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The cross section for ejecting electrons by 300-keV protons is calculated using the first term
in the Neuman expansion of Faddeev's equation for the final state of the electron-proton-
residual ion system. This approximation predicts a peak at 0 in the angular distribution of
electrons ejected with a velocity approximately equal to the velocity of outgoing protons. Nu-
merical results for He and H2 target gases are given and compared with the experiments of
Rudd and co-workers. The qualitative behavior of the forward peak in the experimental an-
gular distributions is well accounted for.

I. INTRODUCTION

Experimental techniques have reached the stage
where the energy and angular distribution of elec-
trons ejected by heavy ion impact can be measured.
Because cross sections that are differential in both
the energy and angle of the ejected electron are ob-
tained, these experiments produce much valuable
information about the ionization process. In par-
ticular, Rudd, elaborating on a suggestion by
Oldham, ' has proposed a new mechanism for ion-
ization to explain the forward peaking in the pub-
lished data on the ionization of He and H2 by pro-
ton impact. Since the forward peaking is most
pronounced when the electron is ejected with a
velocity nearly equal to the velocity of the proton,
Rudd argues that some electrons are carried along
with the proton for a short time and then move
away from the proton as free electrons. This
paper discusses the theoretical basis for Rudd's
mechanism, and shows in just what sense an elec-
tron in continuum state is carried along by a pro-
ton.

We seek a first-order approximation for the
final-state wave function of the electron, proton,
and residual ion which can describe an electron
being carried along by the proton. Of equal im-
portance is the requirement that the approximate
wave function give a reasonably good indication of
what a more accurate theory would predict. The
first term in the Neumann expansion of Faddeev's'
equation for the final- state wave function exactly
satisfies these two requirements. Since our ap-
proximation is only first order, its range of valid-
ity is considerably restricted at the outset. The
highest energy for the proton in the experiments
of Rudd et al. was 300 keV. Since a 300-keV pro-
ton is only moving with a velocity of about 3.5
times the velocity of an electron in the first Bohr
orbit of the hydrogen atom, a first-order approxi-
mation generally does not adequately describe the
detailed distribution of electrons in energy and
angle. A plane wave accurately describes the mo-
tion of the proton, but the wave function of the
ejected electron is distorted by both the field of
the residual ion and the field of the proton. Since



JOSE PH MACEK

all particles in the final state are charged, the
distortion extends over the entire region occupied
by the atomic electron; and no simple wave func-
tion can be expected to predict all features of the
doubly differential cross section. However, elec-
trons ejected with an energy greater than 2 or 3
a.u. must have come from close collisions with the
incident proton. The ejection of these more ener-
getic electrons, which are ejected in an essentially
binary encounter, can be reasonably well treated
by first-order approximations. For example, the
Born-approximation calculation by Massey and
Mohr4 predicts a sharp peak in the angular dis-
tribution of energetic electrons at an angle such
that energy and momentum of the proton-electron
subsystem are conserved. The data of Rudd et al. '
indeed shows this peak, indicating that electrons
with 2 or 3 a. u. of energy are produced by binary
collisions. However, the angular distribution of
electrons of a definite energy shows another peak
not predicted by the Born approximation. This
peak occurs at 0' and at electron energies such
that the velocity of the outgoing electron approxi-
mately equals the velocity of the proton. Since
most protons are scattered forward, this suggests
that some electrons are carried along by the pro-
ton. This "carrying along of the electron" is de-
scribed by a Coulomb plane wave centered about
the proton. Such a final-state wave function does
not go beyond the binary collision model for the
ionization process; consequently, the theory only
describes the angular distribution of the faster
electrons.

The Born approximation of Massey and Mohr4

employs a Coulomb plane wave centered at the
residual ion as the final-state wave function. Such
a wave function takes account of the distortion of
the electron distribution by the electrostatic at-
traction of the residual ion, but neglects distortion
due to the proton. For the faster electrons, the
latter distortion is at least as important as the
former, since the relative velocity of the proton
and electron may actually be less than the relative
velocity of the electron and the residual ion. This
additional attraction will affect the energy and
angular distribution of the faster electrons; con-
sequently, we seek an approximate wave function
which takes this distortion into account.

