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Velocity of Sound, Density, and Gruneisen Constant in Liquid ~He~
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By measuring the pressure dependence of the velocity of sound, we have determined both the
pressure dependence of the density and the Gruneisen constant u of liquid He. Measurements
were made below 0.1 K and in the vicinity of 0.5 K. Our determinations of the pressure de-
pendence of the density agree quite well with that determined by Boghosian and Meyer, who

used a capacitance bridge. Since the latter results rely on the validity of the Clausius-
Mossotti relation and a pressure-independent electric polarizability, the present work can be
interpreted as supporting both of these assumptions. We found that u(pp) —= (p/c)dc/dp = 2.84

under the vapor pressure at 0.1 K. Using this value of u to calculate the attenuation of sound

according to a three-phonon mechanism, we obtain an attenuation of less than half the mea-
sured value. Thus, the present theory of sound attenuation must be incomplete.

INTRODUCTION

In Landau's quantum hydrodynamical model for
liquid 4He'y' the density p and the density-depen-
dent sound velocity c(p) [together with its deriva-
tives &c(p)/Sp, etc. ] play a central role. Since
the pressure P is the usual laboratory variable, it
is important to know p(P) and c(P). The most ac-
curate measurements to date of p(P) have been
obtained by measuring the pressure dependence of
the dielectric constant s(P) and relating this to the
density through the Clausius-Mossotti equation. '
Since this involves assuming the pressure indepen-
dence of the molar polarizability (together with the
validity of the Clausius-Mossotti equation), it is of
interest to have an independent determination of
p(P). A knowledge of c(P) enables us to deter-
mine p(P) by integration, since c' = (&P/&p)T.
There have been measurements of c(P) by a num-
ber of techniques, ' but the temperatures at
which the measurements were made were not low
enough to satisfy the condition for isothermal
propagation (ur»l, where & is the appropriate
phonon-phonon relaxation time). Thus, it is of
interest to measure c(P) at very low temperatures.
With the development of the phase-comparison
technique, the accuracy with which the change in
velocity with pressure may be determined has
been increased significantly. With this improve-
ment the pressure dependence of the density may
be determined with an accuracy not previously
possible.

The Gruneisen constant u = (p/c)&c/&p sets the
strength of the phonon-phonen interaction in 4He.
This constant also appears in the expressions for
the attenuation of sound. Thus, it is also of in-
terest to know u with precision sufficient to allow
a meaningful comparison between the theoretical
and measured sound attenuation.

Since the results of the present experiment will

allow us to determine a number of quantities re-
lmting to phonon-phonon interactions in liquid
helium, it is worthwhile to include a brief review
of the theory. Consider first the additional po-
tential energy per unit volume E(p) on increasing
the density of the liquid at absolute zero, from
the equilibrium density p, (V,) to a final density
p(V); i. e. ,

I
&(p) = ——

V

P P(p')
PdV=p „dp'.

p
0 P0

The kinetic energy per unit volume is given by

2V pV,

where v is the local velocity of the liquid. Thus,
the total energy per unit volume, which is the
Hamiltonian density, will be

P(p ) ip
II = 2V o, pV+p p2 dp

P0 P

Making use of the fact that P(p, ) = 0 (at absolute
zero the pressure is zero at the equilibrium den-
sity), we may expand Eq. (3) in a Taylor series
about p„obtaining

+ ~ ~ ~

where

&0 = s v ~ Pov + k'(P. )/2P. ](P p.)', —

1 1 d cP' = sb ~ 0-P )vl+ ——— (P P)'-S 3!dp p P =P0
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and

p=po

If we terminate the expansion after Ho, the ele-
mentary excitations of the system will be noninter-
acting phonons. An excellent account of the
mathematical details can be found in London's'
and Khalatnikov's' books. The term V„being
third order, leads to a three-phonon coupling in
first-order perturbation theory and to a four-
phonon coupling in second order. V, couples four
phonons in first order. Thus, an accurate knowl-
edge of p and c'(p) is essential to the theory of
phonon-phonon interactions. It was with this goal
that the present investigation was initiated.

