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Intensity-correlation measurements, particularly by the two-photon fluorescence (TPF)
technique, have become very popular for determining the temporal behavior of laser emission
on a picosecond time scale, although they are subject to considerable difficulties of interpre-
tation. The characteristics of the fluorescent intensity in the TPF technique are analyzed
theoretically for two different physically interesting and tractable models of imperfectly mode-
locked lasers: (i) a partial-locking model where some of the modes are locked and the rest
unlocked, and (ii) a “domain model” where the set of oscillating modes is composed of several
perfectly locked subsets randomly phased relative to one another. For each case, the domi-
nant features of the spatial dependence of the fluorescence are calculated analytically, using
approximations which are valid for realistic cases involving large numbers of oscillating

modes. Computer results for the intensity of the laser field and of the fluorescence are also
presented for the domain model. It is shown that the partial-locking model is incompatible
with experiment, whereas the domain model is in reasonably good agreement with it. Finally,
the dynamical basis of the domain model is discussed.

1. INTRODUCTION

There has been much recent interest in the
use of various intensity-correlation methods to
determine the temporal characteristics of lasers.!
These methods are very attractive because, in
contrast to standard oscillographic techniques,
their resolution is sufficient to measure the ex-
pected pulse durations in the picosecond range.
In these methods, typically one combines the
radiation from the laser with a time-delayed
replica of itself and passes the superposition
through a medium having a quadratic response
to the field intensity. In this paper we consider
theoretically the response of such intensity-
correlation detectors to the radiation from im-
perfectly mode-locked lasers. To be specific,
we will speak in terms of intensity-correlation
measurements by the very popular two-photon
fluorescence (TPF) technique of Giordmaine
and others, Z although many of the methods in-
volving second-harmonic generation in nonlinear
crystals are mathematically equivalent.3

One problem with the use of intensity-correla-
tion methods to obtain information about the in-
tensity is that the intensity-correlation function
does not determine uniquely the intensity as a
function of time. Moreover, most of the methods,
including TPF, yield the intensity-correlation
function superposed on a uniform background,
resulting from the response of the squaring
element to each of the superposed waves acting
singly. An unpleasant consequence of these ef-
fects for anyone interested in determining
whether a laser is emitting picosecond pulses
was pointed out clearly by Weber* and by
Klauder®: The TPF trace will have the same
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qualitative behavior, consisting of regions of
enhanced fluorescence on a uniform background,
whether the oscillating modes are perfectly
locked (resulting in a train of minimum-dura-
tion pulses) or completely unlocked (resulting
in a randomly fluctuating continuous output).
They pointed out that the only difference between
the two situations is the peak-to-background con-
trast ratio of the fluorescence, which is 3.0 in
the former case and 1.5 in the latter.®

Since the contrast ratios observed in experi-
ments with Nd-glass lasers @ switched by dyes
exhibiting saturable absorption %7 are inter-
mediate between the above values (varying from
1.7 to 2.0), a reasonable step to obtain results
consistent with experiment was to combine the
two models. Harrach® and the present authors®
considered a partial-locking model for the laser
emission in which a portion of the modes are
perfectly locked, forming a pulse, and the rest
are unlocked, contributing a fluctuating background.
Griitter, Weber, and D#ndliker'® considered a
model consisting of a combination of random and
systematic deviations of the modal phases from
the locking condition, They showed that the ran-
dom deviations contribute a fluctuating back-
ground, similar to that in the partial-locking
model, whereas the systematic deviations account
for the frequency “chirp” postulated by Treachy?!!!
on the basis of his pulse-dispersion experiments.

In the following sections we give more detailed
results on the partial-locking model and also con-
sider a new model, the “domain model, ” in which
the oscillating line is divided into several groups,
or domains, having perfect internal phasing but
random phases relative to other domains. On
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the basis of the assumption that the unlocked por-
tion of the field in the partial-locking model be-
haves like Gaussian noise, we obtain an analytic
solution for the TPF contrast ratio as a function
of the degree of mode locking, which exhibits

a strong dependence on the number of oscillating
modes, We also consider the response of a fast
photodetector to the partially locked laser field,
showing that the ratio of the peak photocurrent to
the background photocurrent depends only on the
degree of mode-locking and the ratio of two char-
acteristic times, Turning to the domain model,
we show that it results in broadened pulses with
considerable substructure, and we determine

the qualitative behavior of the TPF as a function of
position in this model. We also present typical
computer calculations of the intensity and of the
fluorescence.

Following a brief discussion of TPF measure-
ments in general (Sec. II), we discuss the partial-
locking model in Sec. III and the domain model in
Sec. IV. In Sec. V we discuss the experimental
situation, concluding that the deviations from
perfect locking which are customarily seen do
not result in a uniform background, but rather
result in distortions of the individual pulse shape.
The partial-locking model is shown to be incompat-
ible with experiment, whereas the domain model
is in reasonable agreement with it. We also dis-
cuss the dynamical basis of the domain model in
this section, give some indication of its versatil-
ity, and mention remaining problems.

II. GENERAL FORMALISM

In this section we discuss the TPF intensity-
correlation experiments which are the subject of
this paper, define terms, and introduce the nota-
tion and the basic formulas we will use. Consider
a material system (usually a dye solution) which
is allowed to interact with a narrow band, but
otherwise quite arbitrary, optical field E(T, ¢)
centered at frequency .. For simplicity, the
field is assumed to be linearly polarized, and its
transverse variation is neglected, making the
problem one dimensional. Usually the field E will
be a stochastic process, describable only in terms
of an ensemble. We assume further that the mat-
ter has a negligible single-photon absorption prob-
ability for the field E, but a significant probability
for two-photon absorption, followed by fluores-
cence (TPF).

The field intensity I (z,#) and the two-photon
absorption rate w®'(z, ) can be expressed con-
veniently in terms of the first- and second-order
field correlation functions!? for the optical field,

GV (1,2) =(EQ)EM(2) (2.1a)

and G%®(1,2,3,4)=EQEVQEMNBEV @) .

(2. 1b)
The arguments of these functions are the space-
time points 1=(z;,#,), and so forth, and E“)(1)
are the positive- and negative-frequency parts of the
electric field operator E(1). They annihilate and
create a photon at (z;, #,), respectively, and
satisfy

E1)=E®(1)+E“(Q1)

with  EC(1)=[E®Q)] (2.2)

The angular brackets in Egs. (2. 1) denote the
quantum expectation value, and also the ensemble
average if the field is stochastic, both of which
may be represented in a familiar way in terms of
the density matrix. In terms of these correlation
functions the field intensity at (z;, #;) is simply

I1)=6"Q1,1),

while under suitable, rather general assumptions®
the two-photon absorption rate w®’(1) is propor-
tional to G*®’(1,1,1,1). We assume that the de-
tector of the subsequent fluorescent emission
responds sufficiently slowly that it sees only the
integrated fluorescence'! F(z,) which is given by

F(z)=C [at,6®(1,1,1,1), (2.3)

C being a proportionality constant, !°

For our purposes, the operator nature of E is
not important and E**(z, #) may be considered
equivalent to the analytic signal or complex clas-
sical field'®'!” &(z,¢) . There is a similar cor-
respondence between E*(z,t) and 8*(z,7) . A
correlation function can then be expressed as an
integral of a product of complex fields weighted
by a probability density P. Equations (2.1) as-
sume the form

