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The propagation of a Gaussian light pulse through a medium having a positive or negative
absorption line is examined. Analytical approximations are obtained for the case where the
spectral width of the pulse is much smaller than that of the line. It is shown that the pulse re-
mains substantially Gaussian and unchanged in width for many exponential absorption depths,
and that the locus of instants of maximum amplitude follows the classical expression for the
group velocity, even if this is greater than the velocity of light, or negative. Numerical cal-
culations have been used to examine what happens beyond the limit of usefulness of the analyt-

icall

approximations.

I. INTRODUCTION

When an electromagnetic signal of frequency v

propagates through a nonabsorptive but disper-
sive medium, the phase velocity is c/n, where
n is the refractive index, while the group velocity
is c/[n+ v(dn/dv)]. So long as dn/dv&0, corre-
sponding to "normal" dispersion, the group veloc-
ity is less than the phase velocity. When the
medium has an absorption line near the optical
frequency v, the expression c/[n+ v(dn/dv)] can
become larger than c, or even negative. Under
these conditions, however, the role of the asso-
ciated absorption is such as to destroy the ele-
mentary identification of the group velocity with
the velocity at which the energy associated with
some signal is propagated. Nevertheless, there
exist conditions under which the expression
c/[n+ v(dn/dv)] has a clear physical interpretation,
even when the expression is negative.

It seems generally to be taken for granted that
an incident signal pulse will necessarily be dis-
torted to the extent that the idea of a group veloc-
ity loses its meaning. In a series of classic
papers, Sommerfeld'~' and Brillouin'~' investi-
gated the response of a semi-infinite anomalous
dispersion medium to an incident sinusoidal
signal whose amplitude was zero before some
initial time t„and unity thereafter. This work
showed that the main signal reaches a depth ~ at
a time which is always greater than t, + s/c;
however, the main signal is preceded by "pre-
cursors, "the front edges of which travel at c
and at e/v e, where e is the dc dielectric con-
stant. These precursors correspond, respec-
tively, to the Fourier components of limitlessly
large and vanishingly small frequency, and have
been observed experimentally. 4

A situation more easily realizable in the labora-

tory is one in which the pulse has smoothly time-
varying front and back edges. A Gaussian pulse
has such a form and also is convenient for ana-
lytical work. The pulses occurring in some
mode-locked lasers are very nearly Gaussian.

Suppose such a pulse passes through a slab of
some linear but dispersive medium having an ab-
sorption line (positive or negative) in the vicinity
of the central frequency of the pulse. What is the
form of the pulse emerging from the slab, and
when will it emerge'? In this paper we tackle these
questions. We assume throughout that the re-
sponse of the medium is linear —that is, the di-
electric function n(&u) is not modified by the pres-
ence or absence of the electromagnetic signal.

Our analysis is restricted to the case where the
relative changes with frequency of n itself are
small in comparison with unity, but this restric-
tion does not mean that the changes in c/[n
+ v(dn/dv)] are small in comparison with c, if the
line is sufficiently narrow. We shall show that,
provided the slab is not too thick, the power spec-
trum of the emerging pulse is still substantially
Gaussian, and the peak of the pulse emerges at the
instant given by the classical group velocity ex-
pression, even if that instant is earlier than the
instant at which the peak of the input pulse entered
the slab. For thicker slabs, the power spectrum
is sufficiently distorted that the classical group
velocity expression no longer applies. In this
case our simple analytical approximations break
down, and we have had to resort to numerical tech-
niques. However, the relevance of these last tech-
niques to experimental conditions that can actually
be achieved in the laboratory is rather small,
since, so long as the pulse is spectrally narrow in
comparison with the atomic line, significant dis-
tortion will generally not occur until the over-all
gain or attenuation is enormously large.
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II ~ GENERAL FORMULATION OF THE PROBLEM i(uzn((u)/c --,'((o- (o)' r'xe e

We restrict our attention to a plane-wavefront
electromagnetic field,

E (r, t) = Eof(z, t)

propagating in the positive s direction in a linear
but dispersive medium which fills the half-plane
z & 0. Because the medium is dispersive, f(z, t)
is not simply a function of z- c t with c some con-
stant velocity.

