
192 MOH LING, R AMARAO, AND SHE A

N. J. , 1963).
The definition of untransformed pair function in Eqs.

(2.10) and (2.11) differs from that used in earlier work
(see Refs. I and 3) through the inclusion of the factor
exp(-to(v(k~)++(~2) -~(&p) -v(&4)) ) We make this
change so that in the following papers of this series the
temperature dependence of the pair function will be more

apparent [see Appendix B of F. Mohling, I. RamaRao,
and D. W. J. She@, following paper, Phys. Rev. AI, 192
(1970)].

33The temperature integrals of the 8» (t2, tI, k) are
essentially equal to the reduced density matrices, Since
(+(p) )= (pl pi I p), this equality is obvious from Eq.
(4.1) for the (p, v)=(1, 1) case. See also Ref. 3.
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In a previous paper, the master-graph formulation of the quantum-statistical theory of quan-
tum fluids was developed. If this formulation is used to calculate the equilibrium properties
of quantum fluids, apparent divergences are encountered in the low-temperature limit. In the
present paper, we transform this theory by means of a A transformation to overcome these
apparent low-temperature divergences. In this transformation, the terms in the theory which
gave rise to the apparent low-temperature divergences and which represent the dominant low-
temperature contributions are summed explicitly to obtain well-behaved expressions. In ad-
dition, a consistent method is developed to obtain the corrections to the dominant low-tem-
perature contributions. Explicit expressions for the A-transformed theory are given for the
cases of a Bose fluid above the Bose-Einstein condensation temperature and for a Fermi fluid.
Finally, the physical implications of the A transformation are discussed.

1. INTRODUCTION

In the preceding paper, ' we developed a quantum-
statistical theory of quantum fluids and obtained
the master-graph formulation of the theory through
a very careful analysis of the self-energy problem.
In particular, we expressed the grand potential
and the momentum distribution [Eqs. (L 5. 12) and
(I. 4. 1)j in terms of master graphs. These quan-
tities were functionals of five different types of
line factors which arose from the self-energy
analysis: the solid-line factors 8 & „(t2 t 1 &)
with (p, v) = (1, 1), (0, 2), and (2, 0); and the out-
going (incoming) dotted zero-momentum line fac-
t»s &out"' (t ) [Gin"' (t)]. These line factors
were expressed in terms of a set of integral equa-

tions (I. 4.4), (I. 4. 10)-(I. 4. 15), (I. 4. 17),
(I. 4. IS), (I. 3.1), (I. 5. 14), and (I.5.15).

The reader might expect that a simple iteration
of the integral equations could be used to calculate
these line factors, which iteration could, in turn,
be applied to obtain meaningful expressions for
the grand potential and the momentum distribution.
Unfortunately, this iterative procedure cannot be
used since, in the low-temperature limit, it gives
apparently divergent contributions (ADC) to the
line factors, and hence to the grand potential and
the momentum distribution. To overcome this
problem we first identify the dominant parts, which
lead to ADC, of the kernels of the integral equa-
tions for the line factors and then solve the resul-
tant approximate integral equations exactly. These
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solutions, referred to as characteristic functions,
are well-behaved functions which would otherwise
appear in the master-graph formulation as series
expansions. The (line-factor) corrections to the
characteristic functions can then be obtained by
iteration. The purpose of this paper is to show how
this procedure can be achieved in a direct manner
by applying the ~ transformation to the master-
graph formulation.

What we call the A transformation actually con-
sists of two parts: (i) the identification of those
terms (the characteristic functions) in each mas-
ter-graph line factor that comprise the ADC for
that line factor; and (ii) the systematic summation
everywhere (by an integral transformation) of the
ADC to obtain a well-behaved formulation of the
theory in the low-temperature limit. The integral
transformation, or A transformation, results in a
consistent rearrangement of the theory which per-
mits the identification of the well-behaved correc-
tions to the ADC.

In Sec. 2, we discuss the problem of identifying
the characteristic functions which represent the
ADC to the master-graph line factors. In Sec.3,
we define the basic integral transformations of
the line factors and pair functions, which then
leads us to define transformed master graphs. In
Sec. 4, we apply the general form of the A trans-
formation to obtain expressions for the grand
potential and the momentum distribution in terms
of transformed master graphs. In S c. 5, we
show the explicit form of the A transformation for
a "normal" fluid, i.e. , for a Bose fluid above the
Bose-Einstein condensation temperature or for a
Fermi fluid. In Sec. 6, we discuss the physical
implications of the A transformation.

The complete development of the A transforma-
tion for a "degenerate" fluid, i.e. , for a Bose
fluid below the Bose-Einstein condensation tem-
perature, will be presented in a subsequent paper.

2. CHARACTERISTIC FUNCTIONS

There are five different types of internal lines
that occur in master graphs (see Sec. 4 of I).
These are the three different types of solid internal
lines with associated line factors 8 t&, , & (t2, tl, k),
(p, v) = (1, 1), (0, 2), or (2, 0), the outgoing
dotted (zero-momentum) lines with associated
line factor Go„t&" (t), and the incoming dotted
(zero-momentum) lines with associated line factor
Gin" & (t). Each of these line factors makes ADC
to the grand potential and the momentum distribu-
tion. In this section, we study the identification
of the characteristic functions that represent the
ADC to the line factors. Three such character-
istic functions are associated with the line factors:
one connected with the +k lines, one with the —k
lines, and one with the zero-momentum lines.

Let us examine Eqs. (I. 4.4) and (I. 4. 13)-

(L 4. 15), which give rise to a set of integral equa-
tions for the master-graph solid-internal line fac-
tors 8i& ~(t 2, t I k). To obtain a consistent
treatment of the +k and —k lines, which undergo
different A transformations, we will consider only
the first lines of Eqs. (I. 4. 13)-(I. 4. 15). In so
doing, we associate 9»(t„t„k) only with the +k
lines and 8(t„t„k)only with the —k lines.

Consider the kernel &&&»(t„t„k) of the integral
equation for 8»(t„t„k) [see Eq. (I.4. 12)] .
This kernel contains certain types of terms, which
we represent by &&&',(t„t„k), that generate all of
the ADC in 8»(t„t„k). If we solve exactly the
integral equation

+ e Zo(tm, t„k), (2. 1)

g, (t„t„k)=J,
'

ds 9,'(t„s, k)

xq,'(s, t„k),

which is analogous to Eqs. (I.4.4) and (I.4. 13),
then 8', (t„t„k)gives essentially the series sum
of the ADC to 9„,(t„t„k). We refer to

8,'(t„ t„k) as the characteristic function for the
+k lines.