G, 2)= [P(e DE*(1)8(2) d*{e,}
and (2.4)
G®(1,2,3,4)= [P(e, }E*(1)8*(2)8(3)
x 8(4) d*{e,},

where {e,} is the set of complex mode amplitudes
defined by the modal decomposition

8(z,t) =2 €, et B %) 2.5)

Here % is the wave vector of the £th mode and
Q,=v,k is its frequency (v, is the phase velocity
of kth mode). The integral is over the real and
imaginary parts of all the mode amplitudes; that
is,

d*{e )= d(Ree,) d(Ime )
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In general, the second-order correlation function
G* is not a simple function of G*’, However,

for two important special cases with which we
shall be concerned, such a functional relationship
does exist, One case is the fully coherent field -
for example, the field generated by an idealized
noiseless oscillator - in which each mode has a
specified complex amplitude €}, and the probability
density for the field is a Dirac § function, '

Pe D=1,6%(c,-€})=06[8(z,t) - &(z,8)]. (2.6)
The desired relation between G® and G,
G® (1,2,3,4)=6" (1,3)6V(2,4)
=G"(1,4)6'"(@2,8) , (2.7

results if we substitute Eq. (2.6) into Egs. (2.4)
and perform the integrations.

The particular coherent field with which we are
concerned is the field radiated by an ideally mode-
locked laser, which consists of a set of modes
equally spaced in frequency with adjacent modes
separated by a constant phase increment ¢. If
the radiation originates in a cavity of length L in
which the effective velocity is v=c/nyy,, the fre-
quency separation is AQ=27- v/2L. In the case
where the spectrum is uniform, Eq. (2.5) be-
comes a geometric series which can be summed
to yield the familiar repetitive pulsing expres-
sion for §(z,¢). Letting m be the number of
modes locked, w be the intensity per mode, and
Q. and ¢, be the frequency and phase of the car-
rier wave, the expression is'®

8(z,t) =w'’? ¢"i%c(sin m0)/(sin 6) , (2.8)

where 0.=Q.(+2/v)+ ¢, 2.9)
and 0=a0@¢+z/v)+ 0 .
The corresponding intensity is

I(z,t)=| 8(z,1)|?, (2.10)

and the average intensity, obtained by integrating
Eq. (2.10) over the period of the pulse train or
the cavity round-trip time 2 L/v=271/AQ is

AR 2r/AQ
_277 (2. 11)

From Eq. (2.10) it also follows that the peak in-
tensity is mW = m2w and the pulse half-width is
21/mAQ to the first zero,

The second important case in which there exists
a simple relation between G‘®> and G’ is that of
a thermal field obeying Gaussian statistics. In
this case the real and imaginary parts of all €,
are uncorrelated Gaussian variates, so that the
field probability density is

P({e, D= H kﬁ:— exp (—%) s

dtI=mw .

(2.12)

where 0% =((Re€,)?) = ((Ime,)?) .

Substituting Eq. (2.12) into Egs. (2.4) yields the
desired expression'? for G,

c®(1,2,3,4)=6(1,3)6(2,4)

+G(1,4)61(2,3) . (2.13)

The importance of the Gaussian field is a result
of the central-limit theorem of statistics, where-
by the sum of a sufficiently large number of in-
dependent random variables asymptotically obeys
Gaussian statistics, Our interest in it is to de-
scribe the output of an unlocked multimode solid-
state laser, the modes of which in crudest ap-
proximation have fixed amplitudes, but indepen-
dent, uniformly distributed random phases. Since
the number of modes m is typically large (from
many hundreds to tens of thousands), the condi-
tions for the central-limit theorem to apply are
met and the total field F is approximately Gaus-
sian, It can be shown? that the relative error

in this approximation is of order m™ and, hence,
is very small for a reasonably large number of
modes. %!

Two common configurations for TPF experiments
are shown in Fig. 1. In Fig. 1(a) the beam from
the source laser L is divided by a 50% beam split-
ter M, the two beams then passing in opposite
directions through the dye cell C. The point of
equal-path difference is labeled z=0, and the
positive z direction is indicated by an arrow. In
Fig. 1(b) the radiation from the source passes
through the dye cell in the negative direction and
is reflected back upon itself by a 100% mirror
M’ at z=0, In either case, the fluorescence is
monitored from the side by photographic means
or in rare cases photoelectric means.

With mirror M’ absent, only the wave traveling

z=0 z

FIG. 1. Two common configurations for TPF experi-
ments (C is the dye cell; M’, M’’ are 100% mirrors; M
is a 50% mirror; L is the source laser; E and l’{R are
wave vectors of colliding beams).
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in the —~ z direction remains in the liquid; we
denote it by E(z,#). Also, we denote the wave
traveling in the + z direction by Egz(z,t). Clearly,

Eg(z,t)==E(z,t-17), (2.14)

where 7 =2nz/c is the relative delay between the
two beams., (Here # is the refractive index of the

dye solution,) The minus sign occurs in Eq. (2.14)

because E has undergone an even number of re-
flections, while Ej has undergone an odd number,
The total field is then given by E(z,)+ E(z,1).

If one substitutes the total field E +E for E in
Eq. (2.1b), 16 terms ensue. The expression for
the fluorescence obtained by using this sum for
G® in Eq. (2.3) appears to be rather complicated.
However, it simplifies considerably in the usual
case where the spatial resolution limit of the de-
tector is greater than the optical wavelength, *
Denoting the spatial average of the fluorescence
§ over a wavelength by F, we have®

F(T): Cfdt[(E(-)ZE(+)2>+ (E%')ZES')Z)

+a(ECVES ESEM), (2.15)

where the spatial argument z has been replaced by

the time difference 7, to which it is proportional.
It is useful to normalize the fluorescence by

referring it to the fluorescence F,(r) produced by

a single pass of the optical beam,? which can be

measured easily by removing mirror M’ in Fig.

1. Setting E; =0 in Eq. (2.15), we obtain

Fo(r)=C [dt(ECRE®?) | (2.16)

So far we have neglected to mention the limits
of the time integrations in the expressions for
the fluorescence. Since the radiation originates
in a cavity of length L, the radiation has a dis-
crete spectrum of modes separated at least ap-
proximately? in frequency by AQ=27-v/2L, and
its amplitude will be nearly periodic with period
21/AQ . Thus it seems natural to choose one or
more full periods as the range of the time inte-
grals, Then F(r) will be approximately periodic
in z with period L, and Fy(r), the single-pass
reference fluorescence of Eq. (2.16), will be
nearly independent of z on a macroscopic scale,

If, as is generally true, the quasiperiod 27/AQ
of the emission is much greater than the inverse
bandwidth of its intensity fluctuations, the TPF
pattern consists of regions of enhanced fluores-
cence supérimposed on a uniform background.
The regions of enhancement have maxima at
T=27j/AQ (j=0,+1,42, ... ) and widths of the
order of the inverse bandwidth, Focusing our
attention on the region near 7=0, we denote the
peak fluorescence by F,=F(0) and the background
fluorescence by F,. Now a parameter widely
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used to characterize the emission is the peak-to-
background contrast ratio

R=F,/F, . (2.17)

However, with little additional effort for the ex-
perimenter or the theorist, it is possible to obtain
two parameters, from which one can characterize
the field more fully than is possible simply from
the value of R, These parameters are obtained
by referring the fluorescence F to the single-pass
fluorescence F,, enabling us to define a peak-to-
reference contrast ratio

R,=F,/F, (2.18)

and a background-to-reference contrast ratio
R,=F,/F, . (2.19)

We conclude this sectionwith a clarifying remark.
The objection might be raised that we should not
take an ensemble average of the field products
even if the field is random, since the experiment
described involves only a single firing of the
laser. The response to this objection is that there
are many stochastic influences within the laser
causing the random parameters to evolve in time
through values corresponding to several members
of the ensemble. If the observation time in the
experiment is sufficiently long, we could, in ef-
fect, be performing an ensemble average,®
Whether we are or not is a question for experiment
or a more detailed theory to answer,

This completes our discussion of the general
formalism. In Secs. IO and IV we use these re-
sults in discussing two different models for im-
perfectly locked lasers.