We assume for each z &0 that the function f (z, t)
is limited temporally in the sense that the Fourier
transform

f(z, ~)= j' dte'"f(z, t) (2)

exists. We further assume that [f(z, u&)( in-
creases, at most, exponentially for large positive
z, so that the Fourier-Laplace transform

J'(y, (u)= j dz e f(z, (u)

exists for ~ real and k in some suitable lower
half-plane. If the frequency spread of the electro-
magnetic pulse is small in comparison with the
center frequency (i.e. , &ur»1 in the notation be-
low), we can solve Maxwell's equations in the form

where
[(~/c)n((o) —kjz(k, (o ) = S((o), (4)

f (z, (u) =iS((u) e p[xi(z~/ )ne((u)) (6)

for z & 0. We choose the source field S(~) such
that, at z = 0+, f(z, t) corresponds to an input pulse
of mean frequency (~/2v) and amplitude exp(-t2/
2r 2).

iet -ivt t'/2r'-

n(R)=n —& m /(u(tu —(u +iy), ~(u /y~«n00 0 p 0 ' p

(5)

is the refractive index of the medium, and 8(~) is a
source field appropriate to the incident signal
(z =0+)

Solving (4) for E(k, m) and inverting the transform
(3), we find

for z &0 and t arbitrary. This equation is the
starting point for the analytical and numerical ex-
ploration which occupies us for the rest of the
paper. It describes the propagation of a plane
wavefront, initially Gaussian pulse in a linear me-
dium with refractive index (5).

In the description in Sec. I of a realistic experi-
ment, we referred to the incidence of a Gaussian
pulse on a slab containing the anomalous disper-
sion medium, whereas our function f(z, t) refers
to the field inside a semi-infinite block of mate-
rial. The interior and exterior fields at frequency
&u/2v differ by a factor which is an algebraic func-
tion of the refractive index n(~). If [~~/y~«1,
as we assume, this factor is nearly constant in
frequency and its inclusion would not significantly
affect the qualitative results. It is of course true
that geometric resonances similar to those famil-
iar for Fabry-Perot cavities must be taken into
account where they are important in laboratory
measurements, but these are complications which
have nothing directly to do with the topic of this
paper and are ignored.

The source function S(v) in (6) has been so
chosen in (7) that an observer at z = 0 measures
a Gaussian pulse envelope which has a maximum
value at t = 0. We show in Secs. III and IV that in
certain circumstances an observer at some posi-
tion z & 0 wil1. measure a Gaussian pulse envelope
of approximately the same temporal width as the
input pulse but with its maximum value at some
previous time t& 0. This is not a violation of
causality, but is instead a consequence of pulse-
shape distortion. Although its amplitude is small
for ) t ) large, the Gaussian pulse

( )

-tent

t/2r-
really has no true beginning or end. The t & 0
envelope maximum seen by an observer at z& 0
is not a direct reflection of the maximum of the
input-pulse envelope, but arises from the action
of the dispersive medium on the weak early com-
ponents of that envelope. In this sense the group
velocity described below is a specific attribute of
a Gaussian pulse or, more generally, of any pulse
which is approximately Gaussian near its maxi-
muQl ~

III. APPROXIMATIONS FOR yr )) 1 AND z SMALL

=r(2w) ' 'exp[- —,'((u-(u)'r'j (7)

Using this result with (6) and the inverse of (3),
we obtain

f(z t)=r/(27r)' ' j d&e

In this section, we consider the case for which
the spectral width of the pulse is substantially
less than the atomic linewidth, that is yv'» 1.
Under these circumstances the principal contribu-
tion to the integral (8) comes from (circular)
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frequencies ~ in the neighborhood of the central
frequency & of the input pulse, and we may ap-
proximate (dn(&o) by the first few terms of the
Taylor series