Similarly, consider the kernel M»(t„ t„—k) of
the integral equation for 9 (t„ t„—k), Eqs. (I.4. 10)
and (I.4. 11). Analogous to Qo'{t„ t„k), we denote
the part of M»(t„ t„—k) that generates all of the
ADC in 8(t„ t„—k) by M,"'(t„t„—k). If we
solve exactly the integral equation

8,&»(t„ t„-k) =5(t,&-&- t, )

+ eZ, &'& {t„t„k), -(2. 3)

Z, &'&(t„t„-k)=f ds9, &'&(t„s, -k)

x Mo&'& (s, t„—k) (2.4)

which is analogous to Eqs. (I.4. 10) and (L 4. 11),
then 9,&'& (t, , t„—k), the characteristic function
for the —k lines, gives essentially the series sum
of the ADC in 9(t„ t„—k). With the identification
of the characteristic functions 9o(t„ t„k) and
8, &'& (t„ t „—k), we have, according to Eqs. (I.4. 14)
and (I.4. 15), also identified all of the ADC in
8, ,(t„t„k) and 8, ,(t„ t„k).

We next introduce the characteristic function
'(t2, t, ) for the zero-momentum lines which

gives essentially the series sum of the ADC in
Gout (t) and Gin&'& (t). Unfortunately, there is
no simple integral equation for G&&ut"'(t) or Gin"'(t)
which would enable us to derive an expression for
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8,&»'(t„ t„k) = 5(t, &-& —t, )

"Z,&'&' (t„t„k),

Z, &~ &' (t„ t„k) = f, ds S, ~&& ' (t„s,k)

(2. 5)

x Q,«&'(s, t„k), (2.5)

which is analogous to Eqs. (I. 5. 2) and (I. 5. 7),
then 9, ~ '(t„ t „k) can be used to arrive at the
series sum of the ADC in 8», ~ (t„t „k).

We shall not give further consideration in this
section to the difficult problem of properly deter-
mining the characteristic functions. However, in
Sec. 5, we shall illustrate their determination for
the case of a "normal" fluid ((x) =0). ' In this

8,&'& (t„ t, ). However, we can deduce the proper
form for this characteristic function by consider-
ing the k-0 limit of 9,'(t„ t„k).

In addition to the above three characteristic func-
tions which are associated with the master-graph
line factors, we also have a fourth one denoted by
8,&~&(t„ t„k). This function is required to trans-
form the 2» t (t, t, p) term which occurs in Eq.
(I. 5. 12) for the grand potential. In ana, logy with
the determination of 8,'(t„ t„k), we denote by
Qo' ' '(t„ t„k) a special class of terms in the ker-
nel Q»&~& (t„t„k) of the integral equation for
9»&~& (t„ t„k) [see Eqs. (I. 5. 2) and (I. 5. 7)]. The
quantity Q, &~& '(t„ t„k) generates, essentially, ' all
of the ADC in 9»&7&(t„ t„k). If we solve exactly

)
the integral equation

connection, we observe that for a normal fluid,
only 8,'(t„ t„k) and So ~ ' (t„ t„k) must be con-
sidered; g,"'(t„ t, ) does not occur and

9,"' (t„ t„—k) is identical to 9,'(t„ t„—k). We
shall consider the determination of the character-
istic functions for the case of a "degenerate" fluid
((x) c0) in a subsequent paper.

Assuming that the characteristic functions, in-
troduced in this section, are known in principle,
we will proceed with the formulation of the h trans-
formation in Secs. 3 and 4.

3. BASIC TRANSFORMATION DEFINITIONS

In I, the quantum-statistical theory was ex-
pressed in terms of master graphs (untransformed)
which were functionals of the pa.ir functions and
five different types of line factors. As discussed
in Secs. 1 and 2, each of these line factors con-
tains characteristic functions which represent
sums over ABC. In essence, the A transforma-
tion is a self-consistent method for transferring
the well-behaved characteristic functions from the
line factors to the vertex, or pair, functions. This
transfer results in the replacement of free single-
particle energies by renormalized single-particle
energies, i.e. , by quasiparticle energies. This
property of the A transformation will be demon-
strated for a normal quantum fluid in Sec. 5 and
for the degenerate Bose fluid in a subsequent
paper.

We first define the transformed line factors,
identified with a prime superscript, by

8„,(t„t„k)=H' (t„k) 1, dsg', , (t„s,k)[(H'(s, k)] 'g,'(s, t„k), -
(3. 1)

g, ,(t„ t„k) = j, ds, ds, g', (s„s„k)[H' (s„k)]

xg', (s„t„k)[H"'(s„—k)] 'g, ' '&(s„ t„—k), (3.2)

8, ,(t„t„k)= H' (t„k)H&'&(t„-k) 8,'„(t„t„k), (3.3)

C &o&(t) =h &" J, dsG &'&' (s)[H&'&(s)] '8&&"'(s, t),
out g ' out

(3.4)

G. '& (t) = h "'H&'& (t) G. "''(t),
in b in

(3. 5)

where the quantities H'(t, k), H "(t,k), H&0& (t), hu&0&, and hf&&" are arbitrary functions introduced for later
convenience. We observe that the transformation function associated with a given line depends upon whether
the line is an incoming or outgoing line and upon whether the momentum label of the line is +0, -A, or
k=-0. Equations (3. 1) —(3. 5) are represented diagrammatically in Fig. 1.

In addition to the transformed line factors, we also need to define transformed pair functions. These
combine most of the quantities that are removed from the line factors (except for the functions h&&&0& and
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(i)
[H (Sp,k) H (St,-k)] htt [H (S)]

t2

H (tz, k) [H (s, k)] x

t2 t2

H (t2, k) H (t),-k) x
(1) ~o) (0)

H (t) x

FIG. 1. Diagrammatic representation of the A transformation of the master-graph line factors as defined by Eqs.
(3.1)-(3.5).

hf)(0& associated with the dotted lines) with the untransformed pair functions, Eqs. (I. 2. 10) and (I.2.11).
Thus, we next define the transformed pair function by

Ii
t,t k, k

k, k4
0

[a' (f „k,)a' (t „k,)]-' a' (f „k,) a' (f„k,)

x ds, ds, go (t„s„k,) g", (t„s„k,)
0

s,s, k, k

k, k4
0

(3.6)

where we used a double-prime superscript to indicate the transformed pair function in Eq. (3.6). This
equation has been written for the case in which all of the lines attaching to the pair function are +k lines.
if one (or more) of the lines is a- k or k =0 line, then the +k transformation function associated with that
line must be replaced with the —k or k =—0 transformation function, respectively. Equation (3.6) is rep-
resented diagrammatically in Fig. 2.

