ed by Sternheimer'~ ' for various
ions. In recent years, va, lues of a& have been
calculated by a number of authors. 4

In the present paper, we have obtained improved
values of n& for the Rb and Cs ions, as well as+ + .

values of n& for Bi'+ and for the neutral alkali
atoms, for which, to our knowledge, no previous
systematic calculations have been carried out.

+ +For Rb and Cs, the present calculations can be
regarded as a direct extension of the previous
work by the author, ' in which o.&(Rb ) and n&(Cs+)
were obtained using the Hartree wave functions,
which were the only ones available at that time
(in 1957}. The present calculations were carried
out using the corresponding Hartree-Fock func-
tions, which have been calculated in the meantime
by Freeman and Watson. ' As was expected, the
use of the Hartree-Fock wave functions results in
a considerable decrease of n&, as a consequence

of the contraction of the Rb+ and Cs+ ion cores
due to the exchange effect. The present results
for e& of the alkali atoms were obtained using the
same valence wave functions as were employed in
our previous work'~ ' on the dipole polarizabilities
nd of the alkali atoms. In Sec. III, we give a
summa, ry table of the quadrupole polariz abilities
a& which have been obtained by the present method
of direct solution of the inhomogeneous Schrodinger
equation for the perturbed wave functions.

II. CALCULATIONS OF 0.

The method of calculation was the same as was
employed in our previous papers, in particular,
Refs. 2 and 3. Thus, the perturbed radial wave
functions u, (nl -l ') (l

' = l or r+S}are the solu-
tions of the following inhomogeneous equation:

( + t/' —E u', nl
d' f'(f'+1)

= u' (nf)(r'-(r'}, 0„,),
where Q0 .is r times the radial part of the unper-
turbed (nl} wave function of the core electron. The
effective values of V,(r}—E,(V, =unperturbed po-
tential; E, = unperturbed energy eigenvalue) were
obtained in the same manner as in our previous
work, '~ '~ ' from the equation

1 d'u,' l(l + 1) (2)
gg' dy 2

0

The method of solution of Eq. (1) has been de-
scribed in several previous papers. '~'~' We em-
ployed the program of inward integration of Eq.
(1). A CDC-6600 computer programs was again
used to integrate the differential equations.
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In terms of u', (nl-I '), the contribution to the
quadrupole polarizabiiity n&(nl-I ') is given by

n (nl -I') = c(l -I')(0.0415 A') fo u0 u' r'dr,
Q'

where 0. 0415 A' = aH' (aII = Bohr radius), and
c(l-I ') has the following values for a closed nl
shell: c(s-d)=c(d-s)=&» c(p-p)=I; c(d-d)=~;
c(p-f)= 1-' c(d-g) =~~5; c(f-h) =~s.

The wave functions u', (nl-I') have been tabulated
in a separate paper. " In the present paper, we
will give only the resulting values of n («-&') and
of the total nqe

For the case of Rb, we used the Hartree-Fock
wave functions of Watson and Freeman, ' except
for the Rb 4s state, where the Hartree-Fock-
Slater wave function of Herman and Skillman" was
employed. In aQ cases, the outermost shell of
the ion (or the valence electron for an alkali atom)
gives by far the predominant contribution to n&.
Thus, in listing the results for various ions in
Table I, n, denotes the principal quantum number
of the outermost shell, i.e. , n, =4 for Rb . In

+

obtaining n& (total), we have also included an al-
most negligible contribution due to 3d -g, namely,
nq(3d-g) =0.00176A', as indicated in the footnote
to the table.