(un((u) = mn(m)+ ((u —m)
d ((un)

d(d

2

x exp —t-—

2 1 —ll d (llll)
c7 d(d

(i4)

+ -((u —m), d'((un)
+ ~ ~ ~ ]

CO
(io)

where, from (5),

1 d ((dn )
Pl I d(d~

( 1)Ply

m& 2.
(m (2) y jy) tB+ I

The series (10) diverges if ((d —m)'& [(m —(d )'+y'],
so that this expansion is only useful when the im-
portant frequencies of (8) are those for which
(~ —m)'«[(m —tu, )'+y']. If z &0 is sufficiently
small, the important frequencies are those for
which (e —m)' r '& 1, and, with y r» 1, the Taylor
series (10) converges rapidly. For l(d —m ~r =1,
successive terms in (10) are smaller in magnitude
by a factor [(m —(d)o)'+y'] '~'& 1/y7 «.1. For
larger z, the divergence of (10) for ltd —m I large
can cause trouble; we return to this point later.

Assuming that the series (10) converges suffi-
ciently rapidly, we truncate the series after three
terms and substitute into (8) to obtain, with

x=z(u (u /cW'y'
0 p

r=y~/Ma,

T=v 2 (t-n ~/c)/~,

(16)

(18)

The inequality (13)will always obtain if z is small

enough, but it does not generally obtain for s large.
The term (Z/cr ') [ d'((dn)/d(dm] m is of order
s(dO(dp/cr 2 y', and, when this quantity is com-
parable to unity, the procedure of terminating
the series (10), as we did in (12), becomes in-
creasingly dubious. We return to this point later
but, for the moment, take the view that [z+0+t,/
c7'y' ) «1 and that the algebraic prefactor in
(14) does not deviate significantly from unity,
especially in comparison with variations in the re-
maining exponential factors.

W'e now proceed to an examination of those ex-
ponential factors. It is useful to separate n(&u)

into its real and imaginary parts and to introduce
new notation. Set

f (&2 t) = exP —i(d) t- an(m)
2r c (2o)

OO g2~ 2

X du exp —ZtQ—
'm C)0 2

l'l d(llll) 1, d'(llll)
)+ Qc d (d 2 Eked

+—Q

As long as

R ) $z d Rs
C

'

Cd

the integral (12) converges, to give

(i2)

(13)

Here x is the dimensionless distance variable
which we have assumed small in comparison with
unity. 1" is the ratio of the atomic to the pulse
linewidth, which we are supposing in this section
to be such that I' is large compared to unity. T
is a reduced time, giving, in units of the pulse
width v/2() 2, the interval between some instant
and the instant (T =0) at which the pulse peak
would have arrived in the absence of anomalous
dispersion. The quantities )(:($) and v($) give, in
dimensionless form, the absorptive and disper-
sive part of the refractive index in terms of the
dimensionless frequency variable $.

Neglecting the algebraic prefactor, we can re-
write (14) in the form

( )
iz d'((un)

c7' .)
i(d(t zn~/c) t), ,(T,x)+-ia, (T,x)

zn((d )Xexp -i t-
c

where one can show after a good deal of algebra
that
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—,'(g')'x —,'(1+~"x)
1+v "x (1+~"x)'+ (t "x)'