Transformed Master (p,o.') Graphs

t2

We can now define transformed master ()t, , v)

graphs and transformed master ()),, t ) L, graphs
by making the following changes in the rules for
untransformed master (p, , t ) graphs that were
given in Sec. 4 of I:

(a) Replace the untransformed solid line factors
g»(t~, tl, k) with the transformed solid-line fac-
to~re g p p(t2 tl k) defined m Eqs. (3.1)-(3.3).

(b) Ref)lace the untransformed pair functions
with the transformed pair functions defined in
Eq. (3.6) except in the wiggly-line double-bond
correction term of rule (g) which remains essen-
tially untransf ormed as

[H (t( k( ) H (t~ k~) H (to)k3) H (t(t k4)

t2

k k2Trgnsformed Vertex t0

lJntransforrned Ver tex t0

I'IG. 2. Diagrammatic representation of the trans-
formed vertex, or pair, function as defined by Eq. (3.6).
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[H'(t„k, )H'(t„k, )]-'5(t, —t, )6(t, —t, ) ' ' to the corresponding untransformed master (p, v)
graph except for the transformation associated
with the external lines [see Eq. (3.6)]. Thus,
it is simple to obtain the transformation of all
the functions in I that were defined in terms of
master (p, v) graphs. We define

Here we use the untransformed pair function.
(c) Replace the untransformed outgoing dotted

(zero-momentum) line factors Go t"&(t) by
ka" &Gout&'&'(t), as defined in Eq. t3.4), and the un-
transformed incoming dotted (zero-momentum}
line factors Gin&0&(t} by kf& &'&G;n&'&'(t), as defined
in Eq. (S.5).

From Eqs. (3. 1)-(3.6) and the rules for trans-
formed master (p, v) graphs, it is clear that a
given transformed master (y, , v) graph is equal

(t, tl, k)
»~ p 2' 1

~ all different transformed
master (t&, v) L graphs

(3. 7)

where these 3l'» differ from the corresponding
untransformed K~ v of Eq. (I.4. 17) through the
transformation of the vertices [see Eq. (3.6)] to
which the external lines attach. Similarly, we
define

&»&'&'(t„ t„—k}-=Q(all different transformed master (», , v) L graphs with the outgoing
external line transformed by [H&'&(tm, —k)] ',"&(t2, s~, —k) and the
incoming external line transformed by H" &(t„—k)[ k

=[Hi'& (t,-k)] 'f ds 9,&'&(t„s,-k)K, ,(s, t„-k)H'"(t, , -k) . (3.8)
0

Using Eqs. (I.5. 14), (I.5. 15), (3.4), and (S.5), we find the transformations of Kout~'& (t) and Kin&'& (t) to be

(t) -=[(xA) e ] Q (all different transformed master (0, 1) L graphs)
a out A=O

=H&'&(t)K &'&(t)
out

(3.9)

and k & &X. & &'(t) =-(xA) ~ Q [all different transformed master (1, 0) L graphs]
b in k=0

=[H (t)] f~d 8 (t, )K, ().
Finally, we define

(s.lo)

AE'= +[all differen-t transformed master (0, 0) graphs] = AE, (s. 11)

where we have used Eq. (I. 5. 1).
Equations (3.7)-(3.11)complete our basic definitions for the A transformation. A detailed outline of the

transformation procedure will be presented in Sec. 4, and critical discussion of this approach will be given
in Sec. 6.

4. A TRANSFORMATION OF THEORY

In Sec. 3, we outlined for the A transformation
the basic definitions which are needed to treat the
ADC properly and to obtain corrections to the ADC
in a self-consistent manner. The purpose of this
section is to show how the theory presented in I
can be expressed entirely in terms of the trans-
formed quantities, defined by Eqs. (3. 1)-(3.11).
To achieve this goal, we first obtain a set of cou-

pled integral equations for the transformed master-.
graph line factors directly in terms of transformed
quantities. This set is not simply the direct trans-
formation of the set of coupled integral equations
developed in Secs. 4 and 5 of I. Rather, a certain
part, which is closely related to the characteristic
functions for the various types of lines, is removed
from the kernels of the integral equations for the
transformed line factors [see Eqs. (4. 7), (4. 14),
(4. 18), and (4. 19), and see also the discussion at



MICROSCOPIC THEORY OF QUANTUM FLUIDS. II

&,',(t„t„k) = [H'(t„-k)] ' f dsg,'(t„s, k)

x q, ,(s, t„k)H'(t„k)

=SR', , (t„t„k)+f ds,ds,3R2,(t„s„k)

x g"&'(s„s„-k)%', ,(t„s„k), (4. 1)

where we have used Eq. (I.4. 12), as well as Eqs.
(4. 2) and (4. 3) below, in order to obtain the sec-
ond line of Eq. (4. 1). Using Eqs. (1.4. 18) and
(3.7), the transformed functions 3R'»(t„t„k) can
be written~

(t„t„k)= X' (t„t„k)+5

the beginning of Sec. 3]. Thus, the transformed
line factors give the corrections to the ADC of the
untransformed line factors. (The ADC in the un-
transformed line factors represent the dominant
low-temperature contributions to these line fac-
tors. ) We will complete this section by expressing
the momentum distribution and the grand potential
in terms of transformed quantities.

We begin by transforming the kernel Q, ,,(t„ t„k)
[see Eq. (I.4.12)] of the integral equation for
g...(t„t„k). We define

= X, , t'&'(t„ t„-k)+ 5(P —t, )

xexp{p[g — (-p)]]

xIP(P, P)[H&'&(t„p)]-'

x f ds9, (t„s, P), (4 4)
(1)

where we have used Eqs. (I.4. 18) and (3. 8) to ob-
tain the second line. It is important to observe
that Q, ,(t„t„k)and M. ..(t„t„-k)are transformed
by different characteristic functions; the reasons
for this will be indicated in Sec. 6. We also note
that functions such as QI 1 and M» transform in
the same way as the pair function [see Eq. (3.6),
where the characteristic function is associated
with the outgoing lines], in contrast with the way
in which the line factors transform. In this connec-
tion, it is worth remarking that there is no arbi-
trariness involved in the transformation of Q... and
Mp, , p, once the choice of the line-factor transfor-
mation equations (3.1)-(3.5) has been made.