III. PARTIAL-LOCKING MODEL

In this section we investigate the TPF for a
model of a partially mode-locked laser, in which
a portion of the modes near the center of the
line are locked and the rest are unlocked, with
random phases relative to one another, This
model bridges the gap, in a rather natural way,
between the extremes of perfectly locked and
completely unlocked operation., Conceivably, it
could describe the emission from an actual laser
in which the parametric effects responsible for
mode locking are sufficiently high to lock some,
but not all, of the oscillating modes, %

Assume that there are m oscillating modes, m;
of which are locked and m, unlocked. Thus

m=my+m, . (3.1)

We wish to develop analytic means of tredting the
TPF problem. Of course, an exact solution is
not possible, However, we will make use of the
fact that typical oscillating solid-state lasers sup-
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port a large number of ‘modes to obtain useful ap-
proximate results. To achieve this goal, we begin
by splitting each of the fields E and Ej into parts
corresponding to locked and to unlocked modes,

E(ﬁ)=Et(*)+Eu(t) (3. z)
and ER(*)=ERI(*)+ER1‘($:) .

As discussed in Sec. II, if m, is sufficiently large,
E, and Ep, obey Gaussian statistics.

The fluorescence for this model is obtained by
substituting Eqs. (3.2) into Eq. (2.15). The
resulting expression contains 48 terms. To sim-
plify it, first we observe that E,; and E, are uncor-
related, so that averages of their products reduce
to products of averages; for example,

(BCECEM)=(E) BB .

Secondly, we note that averages of products of
E,‘,*’ containing unequal numbers of positive- and
negative-frequency fields vanish, due to the sta-
tionarity of the Gaussian distribution, Eq. (2.12);
for example,

(E;-)E,f+)z>= 0.

With these simplifications the fluorescence is
given by

F(r)=C [ at{{ESPE?) + (ESPES?)
+MEPERERE) + (B ES)
+(BGPEGR) + KBS ERERE,")
+4[(BENEE”)
+(ERERNBRIER))
+HEDEPKESERD
+(ER B NESE,”)
+(ELERNERES)
+(EFEPNESERD] . (3.3)

The first six terms of this expression can be
simplified further by using the properties of co-

herent and of Gaussian fields given by Eqgs. (2.7)
and (2.13). Defining

L=E{E), I =(ERER)),
L=EJEY), In=(ERERD)
G, =(EES)) and G,=EEL) (3.5)
Eq. (3.3) takes the form®
F(r)=C [ at{fi+ I + 411,
+ 2L+ 2L+ AL IR, + 4| G, [?
+ 4[IlIu+ Ipdgy+ Idgy+Igidy+ G,G¥+G ?‘Gu]} .
(3.6)

(3.4)

Here I denotes the intensity of that portion of the
field designated by the appended subscripts, and
G denotes the cross-correlation function between
the oppositely directed waves.

From Eq. (3.6) one easily obtains the peak,
background, and reference fluorescence. At
7=0, we have I;=Ip,;=-=G,;== G} and I,=1,
=-G,=~G¥, so that the peak fluorescence is

F,=6C [dt (B+2P+41,1,) . (3.7

Onthe other hand, when 7 is much greater than the
inverse bandwidths of both the locked and unlocked
portions of the field (that is, the coherence time
of E, and the pulse width of E;), one has G,=G}=0
and G,=G¥=0, If, in addition, one uses the gen-
eral results for arbitrary 7,

I,=Ip, and foz"’“’ atfi= [Fr/A%dtly,
the background fluorescence is found to be

F,=2C [dt(;+4+ 8L,1,) . (3.8)
Finally, by setting E; =0, the reference fluores-
cence becomes

Fo=Fop+ Fou+ Fo,int » (3.9)

where F,;, Fy,, and F, ;,, are the reference fluo-
rescence due to the locked modes alone, due to
the unlocked modes alone, and due to their inter-
action, respectively, defined by

Fu=C/dtl; , (3.102)
Fo=C/[dtl | (3.10b)
and FO,int=4cfdtllIu . (3.10c)

Using Eqgs. (2.17)-(2.19) and (3.7)-(3.10), the
peak-to-single-pass and background-to-single-
pass contrast ratios are then

R,=6 (3.11a)
and R,=4-2Fy/F, ; (3.11b)
and the peak-to-background contrast ratio is °

R=3(2=Fy,/Fy)* . (3.12)

At this point we must make some assumption
concerning the spectrum of the field. For simplic-
ity we assume that the spectrum is uniform, and
call the intensity per mode w. Then the complex
amplitude &,(z,¢), the instantaneous intensity
I,(z,¢), and the average intensity W, for the locked
portion of the field are given by Eqs. (2.8)—(2.11).
Substituting Eqs. (2.10) and (2. 8) into Eq. (3. 10a)
yields a value for F,,
2Cw® (7. sinmx

aQ J, ¥ sintx :

The integral in this expression can be evaluated

Fo =
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exactly, % yielding 37m;(2m? +1), so that
(3.13)

Since the mean intensity of the unlocked portion
of the field is W,=m,w=1I,, we have the further
results that

Foy=4mCAQ  wlm,(m5 +3%) .

Fou=41CAQ  u?m?, (3.14)
and, using Eq. (2.11),
Fo, 1t = 8TCAQ wPmym,, . (3.15)

Using Egs. (3.13)-(3.15) and Eq. (3.9), the
contrast ratio R of Eq. (3.12) becomes

R=3(1+¢,/m)/(1+2¢,/m) , (3.16)

where &, =3(1 =753 2m2/(2ml+1)] (3.17)
and 7, Em,/ m is the fractional number of modes
locked. Note that £, can be considered, for all
practical purposes, to be a function only of 7,
and not of m, since the factor in brackets is
always nearly unity.

In Fig. 2 the contrast ratio R given by Eq.
(3.16) is plotted versus 7, over the range 100~
4% for various values of m. Assuming that the
mode spacing is AQ =27x10° sec'l, correspond-
ing to the longitudinal mode spacing in a 150-cm
cavity, the values chosen for m correspond to
several realistic choices for the spectral width
O6x. The values of m and 6x and their realiza-
tions are: (i) m =53200, 51 =200 A (fluorescent
linewidth of 1.06-u Nd-glass laser); (ii) m =26 600
51 =100 A (oscillating width of mode-locked Nd-
glass laser emission'); (iii) » =3100, 6x=5 A
(oscillating width of mode-locked 6943 A-ruby-
laser emission®”); and (iv) m =532, x=2A (Nd**:
YAG laser linewidth). In addition, the curve for
m =100 is plotted for comparison with an existing
computer calculation. ?