The resulting n&(Rb ) =1.592 A' may be com-
pared with our previous result, ' 2. 990A', based
on Hartree wave functions. Thus, the use of
Hartree-Fock wave functions decreases n by a
factor of 1.88. This reduction is more important
than that previously found for the dipole polariz-
ability nd(Rb ), where a, reduction factor of

02:1 45 can be deduced from the re suits of Ref .
7 +For the case of Cs, we also used Hartree-Fock
wave functions obtained by Freeman and Watson. "

The resulting perturbed wave functions u,' (n&-&')
are tabulated in Ref. 10, and the values of
n (n0l-I') are listed in Table I of the presentg
paper. Here we have n =5. In the same manner

+ 0
as for Rb (and also for Pr'+ and Tm'+), the lar-
gest contribution within the outermost shell (n, = 5)
is due to the n, P -f excitation of the n, p electrons.
As indicated in Table I, the final value a&(Cs )
=4. 907 A' includes a small contribution, 0. 0125 A',
arising from n&(4d-g). When we compare the
present result with our previous (Hartree-function)
value, ' namely, 7. 80A', we find that the use of
the Hartree-Fock wave functions leads to a reduc-
tion of n&(Cs ) by a factor of 1.59. The corre-+

sponding reduction factor for the dipole polariz-
ability nd(Cs ) is,'.,",— = l. 49, as can be deduced
from our previous results of Ref. 7.

The next two columns of Table I pertain to the
results which we have previously obtained" for
n of the Pr'+ and Tm'+ rare-earth ions. Hereq
we have again n, =5. In addition to the n, =5 terms
previously calculated in Ref. 13, the final results
n& (total) include a small contribution n (4s, 4p,
4d) pertaining to the 4s, 4p, and 4d shel s, which
has been evaluated in the paper of Sternheimer,
Blume, and Peierls'4 (see Tables VIII and IX of
Ref. 14).

Finally, the last column of the table pertains to
the present calculations for the Bi'+ ion. It should
be noted that we had originally intended to carry
out a calculation for the trivalent Bi + ion, i.e. ,
the ion with external configuration 5s'5p'5d"6s'
However, the wave functions used in the calcula-
tions, namely those of Herman and Skillman, "
pertain to the neutral Bi atom. As a result, the
6s wave function u,'(6s) of Herman and Skillman"
is considerably more external than that for Bi'+
because of the shielding provided by the three 6p

TABLE I. Contributions to the quadrupole polarizability &q of five heavy ions. The rows above G.'q (total) list the
terms oq(npl -l') due to the various modes of excitation of the (outermost) shell with highest principal quantum number
np. The sum &q (total) also includes the dominant term due to the subshells with principal quantum number np 1, as
indicated in footnotes (a)-(e). All values are in units ~ .

Ion

~ (nps-gq
nq (nop —p)

nq(nop —f)
n (npd-s)q
n (npa-p
a q(npa'-g)
G.q(total)

0.2132
0.3649
1.012

1.592

Cs

0.842
0.925
3.127

4.907

p 3+

0.300
0.273
1.140

1.731'

Tm

0.1200
0.1284
0.4755

0.7284

~ 5+Bi

0.01074
0.00548
0,02122
0.1001
0.04101
0.1131
0 2921 e

This
This
This

d This
This

result includes
result includes
result includes
result includes
result includes

n (3d-g) = 1.76 x 10- $5.
n&(4d-g) =1.26x 10
n&(4s, 4p, 4d) =1.78 x 10 A (see Ref. 14).
n&(4s, 4p, 4d) =4.63 x 10 A (see Ref. 14).
n (4f h) = 4.3 x 10q
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electrons in the neutral Bi atom. In Table I, we
again have. n, = 5. It may be noted that since wave
functions for the neutral Bi atom were used for
the n =5 shell (and also for 4f), these wave func-
tions are slightly more external than those which
would be rigorously appropriate for the Bi'+ ion.
However, for the n=5 shell, the corresponding
differences of the u,'(nl) are less important than
those which would be involved for u,'(Gs).

In addition to the results listed in Table I (for
Bi'+), we have also obtained the functions
u', (Gs -d) and v,' (Gs -d), as calculated from the
function u,'(Gs) of Ref. 11. Here the function
v', (Gs -d) pertains to the perturbation produced by
the potential due to the nuclear quadrupole moment
q. Thus, v', (Gs-d) is determined by the following
equation: 6, u,' (Gs)—d, + —, + V, —E, v,' (Gs -d) =

dr2 r2 r' (4)

As discussed above, the function u', (Gs-d) thus

obtained from the neutral-atom Bi wave function

uo(6s) cannot be used to obtain a reliable value of

aq(6s -d) for the Bi'+ ion. Nevertheless, the

value of nq(6s-d) thus calculated can be employed
to set an absolute upper limit on the actual
o.q(Gs-d) for Bi'+. This upper limit turns out to
be 3. 235 A'. A reasonable estimate of the actual
aq(6s-d) is 1—2A', so that the total o.q(Bi'+) is
also of this order of magnitude, in view of the
smallness of the contribution of the n =5 subshells
(0.2921 A'; see Table I).