We now proceed to derive integral equations for
the transformed line factors 9& „(t2, tl, k). In
analogy with Eq. (I.4. 4) we define the functions

(t, t, k) by
p. , p 2 1

9' (t, t, k)=5(t &-&-t1)5

x5(p t, ) exp{ p[-g- ~(P)]/H'(p, P)

x[H'(t„t)] 'f ds8,'(t„s,p).
0

(4.2)
+ s 2' (t2, t1, k),

p~v 2 1 (4. 5)

The transformed quantity Qt'&'(t2, t„-k) for -k lines
in Eq. (4. 1) is defined in analogy with Eq. (3. 1) by

8 (t„t„-k) =-H&'&(t„- k) f ds &»'(t„s, - k)
0

for (p, v) = (1, 1), (0, 2), or (2, 0). From Eqs. (3. 1),
(4. 1), (4. 5), (I.4.4), and (I.4. 13), we find

2t, (t„t„k)= f dsg', , (t„s,k)
0

x [H ' (s, —k)]-'8,&'&(s, t„-k) .

We next transform the kernel M»(t„ t„-k) of
the integral equation for Q (t„t„-k) [see Eq. (I.
4. 11)]:

x Q', ,(s, t„k),

e,'„(t„t„k)=- e,'„(t„t„k)
—A' (t„t„k),

(4. 6)

(4. 7)

JR, ,""(t„t„-k)= [H&'& (t„-k )]

x f ds9, (t„s,—k)p . (1)

xMi i(s, ti, —k)H (ti, —k)
(I)

A' (t„t „k}=- ~ [H'(t„k)] ' [8,'(t „t „k)
—5(t, &-&-t,)]H' (t„k) . (4. 8)

Also from Eqs. (3.1)—(3.3), (4. 2), (4. 5), (I. 4. 4),
(L 4. 14), and (L 4. 15), we find

g', (t„ t „k) = f, ds, ds, 3R', (s„s„k) 8', , (sm, t„k) '8 '(s„ t„k) —. M0, 2
'(t—2, t„k). (4.8}

and 2', 0(t„t„k}= fo ds, ds, g', ,, (t„s„k}g I ' (t»s„—k}
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&&II,', (@,s„k) -6(t„t, ) m, , &'&' (t„t„k), (4. 10)

where, for (p, , &) = (0, 2) or (2, 0) only,

Ã "' '(t „t „k)—= [that part of II»&(t„ t„k) in which both external lines attach to the same
p. , p

vertex, except: that the external lines are untransformed at bogs ends]

"' (t„t„k). (4. 11)

Equations (4. 5)-(4.11) provide a complete set of integral equations for the transformed line factors in
terms of transformed quantities. We note that although the role of 2,', (t„ t „k) in the transformed theory
is the same as the role of C, , (t„t „k) in the untransformed theory, 2', , (t„ t „k) is not equal. to a simple
transformation of 2»(t» t» k). This fact follows from the definition of the kernel of g, (t, t „k) &n Eq.
(4. r).

We next repeat the above procedure for &&
"& ' (t„t„—k). In analogy with Eq. (I. 4. 10), we define the

function 2"& ' (t„t „—k) by

~""(t„t„-k) -=5(t, &-&- t, )+ex&'&' (t„t„-k) (4. iS)

From Eqs. (4. 3), (4.4), (4. 12), (I. 4. 10), and (I. 4. 11), we find

(4. iS)

where M» "& (t„t„—k)=- K, , &'& (t„t„—k) —A&»(t„ t„—k), (4. i4)

A&'&(t„t„—k) =-e [a&'&(t„—k)] '
f b, &' (t„&t„—k)-5(t, &-& —t, )]a&'&(t„—k). (4. 15)

The discussion of 2', ,, (t„t„k) at the end of the previous paragraph also applies to 2&'& (t„t„—k).
Having expressed the transformed solid-line factors in terms of the transformed quantities, we must

now do the same for the transformed dotted (zero-momentum) line factors Go„t "& (t) and G;„"&'(t) which
were defined in Eqs. (3.4) and (3.5). In analogy with Eqs. (I. 3.1), we therefore define the functions
Kout'" (t) and Kin@& (t) by

G &'&'(t) = 5(P- t)+K»'(t),
out out (4. 16)

G. »'(t)=-i+K. »'(t).
in in (4. i7)

Then, from Eqs. (3. 4), (3. 5), (3.S), (3.10), (4. 16), (4. 17), and (I.3.1), we obtain

K (t)=X (t) f d G ( )& ( t) 5(P )[1 H (P)/h ]out out ' out 0 (4. 18)

K. (t) =X. (t) —f d & (t, )G. ( ) —$1 —[k e (t)] f d 8 (t, )],in in 0 ' in (4. iS)

where A»(t„t, ) =[a»(t, )] '[ &d, &'&(t„t,)- 5(t, &-& —t, )]a&» (t,). (4. 20)

Equations (3.9), (3.10), and (4. 16)-(4.20) express Gout
&0& (t) and Gin&" (t) entirely in terms of transformed

(o)'quantities. We note that K t"' (t) plays the same role in the transformed theory as Ko„t'"(t) does in un-
transformed theory, even though it is X ut&o& (t) which is the direct transformation of K t "&(t). A similar
statement holds for the corresponding "in"quantities.

Before proceeding further, it is instructive to stress the underlying pattern in the treatment of + k, —k,
and 0 =-0 lines and the conceptual similarity between the three sets of equations for the transformed quanti-
ties given in the preceding paragraphs. In each case, the effect of the A transformation is to remove the
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ADC (which give the dominant low-temperature contributions) from the transformed line factors. (See
also discussion at the beginning of Sec. 3. )

199

A Transformation of & n(p)) and Qf

Having obtained the set of coupled integral equations for the transformed line factors, we must now ex-
press the momentum distribution and the grand potential in terms of transformed quantities. From Eqs.
(I. 4. 1) and (3. 1), we see immediately that the momentum distribution is given by

3 -1 P.
(n(p)) =H'(p, p) exp(p[g- &u(p)]j f ds, 8'...(p, s„p) [H'(s»p)] f ds, Bo (s„s2,p) . (4. aS)

(xQ)e+[I —f pdt if (t)u. (t)] =(xQ)epg[G (p).- f pdt G (t)rC (t).]0 out in in 0 out in

