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Many-body perturbation theory is used to calculate the parallel and perpendicular dynamic
polarizabilities of molecular hydrogen. High-order terms in the perturbation expansion are
included and the poles of n(u) are calculated. Results for the dynamic dipole polarizabilities
and for the molecular anisotropy are in good agreement with experiment.

I. INTRODUCTION

General discussions of time-dependent perturba-
tions in atomic physics have been given, for ex-
ample, by Karplus and Kolker' and by Dalgarno. '
The use of the Brueckner-Goldstone'~4 (BG) per-
turbation expansion for time-dependent perturba-
tions has been discussed previously'; and applica-
tions of the BG expansion to calculate frequency-
dependent atomic polarizabilities have been made
for helium' and for atomic oxygen. ' Both of these
calculations involve the direct application of
methods developed previously' to apply the BG ex-
pansion to atoms.

For molecules, there have been variational cal-
culations of the dynamic dipole polarizabilities. '~ '
Recently, Dalgarno and co-workers" "have used
experimental data on oscillator-strength distribu-
tions, supplemented by refractive-index data and
sum rules, to construct models of the dipole spec-
trum which reproduce dipole properties very ac-
curately over a wide range of the spectrum.

In this paper, we use the BG many-body pertur-
bation expansion to calculate the dipole dynamic
(or frequency-dependent) polarizability of H2. The
methods used to utilize the BG expansion are those
which we developed recently" to calculate the
binding energy and static polarizabilities of H, .
These methods are essentially those developed
previously for atoms. '

We assume a perturbing electric field F coscot,
so that the time-dependent perturbation is

N
V (r, t) =cosset Z F'r.

ex z=l

where N is the total number of electrons. The in-
duced electric dipole moment p is given by'

p = Q ((d )F c0s(d t

where n(~) is the dynamic polarizability. The full
Hamiltonian is now

where (in a. u. )

N
a = + [-,'~.'+v(r. )j,0 . 1 i i

(4)

and
N N

a' = Z r. .-'- g z r -'-. g V(r.) .c . . 2$ . Q zQi& j=1 S, Q 2=1
(5)

The terms —Z &iQ
' refer to the interaction of the

ith electron with the Qth nucleus. The potential
V(r2) refers to the single-particle potential which
is introduced in order to calculate the complete
set of single-particle states used in the perturba-
tion expansion. " We may obtain o.(~) from the
relation'

E 22& — ~~(~)F 2

ex

where E "' is the time-average energy term which
has two interactions with Vex. If we write

N
+ 2Mt

(7)ex F ri'e
1=1

then E "' contains terms in which there is an in-
teraction with Ve+x first and then with Vex. If H, is
our unperturbed Hamiltonian, then E "' is given by
all terms with two interactions with Vex and any
number of interactions with H c. We-evaluate E ~'~

by the usual time-independent perturbation theory,
except that each denominator Ep Hp is now Ep

Ho —(p —q)w, w—here p is the number of inter-
actions with Ve+x which have occurred to the right
in the perturbation expression, and q is the number
of interactions with Vex which have occurred to
the right of the denominator. '

We choose the Z axis to be along the internu-
clear axis of H, . For F =Fz, o.(~) is written
n ~~(m), and for F = Ek, n (ar) is written 22' (e).
From now on the symbol n(w) is used for the av-
erage dynamic dipole polarizability

H=H +H'
c ex
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II. SUMS OF DIAGRAMS

In the present calculations, we use the same
8, and therefore the same set of single-particle
states used previously" to calculate the binding en-
ergy and static dipole polarizabilities of H, . These
states were calculated in a single-center expansion
in which

represents —g V(xf). Interactions of the hole and
of the particle with passive unexcited states are
shown in Figs. 1(c) and 1(e), respectively. In Figs.
1(f) and 1(g) the cross enclosed by a circle symbo-
lizes interaction with the nonspherical potential

2 ~ 2zE
V = — Z p & 1

P (cos8.), (11)
i=1 %=2 r

E even

where p'Is is an approximation (spherically aver-
aged) to the lowest molecular orbital.