EXPERIMENT

In this experiment we determined the change
with pressure of the transit time of a sound wave
traveling through a known distance D in the liquid.
The change in transit time is given by

pulse-echo technique was employed. With the de-
velopment of the phase-comparison technique, the
change in velocity with pressure could be deter-
mined with much greater accuracy; it was there-
fore worthwhile to repeat these measurements,
especially since the value of u could not be de-
termined accurately from the existing data.

When a sound wave is propagated under the con-
dition ~7»1, where r is a characteristic relax-
ation time in the liquid, the propagation is iso-
thermal since the liquid does not come into local
thermal equilibrium with the sound wave. The
isothermal sound velocity is given by

(9)

P dP
p(P) —p(0)=,(p)

0

(10)

Thus, from a knowledge of the pressure depen-
dence of this velocity, one ean, on integrating
Eq. (9), determine the pressure dependence of the
density:

t(P) —t(P = 0) —= ht = D/c(P) —D/c(0) . (8)

Thus, if we know the velocity at zero pressure,
we can determine the velocity at any other pres-
sure using (8). The absolute value of the velocity
of sound in liquid 4He at the vapor pressure has
been measured by a number, of workers, ' "using
a variety of methods. The change in velocity with
temperature has been measured, commencing at
very low temperatures, using the phase compar-
ison method, by Whitney and Chase"~" and also
by Abraham et al. "y22 These data are necessary
for extrapolating the high-temperature measure-
ments of the absolute value of the velocity to zero
temperature. Whitney and Chase, "having done a
detailed statistical analysis of the available data,
have determined a value of the zero-pressure
velocity at absolute zero. They found c = (2. 383
+ 0. 001) x10' cm/sec; we adopt this value in the
analysis which follows, The absolute value of the
sound velocity could not be accurately determined
in our work because unloaded transducers, which
have a relatively slow rise time ( 10 gsec), were
employed. This limits the accuracy with which
the time of arrival of the pulse can be determined.
The transducers were operated unloaded, because
it had previously been determined that an excep-
tionally high signal-to-noise ratio could be achieved
using this approach. "

The pressure dependence of the sound velocity
was first studied by Findlay, Pitt, Grayson-Smith,
and Wilhelm4 using an interferometric technique.
It was later studied in greater detail by Atkins and
Stasior, ' as well as by Vignos and Fairbank. ' In

both of these latter measurements the time-of-flight

For the temperatures used in this experiment,
~7»1. At higher temperatures, where ~7 «1
(typically greater than 1 K for the ultrasonic
frequencies usually employed), the situation is
more complicated. In a classical liquid, the
sound velocity in this limit would be given by c'
= (&P/Bp)S. In liquid He ir this is not, in general,
correct due to a coupling between first and second
sound, '~' but the sound velocity approaches this
value asymptotically as T approaches zero. For
these reasons we have not attempted to determine
the high-temperature equation of state in this ex-
periment.

A simplified diagram of the ultrasonic com-
parator used in these measurements is shown in
Fig. 1. The technique is basically an interf ero-
metric one. " Energy from a continuously running
oscillator is divided into two branches: the signal
or helium branch and the reference branch. The
time difference between the pulses which activate
switches A and B is adjusted to be equal to the
transit time through the helium. This is done to
ensure that the signals arrive at the receiver at
the same time. The two branches are recombined
at the input of the amplifier and, since both are
derived from the same source, interfere coher-
ently with one another. To obtain the initial
reading, only enough He was condensed to fill the
cell, and the delay line was adjusted so that a null
was obtained at the receiver input. This point
was taken as the zero pressure point. Were a
larger amount added, such that the liquid partially
filled the capillary, two pressure contributions
could arise. First, there would be the hydrostatic
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pressure head in the capillary; second, the pres-
sure would be determined by the liquid in the
warmest part of the capillary.

The pressure was then raised to a value where
the first data point was to be taken, and the at-
tenuator and delay line were adjusted so that the
null was reestablished. The pressure increments
were such that the transit time changed by several
periods. At pressures less than 1 atm, where
equilibrium times were determined by gas flow
through a narrow capillary, the number of nodes
occurring during a pressure increment was re-
corded and the delay line readjusted so that a null
was observed. A finite time is also required for
condensation of the liquid. Typical equilibrium
times were on the order of 15 min. At pressures
above 1 atm, when the capillary was filled with
liquid above the bath level, the equilibrium times
were of the order of —, min. Under these circum-
stances the pressure increments could be adjusted
so that the transit time changed by an integral
number of periods, which eliminated the necessity
of adjusting the delay line. Over very large pres-
sure changes it was necessary to readjust the
time difference between the A and B switches to
account for gross changes in the sound velocity.
The frequency of the oscillator must be unusually
stable since a frequency shift n f/f causes an ap-
parent velocity shift b, c/c. The frequency of the
oscillator was continuously monitored during the
course of the experiment and was maintained at
12 014 665+ 10 Hz.