Since the case of the grand potenti'. Q is more involved, we shall first indicate the transformation of some
of the individual terms in Eq. (I. 5. 12) for Qf. From Eqs. (I. 3.1), (3. 4), (3. 5), (3.10), and (4. IV), we
find

(-Q) P [~ ")H("(P) ~ ")(P)~ "'(P)
in

—a I f dt G (t)x. (t)] .a b 0 out in

From Eqs. (I.4.2), (3.1), (4.5), and (4.8), we find

f, dt Z, ,(t, t, p)= f, dt g', „(t, t, p)+ f, dtds 9...(t, s, p)A'(s, t, p)

(4. 22)

(4. aS)

Similarly, we obtain (see beginning of Appendix A)

J, dt's, , (t, t, p)= f, dt's, , (t, t, p) +f dtf dsBi, i (t, s, p)A (s, t, p).p (t) p - (t )' p t - (t )' (t )
(4. 24)

The derivation of Eq. (4.24) is identical to the derivation of Eq. (4.23) as can be seen by comparing Eqs.
(I.5.2) and (I.5.7)-(I.5.10) with Eqs. (I.4.4) and (I.4.10)-(I.4.13). Using Eqs. (4.22)-(4.24), we obtain the
following expression for the grand potential:

Qf(x, P, g, Q) = (xQ)[h H (P)e —1]+QE*'(x,P, g, Q)
(o) (o) g

+-', Z f dtldt2M2 0 (t2, tl, k)M0 2 (t, tl, k)P (1)' (1)'

+Q fo dtZI I (t, t, p)+Z fo dt f dsGI I (t, s, p)A (s, t, p),P - (t)' P t - (t)' A(t)'

where QF (x, p, g, Q) =- QF' (x,p, g, Q) + (xQ) e h H (p)K. (p)pg (o) (o) (o)

(4.25)

— ( Q) I a fpdtc (t) X. (t)Q ( (p)&a 5 0 out in
' p"P

—Z f dt 2'I 1(t, t, p) —Q f, dtds O'I 1(t, s, p) A' (s, t, p), (4. 25)

and we have also used Eqs. (I.5.12), (I.5.13), (3.11), and (4.11). We shall find in one explicit application
of the A transformation that in Eqs. (4.24) and (4.25) the last term vanishes [see Eq. (A3)].

5. A —TRANSFORMED THEORY OF A

NORMAL FLUID

In Secs. 2-4, we have presented a somewhat

abstract account of the general structure of the A
transformation applied to the quantum-statistical
theory developed in I. Special attention has been



200 MOHLING, RAMARAO, AND SHEA

given to the proper treatment of the low-tempera-
ture divergences. In this section, we make this
formalism more transparent by considering the
relatively simple case of a normal quantum fluid.
For the case of a normal fluid, the density of
zero-momentum particles "x, "as well as all
(0, 2), (2, 0), and zero-momentum quantities, is
set equal to zero. In addition, the special treat-
ment given to -k lines [see Eq. (3.8) and the dis-
cussion below Eq. (3 ~ 6) ) is no longer necessary.

Characteristic Function

As indicated by the formulation of Secs. 2-4,
the characteristic function Bo (f„t„k}plays a
central role in the application of the A transforma-
tion. We shall now obtain an expression for
8,'(f » f „k) for a normal fluid. We first choose
the following form for the kernel q,'(f » f „k) in Eq.
(2. 2):

q,'(f„f„k)= [1-a(k)] '

-eg k 5 t2'"&-t, -e&k 8 t2 —t,
X

+ 5 —t, 1-9 k exp — k , (5. 1)

where the quantities' B(k) and &(k) may have a de-
pendence on P, although it has not been explicitly
indicated. The term containing 5(p —t, ) is the
first term of Eq. (l. 4. 18). The existence of the
rest of the terms in Eq. (5.1)can be demonstrated by
a simple lowest-order calculation of the function
If'»(t»t»k) defined by Eq. (L 4. 17). Thus, one
has only to used the 1-vertex master (p, , v) I. graph
of Fig. 3 to obtain the expression

E~ ~ (f» f~) ~k)= Q Jo ds g (f {-) k )f2s
k~

(5. 2)

Using the exp1iqit form (B1)and (B2) for the
pair function and iterating the line factor, one can
demonstrate the form of Eq. (5. 1). The function
I3(k) is nonzero only if the two-body interaction

includes an infinite hard core. '
Returning to the integral equations (2. 1) and

(2. 2) for 8,' (f„f „k), it is now easy to see that
apparent low-temperature divergences occur if
we iterate the right-hand side of Eq. (2. 2) using
the kernel (5.1). We therefore solve Eqs. (2. 1)
and (2. 2) exactly to get the characteristic function

8,'(f „f„k) = [l-a(k)](5(f, - f,)

—[e(f, —f, )+ ~n'(k)]~(k)+ 5(P - f,)

x e n' (k)) exp[- (f;&,) &(k)], (5.3)

which is the series sum of the ADC to 8', ,(f„t » k}.
The quantity n ' (k) in Eq. (5. 3) is defined to be

n' (k) -=( [1-a(k)] ' exp( p [(o' (k) -g]j —~) ',

(5. 4)

where &o' (k) = &o(k} + b (k)

Upon comparing Eq. (5.4) with the free-particle
momentum distribution [ Eq. (l. 1.1)] we note
that, except for the [1-B(k)) ' factor, n'( k)in-
volves the replacement of the free-particle energy
by the quasiparticle energy ru' (k). Thus, Eq. (5.4)
for n' (k) can be referred to as the quasiparticle
distribution function. The quantity h(k) in Eq.
(5. 5) can be identified as the quasiparticle self-
energy.

The solution of Eq. (5.3) for 9,' (f » f „k) can be
checked by substituting the right-hand side of Eq.
(5.3) into the right-hand side of Eq. (2. 2) and ver-
ifying that the correct expression f rog,'(t„t„k)
is reproduced. Equation (5.3) for 9,'(t2, t„k) sat-
isfies the useful integral property

J, df, 9,'(f„f„k)

= n' (k) exp( p f{d(k) -g]) exp[(p- f,) ~ (k)]. (5.8)

The question whether or not the particular choice
(5.1}of the kernel q,' (f„t „k) removes ADC to the
line factor completely will be discussed below Eq.
(5.12).

