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A new formulation of the second-virial-coefficient problem, particularly useful for the
computation of the direct second virial coefficient Bdj~ at high temperatures and as good as
the phase-shift formulation at low temperatures, is given. High-temperature asymptotic ex-
pansions of Bdj~ for hard-core and hard-core-plus-square-well potentials are calculated. The
exchange second virial coefficient for a hard-core-plus-square-well potential at high tem-
peratures is investigated.

I. INTRODUCTION AND SUMMARY

A variety of approaches to the second-virial-
coefficient problem can be found in the literature. '
The phase-shift formulation developed by Gropper
and by Beth and Uhlenbeck is very useful at low
temperatures, but difficult to handle at high tem-
peratures because the number of phase shifts
which contribute increases with temperature. The
departure from Boltzmann statistics because of
proper symmetrization of the wave function can
be split off by expressing the second virial coef-
ficient B as a sum B= Bdj,+ B,„,„,where Bdj, is
computed using Boltzmann statistics. B,„,„

is
exponentially small at high temperatures3 for
potentials more strongly repulsive than x as

p Bd jp can be calcul ated at high tempera-
tures from the Wigner-Kirkwood expansion in
powers of a' if the potential does not vary too
rapidly.

The high-temperature calculation of Bdj, when
expansion in a fails has been considered by
Mohling, ' by Handelsman and Keller, and by
Hill. The results of Mohling for the hard-core-
plus- square-well potential are incorrect. The
method of Handelsman and Keller and the pre-
vious method of Hill are somewhat tedious to
extend, either to higher order or to include an
attractive well in the potential. The present
formulation, based on the Laplace transform as
was the previous method of Hill, is considerably
less laborious to extend at high temperatures
and is as useful as the phase-shift formulation
at low temperatures.

Section II is devoted to the general formulation;
the results are given by Eqs. (17)-(20}, (27},
(31), and (32). Sections III and IV are devoted to
high-temperature calculations of B«, for hard
cores and for a hard-core-plus-square-well po-
tential; the results are given by Eqs. (56) and

(75), respectively. Section V calculates B,„,„

at high temperatures for a hard-core-plus-
square-well potential; the results are given by
Eqs. (76) and (91)-(95). Statements of the do-
main of validity of the results follow the results.
Section VI traces the error in Mohling's' work.

II. GENERAL FORMULATION

We begin with the formulation of Boyd, Larsen,
and Kilpatrick, ' and write the second virial coef-
ficient B in the form

djr+ Bexch

where

B«,=2'"m'fd'r[2'"~ '-G(r r P)] (2)

and B,„,„=~2' NX (2S+1) 'fdsrG(r, —r; p). (3)

The minus (upper) sign in B„,
„

is associated with
Bose statistics and the plus sign with Fermi sta-
tistics. Here S is the spin, X -=(2mhp/m)'+ is the
thermal de Broglie wavelength, and P = (kT) ~.

G is the thermal Green's function for the relative
motion:

G(r~, r; P) -=(r~
~
exp(- PH„,)~r),

where H„,= —(8 /m)& + V(r)
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is the Hamiltonian for the relative motion of a
pair of particles of mass m. G satisfies the Bloch
equation

'll' r —r
Ge(r', r; p)=scree e exp(-

& + V(r) G(r', r; P}=0
8

8 m
(4)

Go(r', r; W)=, exp(- y~ r —r'
~
), (14)

with initial condition

lim G(r', r; P}=5(r —r')
8 0

(5)
g(& &(& & . W) g(&&(&r&. W)

4mn" t',~~ )

(L"'+ W)g"'(y & W)= (4~2)-'5(~- ~~) (9)

An alternative derivation of Eqs. (1)-(5) is given
in Appendix A.

The Laplace transform of G

G(r', r; W) =—f"e 8 G(r', r; P) dP
0

is then the Green's function of the negative-energy
SehrMinger equation

[ —(f& /m)V + V(r)+ W]G(r', r; W) = 5(r —r').