In order to isolate the effect of temperature on
the quantities determined in these experiments,
it was decided to make runs below 0. 1 K, Re-
frigeration was achieved using adiabatic demag-
netization of 500 g of potassium chromium alum.
The refrigerator salt pill was fabricated from

single- crystal slabs and coil foil. Thermal isola-
tion was improved by the use of a ferric ammonium
alum guard pill. Both pills were attached to a 'He
evaporation refrigerator via Pb superconducting
switches. The above components were surrounded
by a shield which was cooled by a second 'He re-
frigerator. The magnet used was a 2o-ko Westing-
house super conducting solenoid. The cerium mag-
nesium nitrate (CMN) magnetic thermometer was
also fabricated from single-crystal slabs and coil
foil. The sonic cell employed was the same as
that used in previous investigations, " "with the
exception that the reservoir at the top was re-
moved. Coil foils from both the refrigerator and
magnetic thermometer were in thermal contact
with the cell. Resistance thermometers were at-
tached to the refrigerator and guard pill and were
useful in determining thermal equilibrium. The
magnetic thermometer was calibrated against the
vapor pressure of 'He. Temperatures as low as
16 mK were reached on demagnetization from
1.0 K. Since the temperature dependence of the
velocity is negligible below 0. 1 K, there was no
need for any lower temperature.

Due to the unusually large thermal conductivity
of superfluid 4He, special precautions had to be
taken to ensure thermal isolation of the low-tem-
perature portion of the cryostat. Thermal isola-
tion was achieved by using appropriate lengths of
Cu-Ni capillary (0. 025 cm i. d. , 0. 005-cm wall)
between the various stages in the cryostat. These
lengths were, between the main 4He bath and the
4He refrigerator, 30 cm; separating the 4He re-
frigerator from the 3He refrigerator, 144 cm; be-
tween the 'He refrigerator and the guard pill, 87
cm; and between the guard pill and the refrigerator
pill, 40 cm. In order to ensure good thermal
grounding of the liquid to the. refrigerator pill, the
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liquid passed through a 76 cm length of 0.041-cm-
i. d. capillary which was in good thermal contact
with the salt. A 0.33-cm- diam copper wire was
threaded through this last section of capillary to
increase the area and consequently to reduce the
Kapit'za boundary resistance. A second thermal
shield, made out of coil foil and kept at the po-
tassium chromium alum temperature, surrounded
the cell and the CMN thermometer.

DATA AND ANALYSIS

Rewriting Eq. (8) in terms of the zero-pressure
sound velocity of Whitney and Chase, "we have

c(P) = D 1.0100
b, f+[D/c(0)] ~f+0.4238x10-44 cmsec

P (atm)

0.0580
0.1104
0.1680
0.2822
0.3996
0.5792
0.7627
0.9528
1.2110
1.4798
1.7593
2.0461
2.4951
2.9673

c (m sec" )

238.764
239.234
239.707
240.657
241.616
243.067
244.536
246.024
248,036
250.079
252.160
254.274
257.511
260.832

S (atm)

3.4669
4.3551
5.3263
6.3881
7.5548
8.8359

10.2455
11.8042
13.5338
15.4544
17.5973
20.2478
22.9545

c (m sec )

264.240
270.122
276.272
282.708
289.452
296.525
303.952
311.761
319.982
328.648
337.797
348.467
358.770

TABLE II. Experimental values of sound velocity in
4He under pressure for T-0.5 K.

TABLE I. Experimental values of sound velocity in

He under pressure for T&0.1 K.

P (atm) c (m sec ) J' (atm) c (m sec )

where the path length D is 1.0100 cm and bt is in
seconds. Our results for the pressure dependence
of the sound velocity at 0. 1 K are given in Table I.
Table II gives our experimental values for T = 0.45K,
where for the vapor pressure velocity we have
used the value 238. 34 m sec '.