Application of A Transformation

Ki ) (f~ & ff f k) )

Using the characteristic function (5. 3), we next
outline the results of the A transformation. We
also obtain an elegant prescription for the calcula-
tion of the quasiparticle self-energy 4 (k}, so far
left undetermined by the theory.

It is convenient to choose the arbitrary function
II' (f, k) introduced in Sec. 3 to be

FIG. 3. Lowest-order master graph of K~ ~(t2, t~, k)

for a normal Quid. II' (f, k) = exp[-f ~(k)] (5. 7)
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The transformed pair function is then obtained by
substituting Eq. (5.7) into Eq. (3.6)

An explicit expression for this transformed pair
function is given in Appendix B. The basic A-
transformation function, i.e. , A'(t„t„k), ob-
tained by substituting Eqs. (5.3) and (5.7) into
Eq. (4. 8) is

XQO (t» Sm~k~) S~S2 k~

-ks k4-
0

(5.6)

= exp[t, &(k,)] exp[ t, &(k,)] exp( —t, [L(k,)

+ a(k, )])f, ds, ds, 8,' (t„s„k,)

A'(t„t„k) = [1-B(k)](- [e(t, —t, ) + «' (k)]

x & a (k) + n' (k) 6 (p —t,)]- e B(k) 5(t, —t, ) . (5.9)

From Eqs. (4. 1), (4. 2), (4.5)- (4.7), (5.6), and
(5. 9), we obtain the following simple integral equa-
tion for the transformed master-graph line factor:

8,'Z(t„t„k) = 6(t, & & t,-)+—~a,', (t„t„k), (5.10)

g...(t„t„k)= f, dsg', , (t„s,k)q,', (s, t„k), (5. 11)

where q', , (t., t„k) = X,', , (t„t„k)+ ~ B(k)[6(t,'-&-t, )+s6(p —t, ) n' (k)]

+ ~ [1—B(k)] [ e (t, t, ) + ~ n—' (k)] ~(k) . (5.12)

The quantity X'~» (t» t „k) is defined in Eq. (3.7). We now observe that Eq. (5. 12) allows us to subtract
from X', ,(t „t„k) all those terms which, when iterated, would give rise in Q', ,(t„t „k) to ADC at low
temperatures. With such a choice the integral equation (5.11)can be solved by iteration in actual applica-
tion to a Bose liquid above the Bose-Einstein condensation temperature or to a Fermi liquid, i.e. , the
function q', , (t„ t „k) then consists only of small terms. The question as to whether or not the subtracted
terms in Eq. (5. 12) eliminate all the ADC to 8» (t„t „k}can be checked in any explicit calculation.

In addition to making iterations possible at low temperature, Eq. (5. 12) also gives us a prescription for
calculating B(k}and the quasiparticle self-energy d(k}. The procedure for determining B(k}and b(k) can
be described in two steps: (i) First calculate X» (t„t » k), defined in Eq. (3.7), to any desired order (see
end of Appendix 8 for definition of order); (ii) identify in the calculated expression for X» (t» t » k} thyrse
terms with the same form as the last terms in Eq. (5.12). Then we have

5 (k) =- (t-independent coefficient of —e [1-B(k)] [ 8(t, - t, ) + e n' (k)] in X,', (t „t » k)), (5.13)

B (k) =- (t-independent coefficient of —s[6(t, —t,)+s6(p —t,)n' (k)] inX,', , (t„t„k)t . (5.14)

It is important to observe that Eqs. (5. 13) and (5. 14) actually give integral equations for A (k) and B(k),
since the right-hand sides of these equations are functionals of L and B. [To see this, observe that
X, , (t» t „k) is expressed in terms of the transformed pair function (B3) which is a functional of
u&'(k) and B(k).] These integral equations (5. 13) and (5. 14) can be solved to any desired order in actual
calculations. We will not present any explicit results for 4(k} and B(k), obtained by such a procedure for
the case of a normal Bose or Fermi liquid, as they are identical to results obtained before. '" The
prescriptions (5.13) and (5.14) will be discussed further in Sec. 6.

The momentum distribution ( n(k)) can be calculated from the following relation, obtained by substituting
Eqs. (5.6) and (5. 7) into Eq. (4. 21):

(n(k)) = n' (k) f, dt 9,', (P, t, k) = n' (k) + c n' (k) fo dt Z', , (P, t, k). (5.15)

The second term inthe second line of this equation is small in the sense described below Eq. (5. 12)~ Thus,
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the lowest-order approximation for the momentum distribution gives ( n(k)) =n (k), the quasiparticle
distribution function.

The transformed expression for the grand potential of a normal fluid can be obtained from Eq. (4. 25) by
simply setting x, as well as the (0, 2), (2, 0), and zero-momentum quantities, equal to zero. The final re-
sult; using Eqs. (4. 26), (5.9), (5. 15), (A3), and (A7), is

Qf (p, g, Q) = QF' (p, g, Q) + Q fo -dt [g, , (t, t, k) —[1—B(k)}2', , (t, t, k)]

—eQ In{1-e[1-B(k)] exp[p(g- &u'(k))]] + & p [1 —B(k)]h(k)

x f, dt dsg,', (t, s, k)[8 (s-t) + en' (k)] +Q B(k) (n(k) ) (5.16)

When we do not consider the idealized case of an interaction which includes an infinite repulsive core, then
B(k) =0, and Eq. (5. 16) for Qf becomes

Oy(p, g, Q) =QF'(p, g, Q)+Z f, at[Z,„(t,t, k) Z,', (-t, t, k)]
p (t )'

—e Q In(1 —e exp[p(g- (o' (k))]j

+ e Zk&(k) f, dt ds 8,', (t, s, k)[ 8 (s —t) + f n' (k)] . (5.17)

Note that the argument of the logarithm appearing in Eqs. (5. 16) and (5. 17) is never negative for a normal
fluid. In fact, assuming that the minimum value of &o'(k) occurs at k =0, for s =+1 (Bose fluid) the occur-
rence of g = v'(0) [when B(0)= 0] is precisely the condition for the onset of Bose-Einstein condensation.