For spherically symmetric V, G has an expansion
of the form'

G(r', r; W)=g (2l+ I)P, (cose)g' '(r', &'; W), (8)
1=0

where 8 is the angle between r and r' and g is the
Green's function of the negative-energy radial
Schrodinger equation:

xI& &/g(y& )&& &/2(yr'), r-r' (15)

where y-=5 &(mW)~/

where 8,„,„=+2'/ M(28+ 1) '
.f d r Go(r, - r; P)

= p2-'/'~&). '(2/+ 1)-' (19)

W +i~

/&.,=Q(2l+ I)(+I)' . I e~ f~"(W)dW, (20)
E=O 277$ WO

-'i so

6.nd

f"'(W) = f [/&'"'(«W)-g'o"(&', &; W)]4»r'd&. (21)

Here I and K are modified Bessel functions of the
first and third kinds, respectively. The use of
(12) and (13) in (2) and (3) now produces

(i7)

(18)

Here L'„"=—— 9 + + V(r) . (10)
d d 5 l(l+1)

vl t'~ dt' df' I+
The Laplace inversion integral yields

WO+ ioo

G(r', r; p)= . J( e~ G(r~, r; W)dW, (11)
WO- i

where Wo lies to the right of all singularities (as
a function of W with r', r fixed) of G.

When r = r', source and observer are coincident.
Hence G(r, r; W) is infinite. Furthermore, for
[ r'( =

~
r (, the series (8) will at best converge

only conditionally.
To circumvent this difficulty, insert (8) in (11) and

interchange the order of summation and integra-
tion, which is legitimate for (rI&ar ) . After the
interchange, the limit r-r' exists. Hence

G(r, ~r; P)=Q (2l+1)(+1)'
1=0

0
e —. i e«e«&(«w)dw).

{12)
In the ease of free particles, denoted by a sub-
script 0,

We now evaluate the integral in (21). Suppose

(L'„'&+W')u,"&(~; W') = 0,
and (L,' + W)u z'(&'; W)=0.

It then follows from (10) and (22) that

d ~ ( &du&& (,&du 2
(l) (1)

vlx2 dJ' dJ' A
„(i&1(i&„(i& „(i&L(i&„(i)

(22a)

(22b)

xu',"(&; W) —[u',"(r; W') u','&(&; W—)]

Su" '(& W)
BQ

By letting W'-W, it follows that

fu&' (r; W)u2~'&(&w; W)y dr

s u&"(r; W) (,&,

(W(' W) (&& &&)

The use of this relation with W' w W and with W
= W produces the indefinite integral

fu,"(x; W)u ''(x; W')r dr

Wre ee ('(r W') re i,"(r w))
m(W'- W), 8& a&
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()u" '(r. W) ()u "(r' W) &

sw &r j (23)

(l) (rt r. ~E m
4)(Pr2&[u,"'(r) u"'(r)]

xu, "(r)u ' (r'},
xu"'(r)u"'(r') r ~ r' (24)

(1) (l)) (1) g(l ) (1 ) i(l) (25)

is the Wronskian of the two solutions.
For r large compared to the range of the inter-

action V(r), u, ' ' and u2" must approach linea. r
combinations of the free-particle solutions

u10 =r(& ) -1/3 (28a)

u20 r Kl+1 /2(yr} ~
(& ) -1/2

The solution Q,
"can be normalized by a suitable

condition imposed at r= 0 (or at r = a in the case
of a hard core of diameter a). In general,

(2N )

u(, "(r)-A, (w)u,',"(r)+B,(W)ut,"(r), as r- . (27)

We normalize Qz'' by the demand that

u2")(r) -u2(t)(r), as r- (28)

Now r 6 is independent of r; hence it can be com-
puted from (27) and (28). Thus

r'S0 -=fr[ (1u( 01)), ru,',"(r)]= —1,
H~ -=r'~[u,")(r),u(')(r)] = -A, (W) .

(29a)

(29b)

The use of (23) and (24) in (21) now yields

B2 (l) B (&) B (&)

f (l) (Trr) i ~ I u10 (l) u10 u20
vv = llm —— —Q~oB~Br BW Br 0

(t) B (t)
Q1 (g ) Q1 Qa

eWer ~ BW Br J &0
(so)

where ro is zero for ordinary potentials and a for
hard cores of diameter a. The use of Eqs. (26)-
(29) in (30) then produces

1

f("(W)= —InA((W)+ - ' + Il(')(W), (31)

BrBW B5' Br r = r()

The differential equation (22) will in general have
singular points at r = 0 and at r = ~. We now as-
sume that Q1" is a solution which is well-behaved
as r -0, and that Q2 is well-behaved as r -~. The
Green's function g "is then given by

The labor involved in calculating B«, for hard
spheres by the method of Ref. 7 can be consider-
ably reduced by exploiting the formulation of
Sec. II. For hard spheres of radius a,