On the basis of Egs. (3.12) and (3. 16), Fig. 2,
and the preceding discussion, we can summarize

b
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FIG. 2. TPF peak-to-background contrast ratio R in
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the properties of the fluorescence in this model.

(a) The results reduce to the usual results for
perfect locking and for no locking when we set
1;=1(Fy;=F,) and 1,=0(F,,=0), respectively.
For 1;,=1, the peak-to-single-pass, background-
to-single-pass, and peak-to-background contrast
ratios are R,=6, R,=2, and R=3, respectively.
The value R,=2 reflects the lack of overlap be-
tween the oppositely directed waves in the back-
ground region. On the other hand, for n;,=0
we have R,=6, R,=4, and R=1.5.

(b) In the general case, the value of R varies
monotonically between the values of 3 and 1.5,
found for the two limiting cases. However, the
normalized peak fluorescence R, does not change
as 7, is increased from 0 to 1, the lowering of
R being due instead to an increase of the normal-
ized background fluorescence R, . The reason
for this behavior is clear: R, does not decrease
because the noise is still coherent with itself
over very short times; on the other hand, R, in-
creases above twice the single-pass value be-
cause the oppositely directed waves now overlap
and there will be a cross term in the two-photon
absorption corresponding to the absorption of
one photon from each beam.

(c) The various contrast ratios are all inde-
pendent of the intensity per mode w and of the
mode spacing AQ.

(d) The contrast ratio R depends strongly on the
total number of modes m and not only the fraction
1, which are locked. As m increases, R falls
off more slowly with decreasing 7, (increasing
percentage of modes unlocked). The reason for
this is that the importance of the fluorescence
from the locked modes relative to that from the
unlocked modes increases when the mode number
is increased. For example, if m is doubled
while keeping 7, and the average intensity mw
constant, it follows from Eqs. (3.13) and (3. 14)
that the fluorescence from the locked modes
over a given time interval will double, while the
fluorescence from the unlocked modes will re-
main the same. This is true whether we increase
m by increasing the total bandwidth while keeping
the mode spacing AQ fixed or by decreasing the
mode spacing while keeping the bandwidth mAQ
constant. In passing we note that, if some spec-
tral shape other than a uniform one is assumed,
the importance of the locked modes will be en-
hanced further since they occupy the central por-
tion of the line,

(e) The half~width at half-maximum of a peak
of the fluorescence trace is proportional to the
pulse half-width A¢ (also at half-maximum). In

the partial-locking model as a function of the fraction
71; of modes which are locked for various realistic values
of the total number of modes #z.

terms of the variable 7, the proportionality factor
is of order unity, its actual value depending on
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the pulse shape. For our case, in which the
pulse shape is given by Egs. (3.16) and (3.17),
we have 2 At=0.887/m,;AQ, and the proportion-
ality factor is about 1. 5.

Since the assumption that the sum of the un-
locked-mode amplitudes is a Gaussian variate
is in error by terms of relative magnitude m!,
one would tend to lose confidence in this approx-
imation for very small m, (say m,<~10). This
region is not important unless the total number
of modes m is small, In that case it becomes
necessary to resort to computer calculations of
the TPF.® Since the computer calculation is
unfeasible for large mode numbers, the amount
of time required varying approximately as m?®,
it is clear that the computer solutions and the
above approximate analytic solutions comple-
ment one another,

We now consider briefly another aspect of this
model, namely, the single-photon photodetection
problem, The peak intensity of the mode-locked
field E, is

Iy=m,W,;= miw ,
and the background intensity due to the noise is

Ly=W,=muw .

The peak-to-background “contrast” in the intensity

I () is given by
Ip/1b=m7712/(1 - .

This ratio is proportional to m, so that the peak
intensity will dominate the noisy background
increasingly as m gets larger,

If one had a fast photodiode-oscilloscope com-
bination with a response time T'; less than the
width A#= (m;AQ/27)™! of the mode-locked pulses,
one would see peaks with the above contrast in
the oscilloscope trace. However, since T, is
limited to about 0.1 nsec, the photocurrent 9(¢)
will have a contrast determined by the total energy
in the pulse rather than its peak power, resulting
in a marked reduction in the prominence of the
pulse. To see this, assume that the detector
impulse response g(¢) is exponential

gB)=Te?'Ta, (t>0)
=0, (¢<0) .

Then, for the pulse width A¢<T, the peak photo-
current is related to the peak intensity by® g,

= (aAt/T,)I,, where o is the quantum efficiency of
the detector, while the background variables are
related by 9,=al,. The contrast » of the oscil-
loscope trace will be

v=9,/9,= 2n/AQT)n,/1-n,)] . (3.18)

As expected, this result is independent of m, but
depends on a parameter B =21/AQT, .

In Fig. 3 the contrast 7 in the photocurrent
trace is plotted as a function of 7, for several
values of the parameter 8. It is seen that 8 is
the ratio of the time between pulses f,y,,=27/AQ
to the detector response time. It has been tacitly
assumed above that the detector is fast enough so
that T; <f,,5e; cOnsequently, we require 8>1.

It is interesting to contrast the behavior of
the (time-resolved) photocurrent from a fairly
fast detector with that of the (integrated) TPF,
The contrast » in the former case does not
change if one merely increases the number of
modes, keeping 7, and A constant,*® whereas
the contrast ratio R in the latter case increases
with increasing m. The difference in behavior
can be attributed to the fact that although both
9(t) and F(r) are given by time integrals of func-
tions of the intensity, the first integral is linear
in the intensity and the second is nonlinear,

By combining Egs. (3.16) and (3. 18), the TPF
contrast ratio R can be plotted versus the photo-
current contrast ». This is done in Fig, 4. The
function forms a two-parameter family of curves.
The results are plotted for various values of the
parameter » and only one value of the parameter
B, namely, 8=40, which corresponds, for exam-
ple, to a time between pulses ?,,;4,= 10 sec and
a detector response time 7;=2,5%10"%sec, It
is clear from the figure that, for any reasonable
mode number, a large background must appear
on the oscilloscope before the contrast ratio will
differ significantly from Fig. 3.

This completes our discussion of the partial-
locking model. In Sec. IV we discuss the domain
model.
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FIG. 3. Ratio 7 of the peak to thebackground photocur-
rent in the partial-locking model as a function of the
fractional number of modes locked n; for various values
of 8. The parameter B is the ratio of the pulse separa-
tion to the detector resolution time 7,. It is assumed
that the pulse length is much smaller than Tj.
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FIG. 4. TPF contrast ratio R as a function of the
photocurrent “contrast” 7 in the partial-locking model.
The function is plotted for several values of the number
of modes m, and one value of the parameter 8 (defined
as in Fig. 3).