The theory is now in a form suitable for explicit calculations to obtain well-behaved iterative expressions
for the various thermodynamic properties of the system. We shall not give further details here since they
lead to results identical with those obtained earlier by Tuttle and Mohling' and Sikora. '

6. DISCUSSION

In this paper, we have focused our attention on
two aspects of the master-graph formulation of
quantum-statistical mechanics presented in I:
(a) the low-temperature, apparently divergent
contributions (ADC) encountered when an iterative
procedure is used to calculate thermodynamic
properties; (b) the application of the A transfor-
mation to sum these apparent divergences so that
well-behaved expressions for thermodynamic
properties can be readily calculated. In general
terms, the role of the A transformation performed
on the quantum-statistical development in I has
been twofold: It shifts the ADC from the integral
eguations for the master-graph line factors to
the vertex, or pair, functions giving well-behaved
final expressions. It also results in a self-con-
sistent iterative method for calculating the ther-
modynamic quantities and the seU-energies of the
quasiparticles. The A transf ormation transforms
the original theory of I to a form which suggests
a microscopic quasiparticle model of the fluid.

We now make a few remarks on the A trans-
formation scheme presented in Secs. 3-5:

(i) The transformation procedure outlined in
Sec. 3 associates the characteristic functions in-
troduced in Sec. 2 only with the outgoing line at
each vertex in the master-graph expressions for
any quantity (see Secs. 3 and 4). This procedure
is not unique. One could equally well have associ-
ated characteristic functions with the incoming
line or with both the incoming and outgoing lines
at each vertex. Of course, these other possibil-
ities would give the same final results.

(ii) The transformation is in no sense a unitary
transformation of the basic operators in the theory,
such as the Bogoliubov transformation for a Bose
fluid. ' It is a temperature-dependent integral
transformation on the basic line factors and ver-
tex functions of the theory.

(iii) As can be seen in Eq. (4. 7), the role of the
function .~ (t„t„k) after the A transformation is
essentially the same as that of Q', (t„t„k)before
the A t~ ansformation (see Eq. (2. 2) and the pre-
ceding discussion]. The similarity between
these fm'o functions can be observed for the nor-
mal f'.uid case by comparing Eqs. (5. 1) and (5. 9).
The ~ eason n (k) appears in A'(t„ t„k), Eq. (5. 9),
is the, t the A transformation has in this case
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summed in all different ways the statistical factor
exp/[@- &u(k)]j which appears in Qo'(f„ t„k), Eq.
(5. 1), in addition to replacing the free-particle
energy z(k) by the quasiparticle energy ~ '(k).

(iv) A general interesting feature of this trans-
formation is that the transformation of any tem-
perature-dependent quantity, e. g. , K»(t2, fl, k),
depends on the nature of its external lines (see
Sec. 3). Thus, the transformation function for
each external line depends on whether the momen-
tum label associated with that external line is + k,
—k, or k=—0. In a sense, the A transformation
acts as a probe for the self-energy structures in
the theory. In Sec. 5, we showed for a normal
fluid, which has only one A function [see Eq. (5.9)],
that a single self-energy &(k) results from the A

transformation. In a subsequent paper, we will
show for a degenerate Bose fluid, which has three
different A functions [see Eqs. (4.8), (4. 15), and
(4. 20)], that a different self-energy is associated
with each of these A functions. The interpretation
of these different self-energies will be given there.

(v) The A transformation gives a prescription
for calculating the self-energies [see, for example,
Eq. (5. 13)]. It has been suggested" that this pre-
scription is quite similar to the corresponding
prescriptions for calculating the self-energies
given by Balian, Bloch, and de Dominicis, "who
use a generalized Hartree-Fock approach, and by
Hugenholtz and Pines. " A detailed proof of such
an equivalence would give further insight into the
A transf ormation.

The ultimate goal in developing a microscopic
theory of a many-body system at finite tempera-
tures is threefold: (i) to check the phenomeno-
logical theories developed for the particular prob-
lem of interest, (ii) to obtain explicit analytic ex-
pressions for the various thermodynamic quantities
of interest, and (iii) most important of all, to pro-
vide numerical comparison of the theoretical re-
sults with experimental observations. In I and in
the present paper, we have developed a general
formalism. The first two aspects have been
studied earlier in detail for a Fermi liquid by
Tuttle and Mohling'; the first two aspects of this
program for a degenerate Bose system will be com-
pleted in the subsequent papers of this series.

APPENDIX A

In this Appendix, we outline the A(~)-transforma-
tion procedure for the quantities defined in Eqs.
(I. 5.2)-(I.5. 10) which are identified with a super-
script r. This is necessary in order to properly
A transform the quantity 2, „(t„t„k) in Eq.
(I.5. 12) for the grand potentia. l.

The A(7') transformation can be carried out for-
mally in direct analogy with the analysis presented
in Secs. 3 and 4. Five steps in this development
should be emphasized:

(i) Define the characteristic functions

Q,('r)(t„t„k) [see Eq. (2. 5)J and 8,(~)( )(t„t„k)
in analogy with 8 0'(t„ t„k) and Q, 't'& (t„t„,k).

(ii) Define all the transformed (1, 1), (0, 2) and
(2, 0) quantities identified with a superscript v, and
replace p by 7' in the integration limits of all A('r)-

transf ormation equations.
(iii) The arbitrary functions H'(f, k) and H "(t, k),

which appear in the A-transformation equations of
Sec. 3, are also used with the same forms for the
v case.

(iv) Define the v-transformed pair-function,
identified with a superscript 7, using b, (t„t„k)
instead of Qo(t„t„k) in Eq. (3.6).

(v) Include a tilde over each of the A(~)-trans-
formed quantities in the transformed versions of
Eqs. (1.5.2)-(I.5.10). The need for this notation is
clarified at the end of this Appendix for the normal
fluid case.

With the above points in mind, we can write down
all the results for A(~)-transformed quantities. Ex-
cept for introducing a superscript 7' and a tilde,
there is no formal difference in the equations for
transformed quantities. To avoid duplication we
shall not write these results.