From v', (Gs-d), we can obtain the contribution
of 6s-d to the ionic antishielding factor" y
find

y (Gs-d)=f f, u'( sG)u (IsGd)r'dr-=l. 187 . (5)

Of course, this positive (shielding) contribution to

y (Bi'+) is small compared to the total y (Bi'+},
which is antishielding on account of the nl -l
modes, and which was calculated'6 to be - —42. 4.

In connection with the present calculations for
Bj.'+ and Bj.s+, it should be emphasized that these
calculations are nonrelativistic, being based on
the wave functions of Herman and Skillman. " Im-
portant relativistic corrections (perhaps as high
as 50%) may be expected, in view of the large
value of Z (=83) for Bi.

The remainder of the present work was devoted
to a calculation of nq for the-alkali atoms Li, Na,

K, Rb, and Cs. The term ~q(ns -d) due to the
valence electron (ns) is overwhelmingly predom-
inant. To this term we will add the effective
contribution of the alkali ion core, which will be
discussed below.

The values of oq(ns-d) are givenby

n (ns-d) = —', (0. 0415A') f, u&(ns)

x u', (ns -d)r'd~. (6)

We note that the coefficient c(s-d}=a, in Eg. (3)
is replaced here by —„since there is a single
valence (ns) electron.

The values of uI(ns d) are determined by the
following equation, which is a special case of
Eq. (1):

d2
, + —,+V, -E, u', ns-d =u,'ns r' . 7dr2 r2

In these calculations, we used the same valence
wave functions uo(ns) as in our previous calcula-
tions'~ ' of the dipole polarizabilities nd(ns -p).
Thus, for Li and Na, we used wave functions ob-
tained from the effective potentials of Seitz" and
Prokofjew, "respectively. For the case of K, a
potential derived by the author in Ref. 6 was used
to calculate u,'(4s). For Rb, the 5s wave function
given by Callaway and Morgan' was employed.
Finally, for Cs we used the 6s wave function ob-
tained by Sternheimer" (Ep=E0 expt = —0.2862
Ry). All of these wave functions have the proper-
ty that they reproduce the observed ionization po-
tentials, i.e. , ED=ED expt.

The resulting values of nq(ns -d), as obtained
from Eq. (6), are as follows (in units A'):

for Li: n (2s -d) = 59.99;
q

o; (3s-d) =74. 82;
q

«r K: a (4s-d)=211. 53; (8)

n (Li) =24. 92; n (Na) =23. 18;
p, a ' g, a

a (K) =47. 36;
v, a o. (Rb) = 51.06;

gya
(9)

n (Cs) =71.31;
p, a

(see Table I of Ref. 7). Thus, in both cases we
have nd q(Li)-nd q(Na); nd q(K)-a, d q(Rb), with
a large increase in both polarizabilities (ud and

tlq) in going from Na to K, and also in going from
Rb to Cs.

It should be noted that the values of Q.q obtained
here (and also those of nd) apply only to the iso-
lated atoms in a gas or in an atomic beam. The
reason is that the maxima of lu', (ns-d) I occur at

for Rb: o. (5s-d)=261. 7;
q

for Cs: a (Gs -d) = 443. 6 .
q

The qualitative features of these results are
similar to those obtained previously'y ' for the di-
pole polarizabilities, namely (in units A'):
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very large radii, ranging from r =6. 6aH for
Li to rmax=7. 45aH for Rb and rmax =6.9aHfor
Cs. These values of rma are large compared to
typical internuclear distances in a solid or in a
molecule. In these latter environments, we expect
that l u,'(ns -d) I at large r will be considerably
decreased from its value for an isolated atom, be-
cause the perturbing function is longer r' [Eq. (1)],
when r exceeds the internuclear distances involved.