V" K'X
x T -2I'x v'—

1+K"X

(~ ')' —,'v" x(+ rv" (toe "x)'+(v"xP

x 7- „K'+ K'K" + v' v" x . 23
2I" 2

Look first at the expression (22), which governs
the amplitude of the pulse (21). If we sit at a fixed
x and examine the temporal change in the pulse
amplitude, we still find a pulse of Gaussian shape
whose width is not appreciably different from that
of the incident pulse until x becomes of order
unity. The peak of the Gaussian pulse initially
varies as exp(- 21"'zx), with departure from this
simple exponential behavior only when x becomes
of order unity. At any given x, the instant corre-
sponding to the peak of the pulse in units of the re-
duced time is

that is not really very restrictive so long as the
pulse is spectrally very much narrower than the
atomic line (yv» 1). The paradoxical statements
do not violate causality, but reflect, as we men-
tioned in Sec. II, pulse-shape distortion even
though the pulse does not appear to be distorted f

The output pulse which leaves before the entrance
of the peak of the input pulse is formed from field
components in the leading edge of the input pulse
and not, to. any substantial degree, from compo-
nents at the input-pulse peak.

Consider next the phase function &,(T, x) of Eq.
(23). At any given x, this shows a quadratic time
variation of phase, which implies a modulation of
the frequency of the pulse. If we write

&, (T, x) =A, (x)+ [T—T, (x)]'A, (x), (25)

= 2(r, —r, }A,.
1

(2s)

Substitution from Eqs. (23) and (24}yields the re-
sult

then the frequency shift 50(x) (in units of v 2/~) at
the instant T, (x) of maximum amplitude is

V" K'X
T, = 2I'x v'+

1+K X
(24) bn(x) =- I'~'x/(1+~" x). (27)

of which the first term is just what would be given
for I a&p/y I

« I by the classical group velocity
c/[n~(v)+ ~dn~/du&], where ny(~) = Re[n(&u)].

This is quite a paradoxical result. Consider,
for example, an absorbing medium, for which

~p & 0, with the pulse center frequency (d and atom-
ic line center vo coincident ($ =0). Then we have

c[/nz(e) +ednz/de] = c/[n ~ —v v0/py']. We have
required that ~p «y, but not that ~p&~ & y ', so the
denominator can have either sign. So, not only can
the pulse appear to travel (in the sense of tracing
the locus of instants of maximum amplitude) faster
than c: it can even appear to travel backwards. A
similar situation exists for an inverted medium
(&up & 0), not at the center of the line but in the
wings (I $ I& 1). The nervous reader may perhaps
feel reassured if we point out (i) that, in any time
snapshot, the amplitude decreases monotonically
with z in a lossy medium, and (ii) that the Poynting
vector is always directed toward increasing z.
Nevertheless, it is still true that the output-pulse
peak can sometimes emerge from the far side of a
parallel-sided slab of medium befoxe the peak of
the input pulse enters the near side. This output
pulse will be greatly attenuated (or greatly ampli-
fied, as the case may be) but still of substantially
the same Gaussian shape as the input pulse.

These statements follow from Eqs. (21) and (22)
and are accurate as long as )xj«1. That is, the
slab must be thinner than something like y'w' ex-
ponential-decay (or growth) lengths, a condition

Inspection shows that the sense of the shift is as
follows. When the medium is absorbing, a pulse
with $ c0(i.e. , &u o~, ) is shifted in frequency away
from the center of the line; when the medium is
amplifying, it is shifted towards the center. The
magnitude of the shift is such that, when x is of
order unity, the shift is of the order of the atomic
linewidth. Physically the frequency shift results
because in an absorbing medium, for example,
those Fourier components of the pulse that lie
nearer line-center are attenuated more than those
in the wings; consequently, the center of gravity
of the spectrum of the pulse shifts away from line-
center.