IV. DOMAIN MODEL

In this section we present a simple alternative
model for the emission from mode-locked lasers.,
We call it the “domain model” because of a loose
analogy with the case of ferromagnetism., Here
the “domains” are regions in frequency space;
the oscillating spectrum consists of groups of
adjacent modes, or domains, with perfect lock-
ing of the modes within each group. The inter-
mode spacing is constant within a group, but
varies from one group to another, and the spec-
tral widths of the groups need not coincide. Each
group constitutes a pulse train, consisting of an
amplitude-modulated carrier wave, whose dura-
tion is the inverse spectral width of the group.
We take the phases of the carrier waves to be
uniform random variables and require that the
peaks of the pulses corresponding to each group
coincide approximately in time, Then, although
the total field will still be a train of pulses whose
widths are approximately the inverse of the width
of a single group, the various group amplitudes
will interfere, giving rise to fluctuations within
the pulse envelope, whose coherence time is the
inverse of the total spectral width, If the number
of groups is reasonably large, by the central-
limit theorem, the resulting field will closely
resemble a train of band-limited-noise pulses
(that is, white light passed through a filter and
a chopper), from which one can readily infer the
gross features of,the resulting TPF traces.

Following these qualitative remarks, we would
like to express quantitatively the behavior of the
field intensity. Assume that there are M=2N+1
domains, the ith one containing m; modes and
having amplitude E; =E;(z,¢) . .The total number

of modes is then

m=?§ m;
and the total field is

B9, 0=3 B, 1) . @.1)
From Eq. (4. 11=)1 the field intensity is simply

Iz, ) =Gz, t; 2, )= 2, D, (ECEY) | (4.2)
Since every E; is a fully coherent field, we may
write

(E{E) =888, (a.3)
where, by analogy with Eqgs. (2.8)-(2.9),

8,(z,t)=w} e %i (sin m;0,)/(sin £6,). (4.4)
In the latter equation

0o =it +2/0:)+ 9 (4. 5a)

and 6;=AQ;(t+z/v)+ ¢; , (4. 5b)

where Q,; is the carrier frequency of the ith group
and @.; is its random phase, v; is the velocity of
the ith group, and AQ;=2mv,/2L is the corre-
sponding mode separation. The phase ¢; deter-
mines the location of the peak of §;. Although
we only need require the spread in ¢; to be less
than 2m/m; to obtain a single pulse per cavity
round-trip time, we assume for simplicity that
¢@;= @ independent of 7 in what follows. Note
that, in writing Eq. (4.4), we have assumed that
each mode of the ith group has the same ampli-
tude, but have allowed for the possibility of the
amplitude varying from one group to another,

w; being the intensity per mode within the ith
group. With the help of Egs. (4.3) and (4.4),
Eq. (4.2) becomes

I(z, t)=f} w;[sin®(3m;0,)/sin?(36,)]

M
+27 (ww;)" 2cos(8,; - 6,;)
i)

X [sin(zm;6;)/sin(36;)]
X [sin(3m;6,)/sin(36,)] . (4.6)

The prime on the sum indicates that the terms
for which {=35 are omitted.

In Fig. 5 the intensity of Eq. (4.86) is plotted
versus ¢ with z fixed over an interval corre-
sponding to the central lobe of a single pulse.
The summations were performed on a computer,
and the results are shown for two different
choices of the set of random phases {¢,;} . The
parameters chosen are appropriate for mode-
locking of a @-switched Nd-glass laser in a 150~
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FIG. 5. Relative intensity I/], as a function of time
t in the domain model for two sample functions corre-
sponding to different choices of the set of relative phases
¢.; between the groups of modes, showing random sub-
structure within a pulse. The normalizing factor I is
the peak intensity in the corresponding perfectly locked
case. The field consists of 26 600 modes equal in in-
tensity, 11 groups of equal size.

cm cavity, The spectral width is dx= 100A and
the mode spacing is AQ;= AQ=27x10%sec™, Itis
assumed that the modes (total number #: =26 600)
form 11 groups (M=11, N=5), each contain-

ing an equal number of modes m;= 26 600/11,

and that the spectrum is uniform. The value of
@ is chosen such that the pulse is centered near
t=0, and the intensity is normalized by dividing
it by the peak intensity I;= (Eiwi%mi)z , in the
corresponding perfectly locked case (obtained

by setting ¢,;=0 for i=1,...,M). By performing
a crude Monte Carlo calculation, considering
{@.:} to be random variates, we obtain an esti-
mate for the expectation value of the pulse shape.
The results of such a calculation are shown in
Fig. 6, which represents the average of the in-
tensities of 60 sample pulses. Figure 6 shows
that the average is approaching the shape of the
pulse corresponding to a single mode group, as
expected from Eq. (4.6). Some residual fluctua-
tions remain due to the poor convergence. The
pulse half-width is 1.75 psec, which is consis-
tent® with the inverse spectral width of a single
group of modes (4.14 psec). From Fig. 5 the
individual samples appear to have substantial
substructure on a scale of the inverse spectral
width (0. 376 psec). The results of Figs. 5 and 6
are to be compared with Fig. 7(a), which shows
the intensity for the corresponding perfectly
locked field.

Before leaving our discussion of the field in-
tensity in the domain model, let us consider
briefly the results of a photodetection experiment
with a fast detector. Using the notation of Sec.
III, it is clear that 9(¢) consists of a sequence of
pulses, whose shape is characteristic of the im-

.08 -

.06 -

.02 -

0 L L L
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FIG. 6. Relative intensity I()/1, for the average of 60
pulses corresponding to different sets of phases ¢;.

pulse response of the detection system. Thus
the contrast # is infinite, as in the perfect-lock-
ing case.

We now consider the TPF in the domain model.
The reflected field can be written as a sum over
the amplitudes of the individual groups,

E¥Nz,t-1)=2,ES, @.7)

where E$)=—~E*(z,t~ 7). Substitution of Egs.
(4.1) and (4.7) into Eq. (2.15) leads one to an
expression for F(r) involving three fourfold sums
over the group indices. However, the sums re-
duce to twofold and single summations, because
each of the groups has a different center fre-
quency £; with the result that the time integrals,
such as

fin )= [ atEPERERE) |

1.0 6.0
i () (b)
0.8}
5.0 |-
0.6 |-
o Fo4or
To 04l Fo
I 3.0 |
0.2}
I\/\) i i
-1l 0 | 20, |

t (psec) * (psec)

FIG. 7. (a) Relative intensity I(¢)/1, for the perfectly
locked case corresponding to Fig. 5; (b) the correspond-
ing TPF yield F, referred to the single-pass fluores-
cence Fy, as a function of the time delay 7.
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for example, will be small unless Q;+Q;~ 8,
-,=0. We also note that each of the fields E;
is fully coherent, so that, for example,

(ESES)ESIESY) = 81856 riby »
where &g,=—-8,(z,¢~7). Thus
F8u@)= [at]] 81| 8g;|%0::0,(1 = 6;;)
+ 8%8%;65:8;0:0,,(1-0;)
+] 8:|%| 8ril%0:50:0u]

with similar results for the other integrals in
Eq. (2.15). The resulting fluorescence is

2
F(r)=C [dt[20; B+ 1%+ 4L,05,)
# 22 U+ Inidg;+ 2L1g;+2G,G ], (4.8)
i,d
where I,=(E\7E{")=]g,|?,
Ini=(ESES) = |8 ail? (4.9)
and G;=(EPES)=8%8ri .