The maximum values of lu,'(ns-d)~, which are
attained at rma, are very large, which, of course,
partly accounts for the large resulting values of
o.

&
[Eq. (6)]. Thus, the maximum ~uP =31.44 at

r =rmax =6.6a~ for Li. Similarly, the maximum
I +] ~

= 75 8 at rmax= 7 45aII for Rbp and ~+]
= 110.8 at rmax = 6.9n~ for Cs.

In order to obtain the total polarizabilities of the
alkali atoms, we must add the effective ion-core
contribution to the valence-electron terms
uq(ns-d) given in Eq. (8). In the same manner
as in Refs. 6 and 7, we note that Qq ion eff would
be simply equal to the quadrupole polarizability
of the alkali ion [e.g. , o (Li+). .. , , o, (Cs+)],
if it were not for the induced field gradient (sEz/
Sz)ind produced by the valence electron itself,
which tends to shield the core from the external
field gradient (sEz/sz)ext. Thus, the total field
gradient at the position of the ion core is given by

the effect of the perturbed valence density outside
the distance r (i.e. , r' & r), whereas the second
integral represents the effect of the quadrupole
moment induced in the valence electron distribu-
tion at smaller distances, i. e. , r' &r.

The function $(ns -d; r)& for each alkali atom was
obtained by means of the same computer program'
as was employed in the calculation of n&(ns-d) for
the valence electron [Eq. (6)].

For the Present PurPose of obtaining nq'& jon eff p

we must obtain $(ns-d; rl)& at the radius ri at
which the principal perturbation u,' [(n —1)p -f] of
the ion core has its outermost maximum. Thus, for
Cs, the principal perturbation of the ion core is
5P-f, as is shown by the values of n (nl-I') in
Table I. We note, however, that for jIi the rele-
vant core perturbation is 1s-d, since there is
no closed p shell in this case. The values of r,
thus obtained from the perturbed wave functions
calculated by the author '~" are as follows:
r1=1.4aH for Li, 1.8aH for Na; 2.6aH for K;
2.8aH for Rb; and 3.2aH for Cs.

The values of $(ns-d; ri) will be simply de-
noted by )q(rl) Th.us, the effective total field
gradient at the location of the [(n-1)p-f] maxi-
mum is given by

(14)

(10)

In the same manner as in Eq. (20) of Ref. 7, we
can write

and therefore, the contribution of the ion core to
the quadrupole polarizability of the alkali atom is
approximately given by

n . = o. (ion)[ I-( (r )],
q, ion, eff q q 1

ns-d; r
lnd ext

$ (ns-d; r=0) =y (ns-d) (12)

where y (ns-d) is the contribution to the quadru-
pole shielding factor" y due to the valence elec-
tron [see also Eq. (5)].

In the same manner as in Eq. (22) of Ref. 7, we
find that g(ns-d; r)& is given by

g(ns-d;r) =-', ( f u'u' r' 'dr'' +r--'
q

' r 0 1

x 1,
'

u,'u,'r" dr') (i3)

where u,'=u,'(ns) and u', =u', (ns-d). The first in-
tegral on the right-hand side of (13) represents

As indicated, $(ns-d; r)q is a, function of r, which
depends on u,'(ns) and u,'(ns-d) of the valence elec-
tron. As a particular case of $(ns-d; r)&, we
have at the nucleus

where n&(ion) is the ion-core quadrupole polar-
izability, which will be obtained from Ref. 3 and
the present calculations.