The expression (25) also predicts a certain
amount of "chirping" in the transmitted pulse.
Write (25) in the form

~, (r, x)=[A, +(r, —r, }'A,]+2(r-r, )(r, —r, }A,

+ (r- r, }'A,. (2S)

The first term is time-independent, the second rep-
resents the frequency shift already discussed, and
the third describes the chirping. This third term
is zero at the instant the pulse amplitude is great-
est (T= T, ), and it increases in magnitude with
temporal separation from T, in either direction.
For the chirping to be qualitatively significant, we
require that this term have a magnitude substan-
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tially larger than unity before (T —T,) is such that
the pulse no longer has appreciable amplitude. It
follows from Eqs. (21)—(25) that at the 1/e point
we have

—2r '(I+ ~"x)[(&u —~)/y]']

—,'(~ ')'x
P(z, ru) = 2m7'exp —4I"x Ic —'

S+~"x

(32a)

(I' —7 )'A. = v "x/(I+z "x) (28) —2r'(1+ w" x)[((u —(u )/y]' (32b)

which is always less than order unity for those x
within the range of validity of the analysis, so that
chirping is not in fact very substantial.

These various results derive from the approxi-
mation (21) to the exact result (8). They accu-
rately describe the propagation of a Gaussian pulse
as long as z & 0 is small enough that Ix I «1. The
approximation (21) is based upon the truncated-
power-series approximation (12) and is only valid
as long as that approximation is accurate. [The
algebraic prefactor omitted in going from (14) to
(21) is really not very important even if (x ~~ 1.]
It may be shown that a necessary and sufficient
condition is

i
x

i
«v 2I'(1+ $')/(I + K x).

When this condition is met, the integral (12) con-
verges [because (13) obtains] and the terms omit-
ted from the exponent by the truncation are all
much less in magnitude than unity over the impor-
tant range of frequencies.

When the inequality (30) is violated, the quadrat-
ic truncation used in (12) is inadequate and more
elaborate procedures are required. Because the
power series (10) has a finite radius of conver-
gence, it is not generally sufficient (or useful) to
improve (12) by including a few more terms of the
series. It is necessary to approximate ~n(&u)

accurately over a broad range of frequencies, for
some of which (~ -(u)'& [(&u —eo)'+y']. In this re-
gard it is important to note that the difficulties in
(12) for x large arise solely from the truncated-
power-series approximation and are not intrinsic
to the exact integral (8); that integral is mathe-
matically well behaved for all finite x.

Information as to which frequencies are impor-
tant in (8) is contained in the pulse power spec-
trum

P(z, (u )=
if (z, (u )

i

'

= 2mv'exp [- (&u —&)' v ' —(2zv/c)imn(u&) j

2z(u0(u y/c
= 2'll7 exp — (0 —(d 7 —

2 2 . 31
&u —~, '+y'

In the notation of Eqs. (15)—(20), the approxima-
tions used in (12) give

P(z, ~) = 2m7' exp[- 41'zx —41'a ' x[(&u —(u)/y]

where v =v —yz'x/(I+a'" x)x (33)

IV. NUMERICAL RESULTS

In. Sec. III, we described approximations to f (z, t)
useful when I' —=yv'/W2»l and lx[ -=Iz&op(u0/cvmyat
not too large. In order to explore how those ap-
proximations fail as )x) increases, we also eval-
uated the integral in (8) numerically for a range of
parameters (x, I', $). Those results are described
herein.

All of the results reported correspond to I"
—=y T/v 2 =4. For smaller I", the approximations of
Sec. III fail too soon to be of much interest. For
larger I', perhaps the case of greatest interest
with pulsed laser laboratory sources, those ap-
proximations fail only for )I'x) so large that the
gain or attenuation factor implicit in the first term
of (22) makes the calculation irrelevant. The
choice I'= 4 is intermediate between these ex-
tremes and convenient to accommodate on the com-
puter.

The power spectrum (31) is plotted versus fre-

This is a Gaussian power spectrum with an over-
all amplitude consistent with the first (T-indepen-
dent) term of (22) and with a center frequency &u~

consistent with (2'I). The width of the Gaussian
(32) is larger, however, than what one would de-
duce from the second T-dependent or amplitude-
modulation term of (22). This extra width derives
from the frequency modulation implicit in the T
dependence of (23).