Normal Fluid

To clarify the difference between the A( )-trans-
formation and the ordinary A transformation, we
follow the analysis in the first part of Sec. 5 for
the normal fluid case. Thus, we choose the ker-
nel Qo ~)(t„t„k)of Eq. (2. 6) to be
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x6(t,&-& —f, ) —e b, (k)e(t, —t, )J . (AI)

This 7-independent kernel is obtained by omitting
the 5(P —t, ) term in Eq. (5. 1). [Note that for the
case of a normal fluid we set all the (0, 2) and (2, 0)
quantities equal to zero, so that Q»(r)(t„t„k)
=M, ,(t„t„k), which js 7-independent as can be
seen from Eq. (I. 5.8). ] The solution for the char-
acteristic function 80 7') (t„f„k)can be obtained
easily from Eq. (5.3) to be
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(t, t„k)= [1 —B(k)] [5(t (-) —t, ) —A (k)8'(t, —t, )]exp f- (t, —t, )b k]

By analogy with the derivation of Eq. (5. 9), we find

I
(t„t„k)= —fl —B(k)]sb, (k)8(t„—t, ) —sB(k)5(t,( ) —t, )

We next write the equations which are analogous for the v case to Eqs. (5. 10)-(5.12):

0

+ fl —B(k)]exp [P(g —~'(k ))]5(P —t, )),

(A2)

(A8)

(A5)

where for the v case, the quantity Q,',(t„ t„k) of Eq. (4. 7) becomes, using Eqs. (4. 1), (4. 2), (5. 7), and
(A2),

II, , (t„t„k) —A (t„ t„k)= 3'... (t„t„k) —A (t„t„k)
(~)' (~)' - (~)' (~)'

+ [1—B(k)]:xp[P(g- ~'(k))]5(p —t, )

(A7)

where, with v'~ (t„t„),

(t„t„k)+[1—B(k)]exp[p(g- (o'(k))]~(p —t, ) . (A6)

The second line of Eq. (A6) defines the quantity K, , (t2, t„k).b)'
The quantity of interest in the calculation of the grand potential is the function 2» (t, t, k), obtained by

setting v'= t2= t~ = t in Eq. (A5). When setting &= t & p, we must be careful not to lose the statistical factor,
which is the second term inside the brackets on the right-hand side of Eq. (A5). The simplest way to deal
with the statistical factor is to remember that the 5(P —t) function was introduced in the definition of pri-
mary linked-pair (p, , v) graphs in Sec. 2 of I with the intention that its temperature integral always be unity.
We may next use Eqs. (A4), (A5), and the integral identity (I.A4) tp express the iterated form of
fopdt2„, (t) (t, t,k) entirely as a sum over integrated products of K»& ) and the statistical factor. If we
then sum over all ways of including statistical factors between products of K»(~) and also sum up the
series which includes only statistical factors, then upon using the integral identity (I.A4) again, we obtain
the following result:

f dt's, , (t, t, k) = f dt's, , (t, t, k) —e In(1 —a[1 —B(k)]exp[p(g- ~'(k))]},p - (t)' p (t)'

(t„t„k)=f ds8„, (t„s,k)K„, (s, t„k),
(~)' 7 (~)' (~)'

8„, (t„t„k) = 5(t, —t,)+ ~Z... (t„t„k),(~)' (-) (~)'

(A8)

(A9)

Kt, (tm, t~, k) =K~ ~ (t~, t~, k)+en'(k)K, ~ (p, t~, k) =Qf ~(tm, t„k)

where the 7-independent quantity Q,', (t2, t„k) is given by Eq. (5. 12), and nI(k) is given by Eq. (5.4).
In Order to prove the second line of Eq. (A10), we first note that

I I
(t„t„k)+~n'(k)g, , (P, t„k)= k,'„(t„t„k),

(A10)

(All)

where X»(t„ t„k) is defined by Eq. (3. 7). Mentity (All) is true, because the sum on the left-hand side is'ie
equivalent to replacing the 7-transformed pair functions in 3;» & by the ordinary pair functions of Eq.
(B3). Finally we note, after referring to the definition of Z, , (~) in Eq. (A6), that the sum

—[A (t„t„k)+~~'(k)A (p, t„k)](~)' , (~)'

is precisely equal to the terms which are added to X,'„ in Eq. (5. 12).
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We conclude this appendix by noting that Eqs. (AV)-(A10) summarize the distinction which we have made
for the & case between quantities with and without a tilde.

APPENDIX 8

In this Appendix, we list the explicit expressions for the untransformed and transformed pair functions.
The untransformed pair function is given by

t]t2
k, k2

exp[t, [(d (k, )+ (()(k, ) —(() (k, ) —(()(k,)]}.k3 k4
0

t2
[-k, k2- [-k] k2--=e(t, —t, ) e(t, t,)+ e—(t, —t, )

k3 k4&0 3 4

e(t, —t,), fOX' t~ gt2

'-k, k, -

k k 4

tp

for t, =t„ (Bl) .

where e(y) = 0 for y 5 0 and e(y) =1 for y &0. Also,

-k k1 2

k3 k4
tp

=f, (k k. Ik k )+ 5(t. —t.)f (k k IkP4)

P g f,(k,k, I k,k, I k,k, )[(d(k, )+ (k, ) — (k, ) —(()(k,)]
k» kB

xexp((t, —t,)[(g(k,)+(g(k,)- (g(k, ) —(g(k, )]}, (B2)

where &u(k) =k'k'/2m and the functions f„ f„and f, can be expressed entirely in terms of two-particle
reaction matrices, which are well defined even for an infinite repulsive-core interaction. '~"

The transformed pair function for a normal fluid is obtained by substituting Eqs. (Bl), (B2), and (5. 3)
into Eq. (5. 8), giving

t]tg
k k gg

1 2

k3 k4

tp

II
k2

k4

0I
&-k]

+ [e(t, t,)+ ~n'(p, )]e(t,——t,)
3

tp

k2-,
+ n'(p, )n'(p, )

- k3 k4-
0

where

t
k] k2-

k3 k4
tp

= [1—B(k~)] [1—B(km)] [g"(k,k~ I
ksk4)+ f"(k)km I ksk4; tto)],

with g"(k+2
I k,k4) =fg(kgb I kg~) - [&(k,)+ &(kg)] fg(k+2 I k,k, )
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+ 2, y;(k,k,
f
k, k, ik,k, )gP[~(k, )+ ~(k, ) —~(k, ) —~(k, )]-'

&5, k6

—P[(u'(k, ) + (u '(k, ) —&u(k, ) —(u(k, )] 'f (B5)

f"(k~ks
~
ksk4; ff ) = P P fa(k~ks

~
ksk

~
ksk4)[(u '(k~) + co'(ka) —co(ks) —(L) (ks)]

u, u,

xexp((t t,-)[(o'(k,)+(o'(k,)- (u(k, ) —~(k,)]]+5(t- t,)y, (k,k,
~
k,k, ) .

In Eqs. (B3)-(B6), ~'(k, ) is as given by Eq. (5.5). The quantity g"(k,k, l k,k, ) of Eq. (B5), which can be
expressed' as the matrix element of a two-body reaction matrix, is an important expansion function' in the
A-transformed quantum-statistical theory. Moreover, the functions f"and g" are of the same order
Thus, an nth-order calculation requires the inclusion of terms proportional to the nth power in products of
these functions.
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