1 = r [Kl,l /2(y }Il.l /2(yr) Il.1 /2(y-a)Kl. l /2(yr) ]
(ss)

vanishes at r= a and satisfies the condition that
h("(W) as defined by (32) vanish. Hence we can
take

A, (W) =K.../2(ya)

for hard spheres. Then

f '(W}= (2W) '[ v+ (ya)K'„(ya)/K„(ya)],

(34)

(35)

where v= /+ —,'.
We now obtain a large-W expansion of f("(W)

uniformly valid in l. It follows from the modified
Bessel equation satisfied by K,(z) and the behavior
of K„(z)for z -~ that the quantity

S,(z) =-z(v'+ z') ' 'K'„'(z)[K„(z)] ' (s8)

satisfies the Riccati equation

z '(v'+ z')'/'S„'(z)+ (v'+ z') ' "S„(z)
+ z-'(v'+ z') ([S„(z)]'- I)= O (37)

be such that Il "(W)= 0. (In the case of ordinary
potentials, this merely requires that the prescrip-
tion of limiting behavior at the singular point
r= 0 be independent of W. )

A high-temperature expansion of B«, can now
be computed by obtaining a large W asymptotic ex-
pansion of (d/dW)lnA, (W) which is uniformly valid
in l and using (17), (20), and (31). The inverse
Laplace transformation indicated in (20) can be
performed term-by-term on an asymptotic series
under suitable conditions'; the sum over / can be
computed with the Euler-MacLaurin sum formula. '
Low-temperature expansions of both B«, and B,~„
can be computed by obtaining a small W asymptotic
expansion of (d/dW) lnA, (W) and inverse Laplace
transforming term by term'; only a small number
of terms in the sum over l will contribute to a
given order in the resulting large-P expansion.

The present formulation is based on an analysis
carried out in Appendix C of Ref. 7 to relate the
formulation of Ref. V to the phase-shift formula-
tion; the relationship of the present formulation
to the phase-shift formulation can be seen by
examining this Appendix.

III. Bdjg FOR HARD SPHERES AT HIGH TEMPERATURES

(32)
A, (W) is not yet fixed because the normalization of
Q,
"has not yet been prescribed. We now fix

A, (W} up to a multiplicative constant independent
of S' by demanding that the behavior of Q,

"at ro

with the boundary condition

lim S„(z)= —1 .
e" ~

We make the change of variables

(38)
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u= v'(v'+ z') '

which transforms (3V) to

2u v+&+ + —1 v 1 =0

with the condition

lim 8„=—1
8» 0

(s9)

(40)

(41)

Here v= l+ —,
' and z = a8' (mw)'/; the decomposi-

tion of f~' ' into f,"' and f2" is motivated by the fact
that the inverse Laplace transformation indicated
in Eq. (20) must be performed on f,"' before sum-
ming over l, whereas with f2" the operations can
be performed in either order. The contributions
of f,"' and f2

' to b, , are denoted respectively by
&„and62„thus

A large-z asymptotic expansion of K„'(z)/K„(z)can
be obtained by looking for a formal solution to
(40) in the form

Q uk/2v-k~ (u)
k=p

(42)

pk„(u)= —'(u - 1){(k —1)q k(u)+ 2u[d pk(u)/du] ]

+ ~2+ 9 l(u)'%41-l(u}
1=1

(4s)

with 6/72
-=—1. Substitution of (42) into (40) leads to

the recursion relation

Bg4, = - 2 / NX (/k~, + &2,) . (49)

/3, =PF,(l+ —,'),
Z=O

The singularities of f~~"(W) are poles and branch
points at W= —m '(hv/a) . The branch cut can be
taken to run from —~ to —I '(Sv/a); the Laplace
inversion is then easily performed by deforming
the integration contour in the W plane to encircle
the branch cut. The result, which consists of
residues at poles and an integral from the jump
across the branch cut, is

for the computation of the polynomials 6/7k(u). Thus
we obtain the asymptotic expansion

Z', (z)/SC„(z)- z '(v'+ z'}'"
where F, (v) -=- —,ve '

4 -1/2 2 f CO g-3/2 -8'd~
2

with y =X2V2/(22a2) .
(51)

(52)

xQ (v + z ) "/
pk[v /(v + z ) ] . (44)