We have not been able to find simple useful ana-
lytic approximations to f(z, t) which are valid for

I x+1. We have, however, evaluated f (z, t) nu-
merically for a range of parameters (x, I", $).
Those results are discussed in Sec. IV below. For

~ x( small, they coincide with that we would pre-
dict from (21) and (32). As the inequality (30) be-
comes less strong, deviations become more sig-
nificant. If I" —=y v'/v 2» 1, such deviations set in
for values of )

I"2x
I which are so large that the

over-all gain or attenuation implicit in the first
term of (22) would be enormous —so large, in
fact, that the effects would be very difficult to ob-
serve in the laboratory with pulses weak enough to
justify our initial assumption of linear response.
In this sense the results for (x) &1 are largely
only of academic interest and the approximate ex-
pressions (21)—(23) and (32) the important results.
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quency difference &Q(v) —= (v —&u)r/W2 for
$ -=- &Q((u, )/I" = 0, 0. 25, 0. 5, 1.0, and 2. 0 in Figs.
1-5, respectively. The different (solid) curves
in each figure correspond to different values of
x—=zep&u0/cv'2y'. The case x&0 corresponds to
attenuation, x& 0 to gain, and x= 0 to the undis-
torted input spectrum. The two dashed curves in
each figure trace out the loci of the spectral max-
ima, appropriate to the exact spectrum (31) and to
the Gaussian approximation (32). A Gaussian pow-
er spectrum corresponds to a parabola in the
semilog plots of Figs. 1—5. The extent to which
a particular curve deviates from a parabola near
its maximum and the degree to which the two
dashed-line loci diverge are two measures of the
accuracy of the power-series truncation procedure
described in Sec. ID.

The pulse amplitude If(z, t) ~
seen at a particular

point z is plotted as a function of the reduced time
T= (t zz/c)v2-/r for these same values of $ in
Figs. 6-10, respectively. In each case, only the
neighborhood of the pulse maximum is shown. The
edges of the pulse are generally not Gaussian, but
their intensity is very much less than that of the
pulse maximum. A Gaussian pulse corresponds
to a parabola in the semilog plots of Figs. 6-10.
Near the maximum the pulse is Gaussian, except
for particular cases; for example, the x& 0 curves
of Fig. 6, $ =0.

As in Figs. 1-5, the different (solid) curves in
each figure correspond to different values of x.

I 20

80

c4 40

N

0
N

0
O

~ -40
O

-80

—I20—

—IO
I

—5
I

0 IO

The two dashed curves trace out the loci of the
pulse maxima appropriate to the exact (numerical)
and approximate (21) expressions. It is obvious

FIG. 2. Power spectra for system with I =—y7'/v 2=4
and 5:—(co -up)/y=0. 25. The different solid curves are
the spectra computed from Eq. (31) for different values
of x —= zcop~0/cv y as a function of the frequency differ-
ence DQ =— (v -2) v/v 2. The dashed curves are the loci
of the spectral maxima appropriate to the exact spectrum
(shown) and to the Gaussian approximation (32) .

120
I 20

80 80

OJ 40

OJ

0
N

CL

O
~ -40
O

cv 40

N

0
N

Q

O
~ -40
O

-80 -80

-120—

—IO
I

—5

I

0 IO

—I20—

—IO
I

—5 0 IO

FIG. 1. Power spectra for system with I'= y7/v 2 =4
and 5:—(2 —up)/y= 0. The different solid curves are
the spectra computed from Eq. (31) for different values
of x = z~p~0/cv y as a function of the frequency dif-
ference DQ —= (co- G) v/W2. The dashed curves are the
loci of the spectral maxima appropriate to the exact
spectrum (shown) and to the Gaussian approximation (32).