The values of $&(ri), as obtained from Eq. (13),
are as follows: 0. 73 for Li; 0. 75 for Na; 1.07
for K; 1.21 for Rb and 1.56 for Cs. It is seen
that for K, Rb, and Cs, )q(rl) is actually larger
than 1, resulting in an overshielding and a (small)
negative eq ion eff A similar effect was found
for the effective contribution of the ion core to the
dipole polarizability, '~ ' i. e. , $~ b(ri) &1 in the

7

notation of Ref. 7. However, because of the
smallness of oq(ion) as compared to the direct
valence-electron contribution n&(ns-d) [Eq. (8)],
the resulting corrections nq jon eff are negligible
in all cases, except for Cs. Thus, from Eq. (15),
we obtain the following values for nq ion eff (in
units A'): 0. 0013 for Li; 0.0159 for ka; —0. 051
for K; —0. 334 for Rb; and —2. 75 for Cs. Upon
dividing these results by the corresponding
n&(ns -d) [Eq. (8) ], we obtain a ratio of only
—0. 0062 for Cs, and (numerically) smaller val-
ues for the other alkalis.
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The final values of n&(total) for the alkali atoms,
upon inclusion of nq jon eff are as follows (in
units A'):

o. (Li) =59.99;
q

o. (Na)=74. 84;
q

n (K) =211.48;
q

n (C s) = 440. 8.
q

n (Rb) =261.4;
q

(16)

III. RESULTS AND DISCUSSION

The results for nq obtained in Ref. 3 and in the
present work have been tabulated in Table II,
which includes values for 11 ions besides those
for helium and the alkali atoms. For comparison,
the last column of the table lists values of nq ob-
tained by other workers. " "

For the case of helium, the most accurate value
is probably that of Dalgarno and McNamee. '4 These
authors used the fully coupled Hartree-Fock approx-
imation, in the terminology of Dalgarno. " How-
ever, our result, obtained in Ref. 3, is too large
by only 1.4% (0.0993 versus 0. 0979). For Li+ and
Be++, our results differ negligibly from those of
Dalgarno and McNamee. '4 The corresponding re-

suits of Das and Bersohn" and those of Langhoff
and Hurst" were obtained by a variational method,
which is somewhat less reliable than the numerical
method used here.

For the Na+ ion, our value (0. 0634) is very close
to that obtained by Lahiri and Mukherji" (0. 0632)
from the more accurate fully coupled Hartree-Fock
method. The other values for Na+ are also rea-
sonably close to the result of Ref. 28.

For C1, our result (13.77) is in moderately good
agreement with the value which Lahiri and
Mukherji'9 have obtained from their more accurate
calculations (11.92). The discrepancy is about
15%. It should be remembered that the outermost
(3p) electron of Cl is very loosely bound and,
therefore, relatively small changes in its wave
function u,'(3P) at large r and the resulting changes
of u,'(3p-p) and u,'(3p-f) can lead to relatively
large changes of o.~(3p-p) and o (q3p-f), for which
the integrand contains the factor r' [see Eq. (3)J.
In fact, the very wide variation of the values of nq
for different positive ions (from 6.4x10-~ for Be++
to 4. 91 for Cs+) is a direct result of the strong de-
pendence of nq on the outermost regions of the
electron wave functions. Of course, neutral atoms
and negative ions can have much larger values of
nq than positive ions, for the same reason.

In connection with the results for Cl-, we note

TABLE ll. Values of the quadrupole polarizability n& (in units A ) for several iona and for the alkali atoms The.
values obtained by the author in Ref. 3 and in the present work are given in the second column of the table. Column 3
lists the values of n& obtained in other calculations.

Ion

He

Li
++

Na
Cl
K+

CU

Rb
Cs
Pr
Tm
B.5+

e& (present
work and Ref, 3)

0.0993
4.73 x 10-
6.37 x 10
0.0634

13.77
0.733
1.280

1.592
4.907
1.731
0.729
0.2921

(other calculations)

~.0949 0.0979 0.0979 g

4.71x 10-, 4.72x 10, 4.70 x 10" g

6.33 x 10, 6.42 x 10
0.0670, 0.0649, 0.0639, g 0.0632

c 13 05 e ]] 79 and 19.44, g 1].92
0.721, b 0.717, e 0.719,g 0.674

1.752
0.718

Li
Na

K

Rb
Cs

59.99
74.84

211.5
261,4
440.8

Reference 21.
Reference 22.
Reference 23.
Reference 24.