In contrast to the partially locked case the
peak and background fluorescence can both be
expressed simply in terms of the single-pass
fluorescence F,. To obtain F, we set E; equal
to zero, with the result

Fo=Cfat(y B+2X)'LI) (4.10)
i iy
At 7=0, we have

Li=Ig=-G,=-G¥li=1,...,M);

consequently, according to Eq. (4.8), the peak
fluorescence is

F,=6F,,
so that R,=6 .

(4.11a)
(4.11p)

When 7 is greater than the inverse bandwidth of
the smallest group of modes, either I; or I, is
zero for any value of { and, moreover, G;= Gi* =0.
Consequently, the last term of the single sum in
Eq. (4.8) and the last two terms of the double sum
do not contribute to the background fluorescence
F,. If we make use of the relation

_[()“’f“dtl,l,: JEat g gy,
the result is
F,=2F0 (4.12a)
or R,=2. (4.12b)
Combining this result with Eq. (4.11), we have
R=F,/F,=3 ., (4.13)

Neither Eq. (4.11) nor (4.12) is surprising,
both results agreeing with those for the perfectly

locked case. The total field has a high degree of
temporal coherence for short delays, so that
R,=6. Moreover, since the field is a pulse train,
there are regions in the fluorescence cell where
there is no overlap between the oppositely directed
waves, so that the fluorescence is just twice that
from a single pass. Nevertheless, a striking
difference from the perfectly locked case arises
if we consider in more detail how F(7) varies
between the peak and background regions. The
terms involving I; have widths at least ~2n/m;AQ;,
the inverse bandwidth of a single domain, where-
as the sum involving G; has a much narrower
width, We show that this sum, denoted by
S(r)=22'GG¥ (4.14)
ivd
vanishes approximately when 7>~27/3,m,AQ;, the
inverse of the total bandwidth. It follows that
there is a middle range of values of T for which
all the terms of Eq. (4.8) except the last are
important. The fluorescence in this middle region
is

Fn,=C[at @ E+8X'L1,) . (4. 15)
i i,j

This quantity is not simply a multiple of F,, as
are F, and F,,.

Before proceeding to simplify Eq. (4.14), we
prove our contention that the term S(7) given by
Eq. (4.14) is negligible in the middle region,
We write §; and §5; as slowly varying amplitudes
multiplied by complex exponentials,

81'(27 t): ‘U',-(z, t)e-i(kix +szc1_t)
and  8g;(z,t)=-V,(z, t = 7)ei®i% -2t
where k;=Q,/v; . Letting U, =0,(z,¢) and Vg, =
- Uy(z,¢-1T), one obtains for the amplitude cor-
relation function

—ay 24k, 2 _ iQ .
Gi—-"()f"()Rie i ——'O?"DRiel ciT

and, consequently,

L .
S(‘T)=Z Ufﬁﬁf()m‘()_,eim"’ ch)"'
id

To examine the behavior of this function near 7=0,
that is, for

r<2m/maQy, (@=1,...,M)

we let Up; =~ 7, , If we assume that each group
contains the same number of modes,

ml=m§5m/M: (i=17"‘7M) ’

all of equal intensity w and with the same spacing,
AQ;=AQ , then we have

()= m? wz(lﬁeum‘mfla -M)
=¥
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2 Z(Sinz(émAQT) M) (4. 16)

¢\ sin2(Gn,a07)
The width 7, of this function is given by 7,=27/mAQ,
as was surmised. Note that Eq. (4.16) has the
form of an M-beam interference function with a
second peak equal in height to the peak at 7=0
when 7=21/m,AQ=M7, ., However, for such large
values of 7 our assumption that Ug;=- U; is not
valid. If we take into account the variation of
Vg; with 7, this peak is drastically reduced in
amplitude. Moreover, if we allow the groups to
contain unequal numbers of modes, the subsidiary
peaks are washed out altogether, We will see an
illustration of this effect later (Fig. 10).

Now we turn to the reduction of Eq. (4.15) for
the fluorescence in the middle region, assuming
that each of the M groups contains m , modes
having intensity w and spacing AQ2. Then I, is
given by the squared modulus of Eq. (4.4), and
the fluorescence reduces to

R,=F,|F,=4+2@M-1)" |

This ratio plunges rapidly from 6 down to 4 as the
number M of groups increases. For example,
for M=11 we already have R,=4.1.

When there is only one group of modes (M=1),
the middle region vanishes and the above results
reduce to those for the perfect-locking case,

An important consideration in this model is
that the width of the sharp central peak with con-
trast ratio R=3 relative to the background is
characteristic of the width of S(r), that is the in-
verse spectral width or the coherence time 7,
=21/mAS, and bears no relation to the pulse width.
On the other hand, the width of the middle plateau,
with a contrast ratio of about 2 relative to the
background, is a measure of the pulse width
At=0.887/m,AQ=Mr, .

We turn to the computer again to illustrate some
of our results and check the approximations in-
volved. Moreover, the computer will allow us to
calculate the detailed shape of the TPF profiles.
The assumption that the large number of modes is
ordered into a relatively small number of domains
allows us to use an analytic expression for the
domain amplitudes, thus making the computer so-
lution feasible. We use the same parameters in-
troduced above to illustrate the behavior of the
intensity. The results for the domain model are
to be compared to those for the perfectly locked
laser, shown in Fig. 7(b). The TPF relative to
the single-pass fluorescence F(r)/F, is plotted®
as a function of the time delay 7. The result is
a curve which drops smoothly from the peak value
F/Fy=6 to the background value F/F,=2 ina
time (half-width at half-maximum) 7= 0. 22 psec,
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in agreement with our expectations.

Returning to the domain model, we show the
TPF curve in Fig, 8 corresponding to the two
sample functions of Fig. 5. One notes in each
case a sharp central peak with contrast of 6 rel-
ative to the single pass, followed by a plateau of
mean contrast starting near 4 which falls off non-
monotonically to the background level of 2. The
fluorescence in the middle region is a smoother
function than the intensity, as one would expect
since it is a convolution of the intensity; however,
there still are prominent random wiggles varying
from sample to sample. The wiggles disappear
when the TPF from several sample functions is
superposed, as indicated by Fig. 9. This figure
shows a crude Monte Carlo estimate for the TPF
resulting from 60 pulses with different sets of
random phases {¢,;}. The random phases chosen
are the ones used to compute the intensity of Fig.
6, however, the curve is nof the same as would
be obtained from a single pulse whose intensity
is given by Fig. 6., The reason is simply that
the single-pass fluorescence F, will vary from
one sample function to another, even though the
total energy in the pulse remains constant. As
a result, the correct way to compute the fluores-
cence is to sum separately the fluorescence at
7 from each pulse and the single-pass fluores-
cence from each pulse and then take the ratio.

By contrast, computing the TPF from Fig. 6 is
equivalent to performing the division on the in-
dividual sample results before summing.