Since the final state of the system involves three
free particles, we will base our discussion on
Faddeev's integral equation for the final-state
wave function. For our purposes, two properties
of Faddeev's equations are important. First, all
particles are treated on an equal footing. No pair
of particles is singled out for special treatment.
This is not only a property of the equations and
their exact solutions, but it is also a property of
each term of the Neumann expansion of the solu-
tions, in contrast to the Born approximation of
Massey and Mohr where the electron-residual ion

pair is singled out for special treatment. Second-
ly, Faddeev's equations are written in terms of
the two-body T matrix elements rather than the
two-body potentials; consequently, the first term
of the Neumann expansion correctly describes (a)
an electron moving slowly away from the residual
ion while the proton moves rapidly away, and (b)
an electron and a proton moving slowly away from
one another, but both moving rapidly away from
the residual ion. The Born approximation de-
scribes only the first configuration of particles
in the final state.

It is useful to note the connection between exci-
tation, charge exchange, and ionization. Excita-
tion of the target atom and production of slow elec-
trons by ionization differ only in the amount of en-
ergy the atomic electron receives. In both cases,
the final state of the electron is essentially an ei-
genstate of the target. However, electrons ejected
in the forward direction with a velocity approxi-
mately equal to the velocity of the scattered proton
are never in an eigenstate of the target. Here, the
final state is more nearly an eigenstate of the
electron-proton system, that is, an eigenstate of
the hydrogen atom. This component of the electron
spectrum is an extrapolation in energy of charge
exchange to an excited state of hydrogen, and the
mechanism proposed by Rudd could be termed
"charge exchange to a continuum state. " But
Rudd's proposed mechanism and true charge ex-
change differ in one fundamental respect: To
determine the total number of excited atoms pro-
duced in a proton-atom collision, we add the cross
sections for producing excited states of the target
(direct excitation) and the cross sections for pro-
ducing excited states of the proton-atom system
(charge exchange to excited states). This proce-
dure is correct, since charge exchange and excita-
tion are physically distinct processes. There is
no physical distinction between ionization and
"charge exchange to a continuum state"; indeed
the latter is only one mechanism for ionization.
One therefore expects to add the amplitudes for
the two mechanisms (a) and (b) rather than the
cross sections. This is not exactly correct, but
the correct prescription for combining the ampli-
tudes follows directly from Faddeev's equations,
and is discussed in Sec. II.

It is well known that first-order theories of
charge exchange are less satisfactory than the
Born theory of excitation, primarily because
initial and final states are not orthogonal. ' We
will find that the same difficulty occurs in our
treatment of ionization; nonetheless, the theory
gives a reasonable qualitative and semiquantitative
interpretation of the experimental results. These
aspects are discussed further in Sec. IV.

The general theory is presented in Sec. II, nu-
merical results are given in Sec. III, and the
validity of the conclusions is discussed in Sec
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IV. Atomic units are used throughout, except in
the presentation of numerical results for com-
parison with experiment. Then MKS units are used.

II. GENERAL THEORY

and Rij is the coordinate of the c.m. of particles i
and j:

(9)

@+q(&) ~ ))&(2) + g(~&

where 4 is the plane wave:

,-9/2 i(k, r, +k, ~ r, +k, ~ r, ) (2)

and ((~)(i = 1, 2, 3) satisfies

There, Tz& is the two-body T matrix element for
a system with particles i and j interacting via a
potential V~&, and the third particle is free C~&.

is the corresponding wave function satisfying the
Schr'odinger equation

Our system consists of three particles of masses
ffly pl2 and m, with coordinates r„x„and x, re 1-
ative to a space-fixed system. Faddeev's expres-
sion for the wave function of three asymptotically
free particles is'

)I&~ . . is a continuum wave function of particles i
jand j, and G, is the Green's functions for three

noninteracting particles. Faddeev has shown that
the solutions of (1) are unique, that is, the boun-
dary conditions on 4 are completely incorporated
in the inhomogeneous term. For short-range poten-
tials, this ensures that 4 is correct in the asymp-
totic region where at least one of the particles is
well separated from the other two. A wave func-
tion obtained by truncating the Neumann expansion
of (3) also has the correct asymptotic form. For
potentials of infinite range, such as the Coulomb
potential, one cannot be sure that 0 is correct in
the asymptotic region; however, the form of the
inhomogeneous term in (3) strongly suggests that
when one particle is far from the other two, the
exact wave function and lower- order approxima-
tions obtained by truncating the Neumann series
for g are correct. Because we are interested in
the effect of the proton-electron attraction when
the proton and electron are close together but far
from the residual ion, we will use a wave func-
tion which consists of the first term in the Neu-
mann expansion of (3):

(10)

V — V — V +P.. @ =E@~ ~

~ ~ ~ ~(,,)
gg

The wave function for the initial state, in which
particles 2 and 3 are bound together and 1 is free,
is

with the boundary condition that 4 (~&) approaches
the plane wave (2) for large separations of all the
particles. For example, 4 ~"& is

where Kij is the relative momentum of particles
i and j with velocities vi and vj