In order to determine various derived quantities
from our data it is helpful to describe the data in
analytic form. By least-squares fit procedures
we determined several expressions that repre-
sented our data fairly well; one of them expressed
the time delay as a seven-term power series in
the pressure; a slightly better fit was obtained
by expressing the pressure as a six-term power

series in the time delay„but by far the simplest
expression that fit the data well was a three-term
virial expansion of the pressure in powers of the
density:

P(atm) =A, (p —p, )+A, (p —p, )'+A, (p —p, )', (12)

where p, is the density at zero pressure. Because
of its simplicity, the theoretical significance of
its coefficients, and the fact that it gives a very
good fit to our data, Eq. (12) was chosen as the
analytic description of our data.

Since Eq. (12) does not contain the velocity
directly, one must use the relation

c'(m sec ') dP
1.01325 x10' dp

0.0699
0.1120
0.1680
0.2250
0.2667
0.3370
0.4560
0.7588
1.0789
1.3431
1.6160
1.9008
2.1884
2.7220
3.2897
3.8071
4.3475
4.9170
5.4192
5.9410

238.841
239.215
239.673
240.137
240.444
241.038
242.064
244.445
247.014
249.041
251.103
253.199
255.330
259.146
263.079
266.546
270.106
273.762
276.885
280.081

6.4889
7.0666
7.5452
8.0416
8.5563
9.0937
9.6515

10.2293
10.8351
12.1198
13.3325
14.6381
15.8355
17.1184
18.4921
19.9553
21.5239
23.2085
24.3862

283.351
286.698
289.433
292.221
295.064
297.962
300.917
303.932
307.008
313.350
319.118
325.103
330.414
335.902
341.575
347.441
353.516
359.805
364.124

=Aj. + 2A, (p —po)+3A, (p —p, )' (13)

to obtain an implicit relationship between P and c.
The numerical factor converts atmospheres to
dyn/cm'. For any value of P, Eq. (12) can be
numerically solved for the corresponding value of
p. When this value of p is put into Eq. (13), one
gets a calculated value of c'(p) to be compared
with the experimental value. It is not difficult to
calculate the derivatives of Eq. (13) with respect
to the parameters A„A„and As [including the
derivative of p with respect to A„A„and A, from
Eq. (12)], so that one has all the necessary in-
formation to least-squares fit the data to Eq. (12).
Since neither the time delay nor pressure is known
with unlimited precision, it is desirable to use a
generalized least- squares procedure, developed
by Deming, "which takes into account the un-
certainties present in both variables. In this
method the function 8 is minimized where
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FIG. 2. (a) Pressure dependence of the velocity of
sound in liquid He for T less than 0.1 K. Solid curve
is our fit using Eqs. (12) and (13). (b) Deviations be-
bveen the measured and fitted velocity.

Here, N is the number of experimental points; ot
and oP are the expected variances of the time
delay and of the pressure variables, respectively;

~ti an Pi are the t and P components, re-
spectively, of a line segment from the experimen-
tal point to the calculated curve. The selection of
this line segment affects the statistical weight given
to the P and t variables; the optimum weighting
occurs when the line segment is normal to the
curve in a plot of P/op against t/ot. The values
cry = 10 ' sec and gP = 10 ' atm were used here.

Figure 2(a) shows the values of c from Table I
plotted versus P. The solid curve is the para-
metric relationship obtained from Eqs. (12) and
(13). The quality of the agreement between our
data and these equations is given in Fig. 2(b),
where the deviations of our velocity values from
the calculated curve are plotted. The fit is re-
markably good for such a small number of terms.
The value of A, follows from the measured sound
velocity at zero pressure' and, in the units used
here, is given by

4.0

3.0

(

2.0
I

C
o 1*0

0
0

I

10

P (atm)

I

15 20 25

FIG. 3. Comparison of the fitted values of c(I') from
Table III and the measurements of Vignos and Fairbanks
(Ref. 6) (open circle) and Atkins and Stasior (Ref. 5)
(open triangle) .

A, =c'(0)/(1. 01325x 10')

=(5.60+0.01)x10' atm cm'g ' .