The lowest-order contribution to o. ~~((A)) is given

by

-»k I (k~z ~ls) I"((»„-ek —~)

+ (e —ek + (u )-']

The factor 2 accounts for the two 1s electrons
and the summation is over all excited single-par-
ticle states k, both bound and continuum. The low-
est-order contribution to o. l(~) is obtained by re-
placing z by x in Eq. (10). Since we have used a
single-center expansion, o. ~~(&u) and n1(&u) are equal
in lowest order. The diagram corresponding to
Eq. (10) is shown in Fig. 1(a). The heavy-dot in-
teraction is with Ve+x. If the bottom-dot interac-
tion is with Vex, then the denominator is cy~

In the next order of perturbation theory,
we include terms with one interaction with H~ as
shown in Figs. 1(b)-1(f). The crossed interaction

where r (r& ) is the lesser (greater) of rf and R
=0. 70, which is one-half the nuclear separation of
H, . '~ Equation (11)comes from the second term
in Eq. (5) minus the K=O part, which cancels with
that in V(r). These interactions also occur on hole
lines, but for H, the matrix elements &1s ~r&+
/r& + P&Ils& are zero for K4 0, since the state%+1
ls is calculated in our single-center expansion. As
discussed previously, '~ ' we may include diagonal
interactions on hole lines, as in Figs. 1(b) and
1(c), and also diagrams with two or more such
interactions by summing a geometrical series to
give the basic diagrams of Fig. 1(a) with a de-
nominator shifted from & y~

—~y to

+ (isis iv ilsls) —(1sis' iv ilsls') —els

(12)

Similarly, when we consider bound excited states,
we may include diagrams 1(d)-1(f) and 1(h) for
k = k' (bound) and higher-order diagrams with the
same diagonal interactions by summing the re-

1 s ~~ ~~ k

le,Q
Is Q

(a)

+ k
ls && i- ———~

(e)

ls

(t)

FIG. 1. Low-order diagrams
contributing to nI~ (~) and G.«(co).
The heavy dot represents interac-
tion with z or x according to
whether one is calculating n~~ or
0,&. In (f) and (g), the cross with
a circle represents the interaction
of Eq. (11). Diagrams (g) and (i)
also occur inverted.
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suiting geometric series. The result is that we
obtain the basic diagram of Fig. 1(a}with the de-
nominator e1s- cy shifted to become

—
I &~ + (mls

I
v

I

+1s&

+ &mls I" I
ls»+&I

I

—(2r '/r ') P2(cos8}
I »]

The term (ls1s
I
v

I
his& —( his'

I
v

I

his'& accounts
for the fact that the 1s state differs from the 1s'
state used in V. The term (his Iv I

ls», which is
added to &p due to the diagonal interactions of
Fig. 1(h), and higher-order terms due to the same
interactions represents the usual positive exchange
term characteristic of excited singlet states. The
last term in Eq. (13) is the %=2 term of Eq. (11).
Note that we only have the K= 2 term in Eq. (13)
since k has l =1, because the heavy-dot interac-
tions in Fig. 1 are dipole interactions. The last
matrix element of Eq. (13) is negative for k(mf
= 0) and positive for k(mf = +1).

This corresponds to a lowering of the energy of

lsv~pv'Zn states relative to lso&npm'ffn. We
note that our lsd(mf = 0) and lsnp(mf =+1) excited
configurations correspond to 1svgnpo' Z~+ and
lsognPm'll„, respectively. In Fig. 1, only dia-
grams 1(f) and 1(g) contribute differently to n~~ and
nl. For a~~, diagrams 1(f) and l(g) have the same
sign as 1(a}, and for ni, l(f) and 1(g) are negative
with respect to 1(a) when we consider that energy
denominators are negative.