Reference 25.
Reference 26.

gReference 27.
Reference 28.
Reference 29.
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that the two values of Langhoff and Hurst, "namely,
11.79 and 19.44, were obtained for two choices of
the unperturbed (Hartree-Fock) wave functions.
Thus, Qq =11 79A' was obtained with the recently
calculated Cl wave functions of Clementi et aL. ,

"
whereas the larger result, namely n = 19.44 A',
was obtained using the earlier wave functions of
Watson and Freeman, "which are presumably more
external. In our previous work, ' we used the orig-
inal wave functions of Hartree and Hartree, "which
are presumably intermediate between those of
Refs. 31 and 32. Since the Clementi wave functions
were also used in the work of Lahiri and Mukherji, "
with almost the same result for n& as in Ref. 27
(11.92, as compared to ll. 79), it is quite likely
that most if not all of the difference between our
result (13.77) and that of Lahiri and Mukherji"
(11.92) is due to the use of the slightly different
zero-order wave functions in the two calculations.

For the case of K+, our value is in very good
agreement with those of Refs. 22, 25, and 27, and
is only 8. 8% larger than the value obtained by
Lahiri and Mukherji" (0. 733 versus 0. 674). As in
the case of Cl, the difference may be simply due
to the use of slightly different zero-order wave
functions in the two calculations.

For the cases of Pr 3+ and Tm3+, our values of

n& are in very good agreement with those of
Ghatikar et al. ,

"as was to be expected since the
same method and the same zero-order wave func-

tions'4 were used in both calculations.
In connection with the preceding discussion of the

slight differences of n& as obtained by different
calculations, it should be emphasized that the main
purpose of the present calculations is to present a
set of values of a& for a number of ions and neu-
tral atoms, for possible use in calculations of the
internal field gradients in solids. The very wide
variations in a& values for different ions, which
was pointed out above, is much more important
than the small differences (& 10%) between the re-
sults of various calculations for a given ion. Of
course, as has been shown by Burns and Wikner, "
the values of o.

&
(and of o.d) tend to decrease when

the ion is imbedded in a solid. Nevertheless, this
reduction is much less important for the positive
ions than for negative ions, and, therefore, the
values of Table II (except those for Cl —and for
the alkali atoms) may be used with some confidence
to give the correct value (probably to &30%) for the
corresponding ions in solids.
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The two-dimensional Magnus formula f m = p(vs —Vv) &«~ can be extended to three-dimensional
fluid-core vortices of arbitrary core structure by a precise redefinition of the stream velocity
vector vs, vortex velocity vector Vv, and circulation vector &. For example, Vv becomes the

velocity, in a plane slicing the vortex core, of the "center of mass" of the vorticity. The

exact three-dimensional formula is derived by analyzing the motion of vorticity relative to the

fluid particles —a relative motion caused by the action of nonconservative forces on the vortex
core (e.g. , the electric force on a charged vortex ring in superfluid helium). The analysis
deals with the vorticity field cu =& && v and, thus, can lead to simple formulas and insights in

cases where the velocity field v may be impossibly complicated. Examples introduced are
(i) the concept of a "conserved vorticity current, " (ii) a possible classical mechanism for the

creation or destruction of vortex lines in superfluid helium, and (iii) a simple technique for
analyzing the effect of viscosity on the structure of a vortex core.

Traditionally, the Magnus force is the lift force
on a cylinder moving through a fluid when there. is
a net circulation of fluid about the cylinder. '&'

One can also calculate the lift or Magnus force
f (per unit length) exerted by a uniform stream
on a two-dimensional singular core vortex; the
result is simply'

f = —pUxg
rn

where p is the fluid density, U the velocity of the
singular core relative to the stream, and I(. the
total circulation of the vortex.

In the past few years, the use of the Magnus-force
concept has proved to be a lucid and powerful tech-
nique for analyzing the motion of vortices in super-
fluid helium. ' ' Detailed predictions about the mo-
tion of charged vortex rings, predictions based on
the simple Magnus formula in Eq. (1), have been
accurately verified by experiment4 despite the lack
of a derivation of the Magnus formula for curved
three-dimensional vortices undergoing nonuniform
motion. Here we derive an exact Magnus formula
for three-dimensional vortices with localized but
otherwise arbitrary fluid-core structures. The
exact formula, which reduces to Eq. (1) for the
case of two-dimensional circular-core vortices in