The TPF curve of Fig. 9 shows clearly the
sharp central component and a broad plateau fall-
ing off to the background of half-width r=2.25 psec
(measured at the level F/Fy=3). Most of the
structure in the plateau region has been smoothed
out, with the notable exception of a subsidiary
peak near 7=4, 1psec. This peak is not a ves-
tigial fluctuation due to poor convergence, but
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FIG. 8. Relative TPF yield F(r)/F, in the domain
model for the two samples of Fig. 5.
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FIG. 9. Relative TPF yiel(g F()‘r) /Fy in the domain
model for the sum of 60 samples. Parameters are the
same as in Fig. 5.
rather is the secondary peak of the function S(7)
of Eq. (4.14) referred to above. From the dis-
cussion following Eq. (4.16) we conclude that
this peak should occur at 11 times the inverse
spectral width of 0. 376 or 4.1 psec, in good
agreement with Fig.9. To suppress the secon-
dary peak, we need only make the beats between
the various mode groups reach their maxima at
different values of 7. This is achieved by mak-
ing the groups unequal in size, an assumption
more likely to correspond to real lasers than
that of equal-size groups. In Fig. 10 we show
F(1)/F, resulting from the sum of 10 pulses cor-
responding to different sample functions for this
case, where indeed the smaller peak has disap-
peared. The convergence also appears to be
considerably more rapid in this case than in that
of equal-size groups.

V. DISCUSSION

In this final section we compare the above the-
oretical results with experiment and conclude
that the partial-locking model, as an explanation
of low contrast ratios, is in direct contradiction
with existing experimental data in several re-
spects while the domain model is in reasonably
good agreement with them. We then examine
briefly the dynamical foundations of the domain
model, pointing out some deficiencies. Finally,
we note certain general features required of any
model of an imperfectly mode-locked laser which
hopes to explain the experiments.

A. Comparison with Experiment

The partial-locking model is incompatible with
experiment for at least two reasons. The first
is that, for realistic values of the mode number
m and the parameter 8, this model cannot si-
multaneously yield the low values of the peak-to-

=

background TPF contrast ratio R and the high
peak-to-background photocurrent intensity ratios
7 seen experimentally,® For example, referring
to Fig. 4, we note that for =40 (corresponding
to a cavity round-trip time of ¢,,,,,=10nsec and

a detector response time T, =0. 25 nsec) and m
=26 600, one requires »=2 to reduce R to 2.0;
that is, one requires a peak on the oscilloscope
trace only three times the background noise level.
Even for m =530 one has =4, On the other hand,
we note that several authors’s?® have reported
values of R close to 2, while failing to find any
measurable background radiation at all,®® al-
though their experiments should be able to detect
values of 7 perhaps as high as 50.

The second reason for rejecting the partial-
locking model is that it achieves lower values of
R by increasing R, above 2.0, whereas experi-
ment® shows that R, remains approximately 2
and that the low value of R is due to a decrease

of R,.

Or{ the other hand, we find that the domain
model compares much more favorably with ex~
periment than does the partial-locking model., We
have R,=2.0 and 7 virtually infinite for any rea-
sonable parameters in agreement with the photo-
diode-oscilloscope measurements and with the
background-to-single-pass TPF contrast mea-
surements. Moreover, Shapiro and Duguay®* have
performed an experiment with cleanly mode-
locked Nd-glass laser pulses, using a thin (28u)
dye cell moved along the overlapping beams and
recording the TPF photoelectrically, which is in
agreement with the domain model. In particular,
the experimental points in the fluorescence curve
of their Fig, 2 are consistent with the general
shape of our Figs. 9 and 10. Whereas for a sin-

gle structureless pulse, one would expect the
6.0
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FIG. 10. Relative TPF yield F(1)/F, from 10 sam-
ples in the domain model for mode groups of unequal
size. Parameters are same as in Fig. 5, except that
the number of modes m; in the ith group satisfies m;
=mge™!-6l with a chosen so that m/mg=mq/mg=0.5.




fluorescence curve to be about twice as wide at
the level F/F,=5 as at the level F/F,= 3 [see
Fig. 7(b), for example], the Shapiro-Duguay data
indicate a ratio of 10 to 15 between these widths,
This indicates the existence of two components to
the trace: a sharp central component (maximum
contrast 3 relative to the background) and a
broader plateau (maximum contrast 2 relative to
the background). It is not clear why the photo-
graphic records of the usual experiments per-
fomed with thick dye cells (indicated in Fig., 1)
do not show this same sharp peak with R,=6.
However, the fact that the discrepancy between
the usual and the thin-cell method persists when
both experiments are performed on the same
laser®® leads one to suspect that the sharp central
peak is real and does not appear in the usual
thick-cell experiment due to some undetermined
peculiarity of the method. %%

Several comments on the experimental situa-
tion can be made on the basis of the above dis-
cussion,

(i) Klauder and Weber correctly point out the
importance of quantitative results in using the
TPE method to determine whether a laser is
emitting picosecond pulses and, if so, what their
characteristics are. Nevertheless, it is not gen-
erally realized that measurements of R, and R,
are much more reliable indicators of the nature
of the laser radiation than is a measurement of
R. Infact, the existence of regularly spaced
regions where F/F,=2 is a clear indication that
one has a train of sharp pulses, since these must
be background regions where there is no overlap
betiveen E and E,. This information is especially
useful when the mode spacing is so large that the
pulses cannot be resolved by a photodetector, '3
If such background regions exist, the width of one
of the regions where F/F,>2 is then a direct mea-
sure of the pulse width, regardless of its contrast
relative to the background. If the spacing in 7
between regions of enhanced fluorescence is great-
er than T,;, a simultaneous display of the photo-
current on an oscilloscope should show a train of
pulses with 100% modulation. On the other hand,
if there are no regions where F/F,=2, then there
must be a continuous noise component to the laser
emission (partial locking). As the mean intensity
of the noise increases from 0 to 100% of the
total (7, decreases from 1 to 0), R, increases
from 2 to 4.

(ii) It is clear from Figs. 8-10 that it is im-
portant to take densitometer traces of the fluores-
cence for a sufficiently large range of 7, espe-
cially if one does not measure F,. Otherwise, one
could easily miss the broad plateau, confusing it
with the background, and think that the sharp cen-
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tral peak represents the pulse width, Ideally, both
a fast detector (TPF dye) and a slow detector
(photodiode-oscilloscope) should be used, and the
range of values of 7 examined with the fast de-
tector should be at least as great as the resolu-
tion time of the slower one.

(iii) A measurement of the spectrum of the
laser radiation, concurrently with the TPF ex-
periment, is of great importance because it pro-
vides one with information necessary to pick a
model for the laser radiation, such as the value
of m and the time-bandwidth product correspond-
ing to various regions of the TPF display. If the
time-bandwidth product for the region where
F/Fy>2 is unity, then only intensity fluctuations
are present. On the other hand, if the product
exceeds unity, there are also phase fluctuations.
To obtain information about the character of the
phase fluctuations (for example, whether they are
systematic or random), one can pass the radia-
tion through a dispersive element and examine
the TPF as a function of the dispersion,'* or one
can pass the radiation through a Michelson inter-
ferometer before allowing it to enter the TPF
apparatus.

(iv) Time-resolved measurements of spectra
and TPF traces would be valuable in ascertain-
ing the extent to which phase diffusion occurs in
the evolution of the laser pulse train by compari-
son with time-integrated measurements. For
example, in regard to the domain model, one
could determine whether the individual sample
results of Fig, 8 or the ensemble-averaged re-
sults of Figs. 9 and 10 agree more closely with
experiment.