In the next order of perturbation theory in Hz,
there are many diagrams in addition to those in-
volving two H~ interactions of the types shown in

Figs 1(b)-1(i). lt is desirable that the poles of
n~~(&u) and u 1(&u) be located as accurately as pos-
sib]e, an(1 in Figs. 2(a)-2(i) are shown new types
of diagrams which are second order in H~ and af-
fect the positions of the poles. When Figs. 2(a)
and 2(b) are added, the result is a product of the
second-order correlation energy times the diagram
of Fig. 1(a) multiplied by minus D, where D is
the denominator of Fig. 1(a)." This term and
Fig. 1(a) are the first two terms in a geometric
series which may be summed to give the diagram
of Fig. 1(a) with a denominator shifted by
Ecorr(ls, ls), which is the correlation energy for
the two ground-state electrons. Diagrams 2(c)
and 2(d) add to give the product of the second-or-
der energy (for one ls electron} due to two inter-
actions with Eq. (11) times the diagram of Fig.
1(a) multiplied by minus D '. Again we have a
geometric series which may be summed to give
the basic diagram of Fig. 1(a) with a denominator
shifted by &Ezz&, where &E~&'z& is the total shift in
energy for a single 1s electron due to all interac-
tions with V„s.

We can include all the shifts considered so far
by replacing els md 6

p by f 1s and enp, where

+ (lsls
I
v

I
lsls& —(lsls'

I
v

I
lsls'&

+ E (ls, ls) + nEcorr 'fIS

+ &~pls
I
v lnpls& - &npls'

I
v

I
npf s'&

np np

2y 2

+ (np
I
—,InP&+(npls Iv I lsnp& . (15)

(a}

(e)

--—„——~

4i

k--—--
(i}

-----~
/c k

k-----~

----~k'

(k)

———---—~k"

~~ k'

(h)

FIG. 2. Selected high-
er-order diagrams. The
heavy dot represents in-
teraction with the external
potential given by z for
o'II and by x for a&, Dia-
grams (a)-(e) and (j) are
included in the present
calculation. Diagrams (f)

and (g) are included for k
=k' =np, Diagrams (h)

and (i) are included for k
=k' '=np. Diagrams (k)

and (I) are not included.
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When we use mls and e„p, the positions of the
poles of o'. ~~(e) and ni(&s) are given by enp ~Is.
However, there are also contributions to the poles
from the diagrams of Figs. 2(e)-2(h). In Figs.
2(f) and 2(g), these contributions occur when k=k'
=nP; and in Figs. 2(h) and 2(i), they occur when
0=0"= np with 0'0 k. Again we have a geometric
series which may be summed to give a shift
&(&u, nP) to the denominator of Fig. 1(a). Unlike
the shifts in Eqs. (14) and (15), & depends on u&.

For example, the contribution to h(u, nj) from the
diagram of Fig. 2(e) is given by

~ +( ) g 1&kls I
v

I
Isis&

I

'
e ' k E1 +&1 —E~-E +co '

1s 1s k np

(16)

& = e ' —&
' + & (~, nP) + ~ .1s 'pip

(17)

The poles of o. ~~(~) and nl (v) occur at the zeros
of D given by Eq. (17).

where ~ is used according to whether a cd occurs
in the denominator of Fig. 1(a). In higher orders
of perturbation theory, shifts also occur in the de-
nominator of Eq. (16).

When all the shifts we have discussed are in-
cluded, the appropriate denominator when there is
a single excitation is given by

co (in a.u. ) GII 2
c

GII d

0.00
0.05
0.10
0.15
0.20
0.25

0.30
0.35
0.40
0,42
0.44
0.46
0.48
0.50
0.51
0.52
0.53
0.54

6.390
6.450
6.638
6.978
7.527
8.392
9.812

12.412
18.538
24.237
37.211

100.218
-88.881
—23.307
—14.309
—7.933
—1.848

7.950

6.502
6.562
6.749
7.088
7.633
8.489
9.887

12.428
18.351
23.816
36.179
95.788

-84.413
-20.716
—11.975
-5.683

0.213
-4.073

6.803
6 ~ 872
7.092
7.492
8.146
9.201

11.017
14.672

a Second order except for shifted denominators.

Including higher-order terms.
From the model dipole spectrum of Victor and

Dalgarno, Ref. 12.

III. RESULTS

TABLE II. Parallel dynamic dipole polarizability in
3ao.