The values of A, and A„determined from the
least-squares fit, are

A, = (1.0970 + 0. 0007) x 10' atm cm' g ',

A, = (7. 33 + 0. 01)x 10» atm cm' g ',

where the errors are standard deviations obtained
from the least-squares fit and do not include pos-
sible systematic errors.

The values of the parameters derived from the
data of Table II are

A,'=(5. 61+0.01)x10' atmcm'g ',

A,'= (1.0952 + 0.0007)x10' atm cm' g ',

A s = (7. 31 + 0. 02) x 10' atm cm' gm ' .

Fi'gure 3 shows the difference between our cal-
culated values of c from Table III and the values
of c at 1.0 K of Vignos and Fairbank' and those at
1.25 K of Atkins and Stasior. ' Note that our de-
viation plot in Fig. 2(b) is on a much expanded
scale.

Figure 4 shows a similar comparison of our
values of p (using" pa=0. 14513) from Table III
with the values obtained by Keesom and Keesom"
at 1.25 K and by Boghosian and Meyer' at 0 K (ex-
trapolated from 0. 5 K). The agreement with the
values of Boghosian and Meyer is excellent; only
at one point is the difference more than
10-' g/cm', the accuracy to which their data are
given. This experimentally establishes that the
molar polarizability of liquid He is independent of
pressure. This was an assumption made by
Boghosian and Meyer in obtaining densities from
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FIG. 4, Comparison of the fitted values of p(P) -p(0)
with the measurements of Keesom and Keesom (Ref. 27)

(open circle) and Boghosian and Meyer (Ref. 3) (open
triangle) .

their measurements of the dielectric constant e
of He using the Clausius-Mossotti relation

p = (3M/4m' )(e —I)/(e+ 2), (15)

where M is the molecular weight, and aP is the po-
larizability. Since our values of p agree with

theirs to within 0. 1/0, the polarizability is inde-
pendent of pressure (below 25 atm) to within 0. 1%.

The values of p(P) presented here rely on a
knowledge of c (0): the zero-temperature and
-pressure velocity. Should some future measure-
ment improve the precision of c(0), the full pre-
cision of these data could be realized. The values
of (p —p, ) given in Table III may be corrected by
multiplying the values by the factor 1+2.4[238. 30
—c (0)]/c (0).

Table III contains values of P, c, p —pp u
—= (p/c)(dc/dp), and w —= (p'/c)(d'c/dp') calculated
from Eqs. (12) and (13) using the values of A„A.„
and A. , above. In calculating u and n we have used
the value of pp=0. 14513 determined by Kerr and
Taylor. " We have made an attempt to find out
how much the results of Table III depend on the
form of the expression used to fit the data. We
have made detailed comparisons of the numbers
obtained from all the expressions which give a
reasonably good description of the data. From
these we have concluded that the results of Table
III are largely independent of the analytic descrip-
tion, except perhaps in the last digit given. The
results at 0. 5 K yield values which are the same
as those listed in Table III to within our estimated

TABLE III. Pressure, sound velocity, density change, Gruneisen constant, u= (p/c) (dc/dp), and zv = (p /c) (d c/dp )
calculated from Eqs. (12) and (13) in the text at 0. 1 K.

S' (at )

0.0
1.00
2.00
3.00
4.00
5.00
6.00

7.00
8.00
9.00

10.00
11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00
21.00
22.00
23.00
24.00
25.00

c (msec )

238.30
246.35
253.91
261.05
267.83
274.28

280.44
286.34
292.02

297.48
302.75
307.84
312.78
317.56
322.20
326.71
331.11
335.39
339.56
343.64
347.62

351.51
355.32
359.05
362.70
366.28

P-Pp
(gem )

0.0
0.00173
0.00334
0.00487
0.00632
0.00770
0.00902
0.01028
0.01149
0.01266
0.01378
0.01487
0,01592
0.01694
0.01793
0.01889
0.01983
0.02074
0.02163
0.02250
0.02335
0.02418
0.02499
0.02578
0.02656
0,02733

2.84
2.78
2.73
2.69
2.64
2.61
2.57
2.54
2.51
2.48
2.46
2.44
2.41
2.39
2.37
2.35
2.34
2.32
2.30
2.29
2.27
2.26