FIG. 3. Power spectra for system with I' =—y7/W2 = 4
and h = (P cop)/y=0. 5. The different solid curves are
the spectra computed from Eq. (31) for different values
of x =zcopco0/c7' y as a function of the frequency differ-
ence AQ =—(co —co) w/v 2. The dashed curves are the loci
of the spectral maxima appropriate to the exact spectrum
(shown) and to the Gaussian approximation (32) .
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I20 20
x =-l.25

80

Al 40h

OJ

0
N

Q.
O

~ -40
0

IO—

V
N

+ 0
O

O

—IO

—I20

—IO
I

—5
I

0 IO l2

FIG. 4. Power spectra for system with F=yv'/v 2=4
and $

—= (c7 (dp)/&=1. 0. The different solid curves are
the spectra computed from Eq. (31) for different values
of x = z(o cop/c7' y as a function of the frequency differ-2 3

ence DQ—= (v -G)7/v 2. The dashed curves are the loci
of the spectral maxima appropriate to the exact spectrum
(shown) and to the Gaussian approximation (32) .

FIG. 6. Amplitude of pulse f (z, t) seen at a particular
space point z as a function of the reduced time T= (t

z/c) W2/7 for system with I'= 4 and k = 0. The
different solid curves correspond to different values of
x—= z(dpi')p/cv y . The dashed curves are the loci of the
peak maxima appropriate to the exact solution (shown)

and to the approximation (21) .

from the figures that the approximations of Sec.
III are accurate for )x) sufficiently small, but
that they are inaccurate for larger )x), espe-

cially those values which violate the inequality
(30). It is also obvious from the power spectra of
Figs. 1-5 why the approximations of Sec. III fail
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FIG. 5. . Power spectra for system with I'=—y7/v 2=4
and ( = (c7-~0)/y= 2.0. The different solid curves are
the spectra computed from Eq. {31)for different values
of x =zu)p(up/cv y as a function of the frequency differ-
ence 00 —= (cu -g7/v 2. The dashed curves are the loci
of the spectral maxima appropriate to the exact spectrum
(shown) and to the Gaussian approximation {32).

FIG. 7. Amplitude of pulse f (z, t) seen at a particular
space point z as a function of the reduced time T=(t-n z/
c) v 2/v for system with I'=4 and (=0.25. The different
solid curves correspond to different values of x = zcopp/
c7 y . The dashed curves are the loci of the peak maxima2 3

appropriate to the exact solution (shown) and to the ap-
proximation (21) .
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FIG. 8. Amplitude of pulse f (z, t) seen at a particular
space point z as a function of the reduced time T= (t -n~/
c) v 2/v for system with I'= 4 and h = 0.5. The different
solid curves correspond to different values of x —= zvpco0/
cw y . The dashed curves are the loci of the peak maxima

appropriate to the exact solution (shown) and to the ap-
proximation (21) .

FIG. 10. Amplitude of pulse f (z, t) seen at a particular
space point z as a function of the reduced time T= (t -n z/
c) W2/v for system with 1"=4 and h = 2.0. The different
solid curves correspond to different values of x —= zcopM0/
cv y . The dashed curves are the loci of the peak maxima
appropriate to the exact solution (shown) and to the ap-
proximation (21).

where they do. In Eq. (12) and those following it,
we, in effect, approximate these rather complex
power spectra by the fir st few terms of a power-
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FIG. 9. Amplitude of pulse f (z, t) seen at a particular
space point z as a function of the reduced time T= (t -n z/
c) v 2/v for system with I"=4 and $ = 1.0. The different
solid curves correspond to different values of x = z~p~0/
cv y . The dashed curves are the loci of the peak maxima
appropriate to the exact solution (shown) and to the ap-
proximation (21) .

series expansion about ~0 =0, where ~~(v)
—= (~ —~)v/v 2. The most important spectral range
is that near where the power spectrum is greatest,
and our approximations are accurate only so long
as that maximum is nearly parabolic in shape and
occurs near &0 = 0.