TABLE I. Perpendicular dynamic dipole polarizability
inao.

cu (in a.u. )
a

l2

0.00
0.05

0.10
0.15
0.20
0.25

0.30
0.35
0.40
0.42
0.44
0.46
0.48
0.50
0.51
0.52
0.53
0.54

6.103
6.154
6.312
6.596
7.043
7.727
8.792

10.563
13.962
16.380
20.200
27.219
44.886

198.101
—183.507
-54.191
-26.922
-12.891

4.555
4.588
4.690
4.853
5.159
5.591
6.253
7.330
9.338

10.735
12.906
16.826
26.520

109.379
—96.392
—26.525
—11.784
—4.593

4.774
4,814
4.936
5.159
5.515
6.067
6,957
8.550

aSecond-order except for shifted denominators.
Including higher-order terms.
From the model dipole spectrum of Victor and

Dalgarno, Ref. 12. Values of Ref. 12 were interpolated
to obtain present values.

The calculated perpendicular and parallel dy-
namic polarizabilities are listed in Tables I and
II. The terms +~2 and nII2 result from calculat-
ing the basic second-order diagram of Fig. 1(a)
with the shifted denominator of Eq. (17), and so
includes many of the higher-order terms of Figs.
1 and 2. The difference between ny2 and O'II2 is
due to the difference between enp (0) and enp (+I).
Contributions to o.~~(&) and o'& ((o}due to electron
correlations come from the diagrams of Fig. 1(h)
and 1(i). We have already included terms of l(h)
with k=k'= np by D of Eq. (17), so these terms
are now omitted. In calculating Figs. 1(h) and 1(i}
we employ the shifted denominator of Eq. (17),
but in the bottom denominator of Fig. 1(i) we use
the shifted denominator appropriate to a double
excitation. ' It is noted that diagrams 1(h) and
1(i) are included in the coupled Hartree-Fock ap-
proximation. Contributions of Figs. 1(h) and 1(i)
to +II and ng are identical except for differences
in the shifted denominators. The interactions of
Figs. 1(h) and 1(i) are repeated in higher orders,
and the sum of these interactions is approximately
included in this work by multiplying the basic
diagram of Fig. 1(a) by the factor (1 —R) ', where
If equals the sum of diagrams 1(h) and 1(i), all
divided by diagram 1(a). By diagram 1(i), we
mean the diagram actually shown plus its inverted
form.
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r (~) = ot, (~) —ol(~), (18)

The difference between n~~ and &g comes from
interactions with Vns of Eq. (11), as shown in
Figs. 1(f}and 1(g), and higher-order terms. The
part of Fig. 1(f) with k =0' =np was already in-
cluded. The remaining contributions to n~~ and a J
were explicitly evaluated. The result is an in-
crease in n~~ and a decrease in ~~. The calcula-
tions of diagrams 1(f) and l(g) were carried out
with shifted denominators. There are also higher-
order terms in which Figs. 1(f) and 1(g) are modi-
fied by correlation interactions of the types shown
in Figs. 1(h} and 1(i). An estimate of these ef-
fects was included by using the ratio R already
determined. For Fig. 1(f), however, the correc-
tion factor is approximately 1+2R+3R'+ ~ ~ ~ ~

For 1(g), since 0' is an excited I =2 state, addi-
tional calculations were carried out to obtain ef-
fects of correlations in / =2 states on the basic
diagram 1(g). The average effect of these terms
was to reduce Fig. 1(g) by approximately a factor
of 0. 0907. Final results for ag an«~~ are given
in the third columns of Tables I and II, respec-
tively.

In Tables I and II, the columns labeled &gd and
~~Id are from the model dipole spectrum of Victor
and Dalgarno" and are expected to be accurate to
0. 2%. Values given in Ref. 12 were interpolated
in order to list them at our intervals. In Table
III are listed the molecular anisotropy

and also y&(&u), which is the molecular anisotropy
from the model dipole spectrum. " In all the cal-
culations, sums over excited states were calculat-
ed by methods of Ref. 8; i.e. , sums over contin-
uum states were carried out by numerical integra-
tion, and sums over bound excited states were
carried out explicitly through n =8 and then to ~
by the n 'rule. ' For example, at ~=0 for a~~2
there is a contribution from continuum states of
1.184a,' and from bound states of 5. 206m, '. At co