)( =m .m. .(.v. —v )/(m +m ). , . .
ij i j i j i j

r" is the relative coordinates of particles i and j,

Kij is the momentum of the c.m. of particles i and

k' ~ +K .R
Xz= ' '

23 '23

where g»(r») is the wave function of the bound sys-
tem. Primes on the momentum vectors k,' and

K,'3 denote initial values.
The initial- and final-state wave functions are

substituted in the matrix element

(i2)

to give the transition amplitude for the transition
of the system from the initial to the final state.
It is important to note that a 5 function describing
momentum conservation of the c.m. of all three
particles has not been factored out of off. It is
left in (12) for convenience in transforming be-
tween various coordinate systems.

In applying (10)-(12) to the ejection of an elec-
tron from an atom by a proton, we let subscript
1 refer to the proton, 2 to the electron, and 3 to
the residual ion. Then V is just
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(13)

V. =- 1/r 12
(14)

in (12). In Sec. IV, we will show that the inclusion
of 1/r» gives a completely unrealistic angular dis-
tribution of ejected electrons, as one would expect
on the basis of Wick's' argument.

With the additional approximations, we then have,
for

C, (23) @(12)

Two approximations, in addition to the neglect of
higher-order terms in the expansion of (3), will
be made. We will (a) replace 4'3" by 4, and (b)
make the Brinkman-Kramers approximation, i.e.,
we will drop 1/r» in (13). Since the momentum
of the incoming proton is several thousand atomic
units for 300-keV protons, the Coulomb plane
wave of the proton differs little from an undis-
torted plane wave; hence (a) is well justified.
Jackson and Schiff' have shown for charge ex-
change collisions that, in the Born approximation,
the matrix element of 1/r» is of the same order
of magnitude as the matrix element of 1/r», thus
one cannot neglect the 1/r„ term on the grounds
that it is small in a first-order approximation.
Rather, the ratio of the matrix element of 1/r»
to the matrix element of 1/r» is of the order of the
mass of the electron divided by the mass of the
proton when the exact wave function is used. ' On
this basis, we set

Usually the hydrogen atom continuum functions
are given in terms of the coordinates r» =r, —r,
and the momentum

K2g = m~m2(V2 —Vg)/(m, + m2)

therefore we shall denote the hydrogenic function
(r12) by $p& (r21) to avoid confusion later on.

Substituting (14) and (15) into (12) gives

= 023+ Qg2 —0

which defines a+~ and a.
Expression (16)for ryi is a sum of three ampli-

tudes. a» is the usual Born amplitude, a» is the
amplitude for exchange into a continuum state,
and a is a counter term arising because the term
with all outgoing particles in a plane wave has
been counted twice. Equation (16) is the correct
prescription for adding the amplitude for exchange
into a continuum state to the Born amplitude.

To evaluate 7', we need only carry out the inte-
grations in (16). a» is just the Born amplitude
(multiplied by a momentum conservation 6 function),
and has been evaluated by Massey and Mohr~ for
s electrons. Using their result, with some cor-
rections in notation, ' we find

2W2p'~' exp(my/z2s)F(1 —ip/K„)(K —K2, cosy —ip, cosy) K'- (v»+ ip)'
p, '+ (R- K„)'

where y is the angle between K and Tc», and p, is
the effective charge.

To evaluate a» we first express the initial wave

functions in terms of the coordinates r», r,s, and

R, where R is the coordinate of the c.m. of all
three particles. We find, after some manipulation,

x (2g) Jdr r e "g (r21)
—3/2 —1 iA r»

K»

x (2m) Jdr„e' "q„(r„), (16)

where A = m, m, (v, —v, )/(m, + m, ) —m, (v,' —v, );

B =m, m, (v,' —v, )/(m, +-m, ) —m, m, (v, —v, )/(m +m, ).

Recognizing that m, (v,' —v, ) is the momentum
transfer K, and approximating m, m, /(m, +m, )
= m„we have for A and B,

A=&»- K, B-K- ~23.