Consider as a specific example the case $ = 0. 5
illustrated in Figs. 3 and 8. Near its maximum,
each power spectrum shown in Fig. 3 is approxi-
mately Gaussian and, as we might therefore ex-
pect, each pulse in Fig. 5 is also approximately
Gaussian (near its peak). However, the position
of the power-spectrum maximum shifts away from
40=0 at x= 0 to ~Q= —2 at x= —~ and to large pos-
itive values for x-+~; the spectrum is not accu-
rately Gaussian from these displaced maxima to
AA=0; and the approximations of Sec. III fail, as
indicated by the divergence of the dashed curves.
Analytic approximations valid for general x could
be based upon power-series expansions about the
power-spectrum maximum (rather than about the
incident-pulse center frequency ~), but the re-
sulting expressions would be considerably more
complex than those of Sec. III.

Such a more general approximation technique
would also fail if the spectrum was definitely not
Gaussian near its maximum, ' that is, if a quadratic
approximation in the exponent was inadequate. For
these cases the output-pulse amplitude would gen-
erally not be Gaussian, even near its maximum.
Cases illustrating this pathology occur in our ex-
amples, especially those for )=0, x&0, and /=2,
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-2. 5& x& —1. Fortunately, most cases are not of
this type; none are for I x) sufficiently small.

The case $ =0, x&0, is sufficiently curious to
warrant further discussion. For x& 0, the medium
is a,mplifying, the power spectrum (Fig. 1) sharp-
ens but remains approximately Gaussian near its
maximum at &A=0, and the pulse amplitude (Fig.
6) remains Gaussian, except in the relatively weak
leading and trailing edges. Because the spectral
maximum remains at 4Q= 0 for x & 0, we expect
the approximations of Sec. III to be particularly
good for negative x. The situation is very differ-
ent for x& 0, although for x =0 the approximations
of Sec. III are still accurate near the peak of the
output-pulse amplitude. As x increases further,
the quadratic approximation used in (12) and there-
after deteriorates until for x &0.5 the criterion
(18) fails. By this point, however, the output-
pulse amplitude exhibits a sinusoidalike oscilla-
tion extending for x &0. 75 right through the peak.
These curious oscillations are peculiar to $ =Oand
are not observed in the $ & 0. 25 examples of Figs.
7-10. Vestiges are apparent, however, at $ =0.05
as shown in Fig. 11.

One is tempted by the apparent simplicity of (8)
for ~, = ~ to search for an analytic approximation
which will describe the oscillations seen in Figs.
6 and 11. We have wasted a great deal of time on
such a search without significant success. We
have shown that qualitatively similar oscillations
occur if the input spectrum is Lorentzian rather
than Gaussian, but even in this case no simple but
general closed-form expressions have been found.
The problem remains an unmet challenge.

Although the approximations of Sec. III do gener-
ally break down for ) x[ large, the numerical re-
sults confirm their validity for x =0, the case of
greatest importance in pulsed laser laboratory
studies. The calculations also confirm that the
concept of group velocity has meaning for an ab-
sorptive medium. Broadly speaking, a Gaussian
input pulse remains Gaussian, and the peak of the
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pulse moves in space with an apparent velocity re-
lated to the classical group-velocity expression,
even if that velocity is greater than the velocity
of light in vacuum or is negative. For thick slabs
(( x~ & 1), the temporal width and the spectral com-
position of the pulse generally will be different
from that of the input pulse. The numerical re-
sults for Ix) large can be understood in the con-
text of Sec. III if we view a thick slab as a com-
posite of many thin slabs into each of which a
Gaussian pulse is injected (from the slab before)
and to which the equations of Sec. III pertain, with
a suitably varying pulse width & and central fre-
quency co. However, even this technique will fail
for $ = 0, x & 0, because there the concept of a
dominant central frequency ~ eventually fails.

FIG. 11. Amplitude of pulse f (z, t) seen at a particular
space point z as a function of the reduced time T= (t -s z/
c) v 2/v for system with I'=4 and 8=0.05. The different
solid curves correspond to different values of x —= zMp(op/
C1
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