=0.30, the continuum contribution is 1.420ao' and
the bound contribution is 8.392a,'. As co in-
creases, the contribution from the lowest-bound
excited state becomes of increasing importance as
we near the pole of n(~) caused by this excitation.
In Table III, we also list o.(~) defined by Eq. (8).
The experimental values in the last column of Table
III are interpolated from those listed by Victor
and Dalgarno' for m&0. 25. For v ~0. 25, the
model-dipole-spectrum" results are listed since
direct experimental results are not available. In
Table GI, we have also listed a column n~ which
is the dynamic dipole polarizability calculated
with e1z shifted to e1~+ 0. 0200 a.u. We note that
e~ is in better agreement with nexpt than is &&

and this is an indication that our denominators
may be in error by this amount.

In Table IV are listed the poles of o. (~) which
are determined by the zeros of Eq. (17). The ex-
cited states np(0) and np (+I) correspond to the
Isv&npo'Z~+ and Isopp~'D„molecular states, re-

TABLE III. Molecular anisotropy and dynamic dipole polarizability in ao .

m (in a.u. ) o 2 Q S

0.00
0.05
0.10
0.15
0.20
0.25

0.30
0.35
0.40
0.42
0.44
0.46
0.48
0.50

1.947
1.974
2.059
2.215
2.474
2.8 98

3.634
5.098
9.013

13.081
23.273
78.962

—110.933
—130.095

2,029
2.058
2.156
2.333
2.631
3.134
4.059
6.123

6.199
6.253
6.421
6.723
7.204
7.948
9.132

11.179
15.487
18.999
25.871
51.552
0.297

124,298

5.204

5.246

5.377
5.612
5.983
6.557
7.465
9.030

12.342
15.096
20.664
43.146

—10.458
66.014

5.372
5.420
5.565
5.831
6.255
6.921
8.011

10.007
14.921
20.161
39.221

—16.187
50.221

—22.499

5.437
5.521
5.646
5.934
6.410
7.110
8.309

10.590

Molecular anisotropy given by 0
~~

—e&.
Molecular anisotropy as given by the model dipole

spectrum of Victor and Dalgarno, Ref. 12.
Dynamic dipole polariz ability calculated in second

order by Eq. (8) but with shifted denominators.

Dynamic dipole polariz ability including higher-order
terms calculated by Eq. (8).

Dynamic dipole polarizability calculated with &1~
shifted by 0.020 a.u. Higher-order terms are included.

Experimental values listed in Hef. 12. For ~ ~0.25,
values listed are from the model dipole spectrum of
Ref. 12.
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TABLE IV. Positions of poles of n(~)
a

Excited state

2p (o)

sp (o)

4p (o)

5p (o)

ep (o)

7p (o)

8p (o)

2p (+1)
sp (+1)
4p (+1)
5p (+1)
ep (+1)
7p (+1)
8p (+1)

Pole

0.4700
0.5508
0.5782
0.5894
0.5954
0.5990
0.6013
0.5050
0.5608
0.5816
0.5911
0.5963
0.5996
0.6018

Excitation energy from ground state in a.u. due to
1s—np excitations.

States np(0) correspond to molecular excited states
1so&npo„Z„, and states np (+1) correspond to molecular
states 1sognP~s II„.1

~Values of co for which Eq. (17) equals zero.

In carrying out these calculations we have used
the Born-Oppenheimer approximation" and ne-
glected the nuclear motion. Our excited states
were also calculated at the fixed nuclear equilib-
rium separation of the ground state which is con-
sistent with the Franck-Condon principle. " We
note "that the potential curve for the ground
state of H, is deep compared to those for the
'~&+ and 'II„excited states of this calculation.
The nuclear vibration frequency of the ground
state is 4395 cm ' or 0.020025 a. u. ," and so
the vibrational energy of the ground state is
0. 01001 a. u. Our neglect of vibrational effects
may then account for some of the error in our
value for n(v) as compared with the experimental
value in Table III. Other errors may come from
neglect of higher-order diagrams and from the ap-
proximations we have used to include those higher-
order diagrams which were considered. Examples
of fourth-order diagrams which were not included
are shown in Figs. 2(k) and 2(l). Future calcula-
tions will include additional diagrams and vibra-
tional effects.
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