The first integral in (22) is just the momentum
conservation 6 function, 6(k,'+K,', k, k„)
we have used momentum conservation to simplify
the expressions for A and B. The third integral
is just the Fourier transform of the bound-state
wave function and is easily evaluated. The second
integral has been evaluated by Landau and
Lifshitz 8

Note first that the integral does not converge
since the potential drops off only as x» ' as x»

This difficulty is also encountered when the
Fourier transform of r» ' is evaluated, and is
easily circumvented by replacing x» ' by
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1e» and taking the limit A. - 0 after the inte-
gration has been performed. Using Landau and
Lifshitz's' expression for the second integral I,
then taking the limit as X-O, and using the con-
vention that all complex quantities raised to a
power are taken with the argument whose absolute
values is least, ' we have

11/2
(

.
/ )( 2) 1 i/K

quantitative comparison with experiment.

III. NUMERICAL RESULTS

With wave functions normalized according to
(11), the cross section for scattering a proton into
a solid angle dO~ and ejecting an electron in the
momentum range dK23 = K23 dE dAe, where E is the
energy of the electron —,'K23

y
is'

[(- )2 2
]

—i/1121 (20)
do = (4v'M)'~7 .~'3:23dEd& dQ (25)

where the argument of the quantity inside square
brackets is zero if the quantity is positive and —m

if the quantity is negative. For electrons in the
forward peak, K»=0, and the argument is zero.

We are interested in the ejection of electrons
from 1S states, so we take )p2 = p, /2e
where p, is an effective charge. The third integral
is then just

2 &2 ' 3"/11 [P2+ (K, —~23)2] ' (21)

Substituting (20) and (21) into (18), and dropping
the momentum-conservation 5 function, we get

exp(v/2K )F(1—'L/K„)v~2 p3"
12 ~3If2[p2 (g ~)2] 2

(K+K ) —K

)K (22)

The third amplitude only involves integrals over
the plane-wave continuum functions and is easily
evaluated in the set of coordinates R, r2y,
The required amplitude is the same as (18) except
that g is replaced by a plane wave. We find

K»

a = —W2 p, '"/v'K'[p. '+ (K- ~ )']'

Note that the absolute values la»t and la) differ
only in that 1 a»t is multiplied by

exp(11/2~ .) I
r (1 —i/v

=$2v/a„[1 —exp(- 21)/3:„)]j'~' . (24)

From (24), it is apparent that a» becomes large
and dominates the cross section as K» 0, as is
found experimentally. Since (24) is just the en-
hancement factor describing the increased electron
density near the proton due to the electrostatic at-
traction between the electron and the proton, the
forward peak does correspond to an electron being
carried along by the proton. Thus, the forward
peaking can be qualitatively described using just
the first term of the Neumann expansion of
Faddeev's equation. In Sec. III, we shall make a

Equation (25) is integrated over dip numerically
to obtain the cross-section differential in the ener-
gy and angle of the ejected electron. Since the ex-
perimental data are for the ionization of He and H2,
approximate wave functions for $23(r23) and g~
x (r») are needed. We follow the approach of
Bates and Griffing' in that we take )l)23(r23) and )1)p&,

x (r») to be hydrogenic wave functions with an
effective charge p equal to (2I) ', where I is the
ionization potential of He and H, . The cross sec-
tion is then obtained by multiplying (25) by the
number of electrons, in this case, two. Bates
et al. ' discuss the validity of this procedure.
Here we need only remark on one minor difference
between our choice of )I)q„(r23) and that of Bates.
The wave function g is the produce of two

factors: a function e 23' r23I' normalized to 1
at r23--0, and a normalization constant eP v/2~23Z'

x (1 —ip, //&23). The use of an effective charge in
I' is appropriate where r» is small and the elec-
tron feels a potential of an effective charge. It
is not appropriate when the electron is far from
the He+ ion. This region does not contribute di-
rectly to the matrix element, but it does contrib-
ute indirectly through the normalization constant,
since the normalization constant is primarily de-
termined by the wave function at large r». Here
the electron sees a charge of 1, therefore we set
p. = 1 in the normalization constant, but not in the
confluent hypergeometric function. At most, this
changes the Born cross section by 30% for He and
3/o for H2.

Figures 1 and 2 compare the data of Rudd et al. '
with the Born approximation and with this approxi-
mation. The forward peak is reproduced, but is
overestimated by a factor of 2 in this approxima-
tion. More importantly, the variation of the shape
of the angular distribution curves with the ioniza-
tion potential of the target and with the energy of
the outgoing electron is well reproduced. Since
the shape of the angular distribution curves is
primarily determined by the peak resulting from
the increase of 1/)1» as )1» -0, and also bg the
peak resulting from the increase of [i1'+ (K
—7723)2]

-' when K= z23, this indicates that the en-
hancement factor (24) is indeed responsible for
the forward peak. The presence of the enhance-
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charge is determined by requiring the wave func-
tion to have an asymptotic form similar to ours,
but otherwise the approximations are quite differ-
ent. Both methods obtain the forward peaking be-
cause the normalization constants become large
as K»- 0.