2.25

2~23

2.22

2.21

8.26

7.91
7.61
7.35
7.12
6.91
6.73
6.56
6.41
6.26

6.14
6.02

5.90
5.80
5.70
5.61
5.53
5.45
5.37
5.30
5.23

5.17
5.10
5.05

4.99
4.94
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m' (u+1)'
30 p Iz 3c'

x~T'[tan '(2~7)- tan '(3yp'(or)], (16)

where P ' is the average thermal phonon momen-
tum 3aT/c, and 7 is the thermal phonon lifetime.
The coefficient y accounts for dispersion in the
phonon spectrum at long wavelengths as defined in
the expression e =cP(1 —yP'), where e and P are
the energy and momentum of a phonon, respec-
tively. The same theory predicts a temperature
dependence of the sound velocity, given by

(T) (0) — +
ln

1+ (2 ) (17)60 ph' c 1+(3''~z)'

If we assume y to be small enough so that the
second term in Eq. (16) may be neglected, but at
the same time not so small as to make the four-
phonon process dominate, then Eq. (16) takes the
form

accuracy.
As stated earlier, the main motivation for carry-

ing out the present experiment was to obtain an
accurate value for z. , since this quantity is a cru-
cial parameter in theories of the sound attenuation.
According to theory, " " the attenuation coefficient
z of a sound wave of frequency arising from a
three-phonon process is given by

where f is the frequency. The recent work of
Abraham et al. "shows that the attenuation is
given approximately by

n = 11.6 x10 'fT'dB/cmHz K~ (vapor pressure)

(21)

in the frequency range 12-36 MHz and tempera-
ture range 100-500 mK. There appears to be no
way to account for this discrepancy at the present
time, and it is concluded that the present theory
of sound attenuation is incomplete. We believe
that some essential aspect has not been included
in the theory.

The attenuation arising from a four-phonon pro-
cess has been recalculated by Eckstein, "who
finds

n = 8. 66[(u+1)~/192m'yc'p'](z/5c)'~'T '

= 38. 8x 10 '(f'T'/y) g' cm dB/sec' Hz'K' (22)

in the limit ~ «vT. Note that this differs from
an earlier incorrect calculation by Landau and
Khalatnikov. ' The experimental value of the dis-
persion constant y is somewhat uncertain at the
present time. Eckstein and Varga" have shown,
however, that it is possible to derive y from the
hydrodynamic Hamiltonian given in Eq. (4). They
find the expression for y

w' (u+1)'
(18) y = ~ (~/8)'(u' —0. 6)/32m pic, (23)

where we have approximated tan '(2~ v) = —,
' z in the

limitt»1. Alternatively, if a frequencyis chosen
such that 3 yP'~ 7 «1 « ~ v, we again arrive at Eq.
(18). The attenuation of sound in 'He at low tem-
perature, where Eq. (16) should be valid, has been
reported by a number pf investigators.
Although the recent work reported in Ref. 22 was
quite exhaustive and precise, nonetheless, most'of
the measurements agree within experimental error
where they overlap. The perplexing thing is that
the measured attenuation is usually larger than
that calculated from Eq. (18). Using the mea-
sured values of cp and p, together with the values
of u determined in this experiment, we find

n =4. 82,fT'x10 'dB/cm HzK', (vapor pressure)
(18)

n =0. 215,fT'x10 'dB/cmHzK', (25 atm)

and

c(T) —c(0) = 16. 23T'cm/sec K', (vapor pressure)

(20)

which yields the value 5. 15&&10"in cgs units at
zero pressure. This value is in reasonable agree-
ment with that estimated" from inelastic neutron
scattering data.

CONCLUSIONS

The pressure dependence of both the velocity of
sound and the density in liquid 4He has been de-
termined with a much higher precision than in
previous work. Our values of p(P) deduced from
the measurement of c(P) agree well with p(P) as
determined from dielectric constant measure-
ments within the accuracy of these latter mea-
surements. Barring happenstance, this agreement
justifies the use of the Clausius-Mossotti relation
and establishes the pressure independence of the
molar polarizability 0.& of liquid 4He. Our value
of u definitely establishes the conclusion" that the
theory of sound propagation in 4He is incomplete.
This value of u when substituted into the expres-
sion developed by Eckstein and Varga" yields a
value of y, the Landau-Khalatnikov dispersion con-
stant, in reasonable agreement with neutron scat-
tering results.
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