Of course, the domain model is not the only
conceivable model capable of yielding TPF traces
in accord with the Shapiro-Duguay results. Never-
theless, we feel that the domain model is worthy
of detailed study because it is simple enough to
enable one to make detailed analytic and computer
calculations readily, as seen in Sec, IV, and
also because one can cite heuristic dynamical
arguments in its favor. We discuss the latter
point next,

B. Dynamical Considerations

On the basis of the steady-state theory of laser
operation, one can make a very plausible, al-
though still heuristic and tentative, argument for
the domain model, Following Statz, 2%% we view
the problem of determining the extent of mode
locking as one of evaluating the competition be-
tween two opposing tendencies. One is the de-
viation from linearity of the dispersion relation
which causes mode spacings to be unequal, thus
preventing their phases from locking; the other
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is the generation of nonlinear-polarization side-
bands due to the mode interaction which act as
external signals tending to quench the nearby
natural oscillations and to replace them by equal-
ly spaced driven oscillations. If the sidebands
generated in the saturable absorber are only suf-
ficiently intense to lock modes whose frequency
differences vary by a limited amount (the locking
range*®) which is small compared to the spectral
width, the result may be a series of groups of
locked modes, as in the domain model,

This process may be illustrated by reference
to Fig. 3 of Ref. 39, which can be considered,
for our purposes, to be a hypothetical anomalous
dispersion curve, The vertical scale shows the
difference between the empty-cavity resonance
frequency and the corresponding frequency in the
cavity containing the amplifying medium and the
saturable absorber, The horizontal scale shows
the wave vector % referred to its value at the
center of the gain curve. The process of perfect
locking consists of replacing the dispersion curve
by a single straight line, as shown. On the other
hand, the domain model is a consequence of fit-
ting the dispersion curve with a series of line
segments., The amount of phase adjustment re-
quired is considerably less than for perfect lock-
ing. Consequently, locking into domains could
result when the nonlinear-polarization driving
terms are too weak to lead to perfect locking.

As discussed in Sec. IV, each group of locked
modes will form a pulse. In general, one might
think, the pulses corresponding to the various
groups will not coincide in time, resulting in
several circulating pulses per cavity round-trip
time. This could be achieved by allowing the
phases of the lowest-frequency beat notes in each
group [¢; in Eq. (4.5b)] to be different. In prac-
tice, however, it will clearly be energetically
advantageous for the various pulses to pass
through the dye nearly simultaneously,*' the field
being required then to open a window of transpar-
ency in the dye only once per round trip.

If one recalls our discussion of locking in terms
of nonlinearity of the dispersion law, a problem
appears in connection with the synchronization of
the pulses corresponding to the several groups.
Because the straight-line segments used to fit
the dispersion law have different slopes, the
group velocities of the corresponding pulses will
differ., Thus, if the pulses overlap at one time,
they will cease to overlap sometime later. How-
ever, the amount by which the pulses disperse
during the duration of the @-switched pulse is
very small, Assuming a reasonable number for
the maximum deviation from equidistant fre-
quency spacing to be expected (~1 MHz) and a pulse

duration of 500nsec, one finds that the peaks will
shift by about 0. 3psec. This shift will cause a
change in the detailed substructure within a single
mode-locked pulse (and, consequently, also in
the details of the TPF) during the evolution of the
pulse train, but is too small to cause the pulse to
split up. *2

There is, however, a more basic difficulty with
this quasi-steady-state argument for the domain
model, This is the fact that mode locking in
solid-state lasers is a transient phenomenon,
Although the steady-state theory has been quite
successful in dealing with many locking phenom-
ena in cw gas lasers*® and although many investi-
gators have assumed its relevance to the pulsed
solid-laser case and even performed calculations
based on this assumption, **'%* we are aware of
no argument pretending to justify this assumed
applicability. In fact, we believe that this type of
theory may have little bearing on solid-laser mode
locking and that a dynamical justification of the
domain model (or of any other model, for that mat-
ter) requires that one consider the transient prob-
lem. This is a subject of current investigation,
There is reason to believe that a viable argument
for the domain model can still be formulated.

C. General Remarks and Conclusion

So far we have not mentioned the behavior of the
phase & (z,t) of the electromagnetic field in the
domain model. In general, not only the intensity
but also the phase will fluctuate randomly within
a single pulse. Although the TPF technique is
insensitive to phase fluctuations, passing the field
through a dispersive delay line will result in some
FM-to-AM conversion, so that a subsequent TPF
experiment will yield information on the phase of
the original field. Using such an apparatus Treacy!!
claims to have found a systematic quadratic time
dependence of ¢, resulting in a linear frequency
sweep or “chirp.” An alternative explanation of
his results, allowing for the possibility mentioned
above of confusing the plateau region with the
background, is that an initial pulse with random
phase fluctuations and very weak intensity fluctua-
tions is converted by the dispersive element into
one with appreciable intensity fluctuations, We
point out here that such results could occur oc-
casionally in the present model through statistical
fluctuations. ** Just as certain choices of {¢,;}
yield fields with negligible phase variations and
nearly minimum-duration pulses, so other choices
yield fields with strong systematic or random
phase variations and weak intensity variations.
Moreover, the likelihood of such choices for the
phases could be enhanced by as yet unknown dy-
namical effects. *®



1 THEORY OF INTENSITY-CORRELATION MEASUREMENTS .. 1817

In conclusion, we have demonstrated that the
partial-locking model is incompatible with present
experimental evidence on the type of imperfect
mode-locking occurring in solid (especially Nd-
glass) lasers and that the domain model agrees
rather well with it. Because our discussion of
the partial-locking model has not relied heavily
on the details of the model, but only on the break-
up of the field into a coherent part, occurring as a
train of short pulses, and a chaotic part, appear-
ing as a fluctuating background, we can add that
no other model!? in which the deviations from per-
fect locking are such as to result in a uniform
background, can explain the experimental results.
Rather, the types of deviations from perfect lock-
ing compatible with experiment are those which
do not destroy the sharpness and disjointness of
the field pulsations. The domain model is a plau-
sible model incorporating such compatible devia-
tions.

In this regard note that there is considerable
latitude for change within the domain model with-
out negating its underlying insights. The basic
idea is that one assumes the mode phases to vary
linearly over considerable portions of the oscillat.

ing spectrum, resulting in a field § made up of
several components &;, each of which is a short
pulse corresponding to near-perfect locking, One
may then regard each perfectly locked set of modes
as a “supermode” out of which a general pulsed
field can be constructed. In the above discussion
we have assumed that the relative phases of the
supermodes or domains are random over the
range (0, 27) for lack of any compelling empirical
or dynamical grounds for making another ansatz.
However, many other choices for the group phases
are possible, just as one can choose the phase dif-
ferences of the individual modes in many different
ways. In particular, (a) the phases ¢, can be as-
sumed to have undergone a random walk and
achieved some distribution over a range (-f,f)
about their initial values in order to account for

a degree of partial phase averaging over the en-
semble occurring in a particular experiment; (b)
they can be chosen to yield a randomly varying
phase with negligible intensity fluctuations, or
vice versa; (c) they can be chosen to yield system-
atic phase variations, resulting in a frequency
sweep.
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