IU. BRINKMAN-KRAMERS APPROXIMATION
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FIG. l. Angular distribution of electrons ejected
from He by 300-keV protons. Experimental curves are
from Rudd et al. (Ref. 2).

The number of electrons ejected by protons is
overestimated in this approximation, especially
for the low- energy electrons. The Brinkman-
Kramers approximation similarly overestimates
charge-exchange cross sections. In both cases
the overestimate is caused, at least in part, by
the nonorthogonality of initial- and final-state wave
functions. ' The charge-exchange cross section is
reduced when 1/r» or the modification of 1/r» pro-
posed by Bessel and Gerjouy' is kept in Vf, and
one may ask if 1/r» should be kept in our calcula-
tion. We may determine the qualitative effect of
including Vz on the angular distribution by evalu-
ating the matrix element of 1/r» with all final-
state wave functions replaced by plane waves.
This matrix element is conveniently evaluated in
the system of coordinates R, r», and r,3 It 18
identical to (18) except that (II„ is replaced by the
plane wave:

ment factor in our wave function depends only on
the assumption that (10) is a good approximation
in the asymptotic region. Thus, our results indi-
cate that the normalization constant of the exact
final-state wave function will contain the factor
(24). This is quite reasonable in view of the
electron-proton attraction in the final state. Our
explanation of the forward peak is better founded
than the actual calculation, which assumes that
(10) is a good wave function everywhere. Further-
more, our use of hydrogenic wave functions for
the initial state does not affect this conclusion,
since a more accurate wave function must still
give a cross section with a peak at K=K», the con-
dition for conservation of momentum of the proton
and electron alone. The sharpness of the momen-
tum conservation peak mainly depends upon the
spatial extent of the electron distribution, and
this is reasonably well approximated by g ne
with p equal to the square root of twice the ioniza-
tion potential.

Recently, Salin" has obtained the forward peak
by introducing an effective charge

4I

N
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O
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IQ 23

IQ 24
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IO-26
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500-keV H' ON Hz

—THIS--- EXPT

Z= 1+K23 K2 00 50
ANGLE

IOO
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in the final-state wave function. This charge ap-
pears in the normalization constant of the wave
function, consequently the cross section becomes
large as K» approaches zero. Salin's effective

FIG. 2. Angular distribution of electrons ejected
from H2 by 300-keV protons. Experimental curves are
from Rudd et al. (Ref. 2).
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,—S/2 z[~„(r„-r~~)1;
(2 )

5 K21 r21 = (271) 8

x„' is replaced by —x„'; and dx» is replaced
by —dx». The integrals are then easily evaluated,
and we find that the matrix element of r» ' is

(26)

which is as large as the matrix element of r» ',
but does not depend upon the angle at which the
electrons are ejected. This type of angular dis-
tribution is quite at variance with any reasonable
model for the ionization process, and is not in ac-
cord with the data. Terms in Vz depending only
upon r» should therefore be rejected in accordance
with Wick's' arguments.
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A cylindrical, retarding potential difference type of electron spectrometer with high-energy
resolution has been used to study the structures in the e -He scattering cross section in a
transmission experiment. Twenty-four structures have been observed between the trans-
mission maximum due to He 1s2s S&&& at 19.30 +0.01 eV and He 1s S~&2 at 24.60 +0.02 eV,
11 of which have been observed previously. The agreement with previous measurements
for the positions of the structures is good where comparison is possible. Four of the new
structures have been observed below the n=2 states of He. The excitation onsets for 2 S~,
2 S0, 2 P, and 2 P have been observed, as well as some excitation onsets at higher ener-0 0

gies. No structures have been observed below He" S~~2. Two structures have been observed
above He+ S~~~ which were observed previously.

INTRODUCTION

The first e -He scattering cross-section mea-
surements were reported by Ramsauer. ' In these
experiments, electrons from a photoelectric
source mere momentum selected by a magnetic
selector, then passed through a gas cell and col-
lected. The total cross section was directly de-
termined by a study of the electron beam attenua-

tion as a function of the gas pressure in the inter-
action region.

The energy resolution of a spectrometer can be
defined in terms of ~E, the full energy width at
half-maximum current (FWHM). In a magnetic
selector of fixed geometry, &E increases with the
energy. The large resonance at 19.3 eV first ob-
served by Schulz was not detected by Ramsauer, '
because of poor energy resolution at that energy.