0=0

By computation from (43),

y2(u) = -1,
y, (u) = - —,'(1 —u},
p2(u) = —,'(1 —u)(1 —5u),

y3(u} = —', (1 —u)( —1+12u- 15u ),
p4(u) =~23(l —u)(25 —531u+ 1547u —1105u ), (45)

y3(u) =~32 (1 —u)( —13+426u —2124u

+ 3390u —1695u )

6/72(u) = M'24 (1 —u)(1073 —50 049u+ 373 642u

—98V 778u + 1076 V25u —414 125u )

y7(u) = 3'2 (1-u)(- 103+6480u —67 080u + 258 672u

—457 695u + 3V7 V60u —118050u3)

The use of (44) and (45} in (35) yields the required
large-Wasymptotic expansion of f "(W) which is
uniformly valid in l:

f"'(w) =f'"(w)+f"'(w) (46)

where

f,"'(W}=(2W} '[v —(v + z }' ——'z (v + z ) ], (47)

'(W) (2W) Q (v + z } k /
6/7 [v /(v + z2)].(48}

k 2

129024m2 a ) gP
(53)

The contribution of f2"(W) is most easily handled

by performing the sum over l first. The use of
(45), (48), and the Euler-MacLanrin sum formula '
yields

O3 2

g (2l+ 1)f2"(W) =

1 1711 3 1
192z4 4612608z' 1120z z7

By performing the inverse Laplace transformation
of Eq. (20) on (54), it follows that

84 (4) 40880m(a) 768s(a)
1711&2 X 3 3 (X 7|.3

27675648 42 17920m2 4 42 a3

The sum in (50) can be performed with the aid of
the Euler-MacLaurin sum formula, "which yields

1',F,(v) dv — F,(v) dv+ —,'F, (-,') ——
0 J 0 12 dv 2

5

720 dv' ''=2 30240 dvP i"=z g

&2 (t'
(&

E2
(

1 Vv"2

3 kX 2 A 24 IX 48 1920m ~a

7
~

~ sly
38402 ka 193536m2 (a
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The use of (53) and (55) in (49) now produces

B~„=—,'trNa 1+ ~ (
—)+—

(
—
)

1 X 1

1611/2 a 105112 ( a 640112/2

3003Ã a 21.5040& 2 &

agreeing with and extending the results of other
authors. ' The simplification over the method of
Ref. 7 is that only one set of polynomials need be
computed [the p„(u}]instead of three [$2(t), 112(t), $2(t)];
furthermore p~ is computed directly from a recur-
sion relation rather than from multiplication or
division of series which have themselves been com-
puted recursively.

IV. Bg~ FOR A HARD-CORE- PLUS-SQUARE

WELL POTENTIAL

The potential considered is sketched in Fig. 1.
Only the solution of the radial Schrodinger equa-
tion which obeys the inner boundary condition and
makes h, (W) as defined by (32) vanish is needed
for the computation of A, (W). Such a solution is

uf"(r)=0, O &r&a

uI" (r) = r '/2[K1, 1(boa)I„1(d'or}
(5V

I,.1(&oa-)K„1(d'or)], a &r &b

(r)= r '
[AlIl+ '(yr)+ItlK1+ '(yr—)]—, b ~r& ~,'2 '2

Here 1o = (y2- uo)'/2, (58a)

with u, = mV, /5' (58b)

A, and B, are determined by demanding continuity
at x= b. Only A, is needed; it is

Al ybKI+1/2(yb) [ 1+1 2(~/}Kl 1/2(

—K„,/2(&oa)I1.1 /2(»)] + &obK1.1 /2(yb)

Kl+1/2(~ } l+1/2(~b) 1+1/2(+ )KI+1/2(~b)]

(59)
It is easily shown that the A, given by (59) reduces
to the hard core A, [i.e. , to K„,/2(ya)] if either
b -a or if Vo-0 (so that lo -y).

A large- W asymptotic expansion of A„uniformly
valid in l and in argW for argW bounded away from
+&, can be obtained from Debye's series" for
I„(x),K„(x),I„'(x),and K'„(x). Define i„,/2„, l„,m„
by15

K'„(x)-=m„(x)e"'"',
where g„(x)-=(v + x }'/ —vsinh '(v/x).

(sod)

(soe)

The Debye series are then asymptotic expansions
of i„,k„,l„,and m„:

'( )-(2 )' (v+x)'
x P [t 'll„(t)](v'+x') '/',

k=O

u„(x)-(m/2)'"(v'+ x') '"

(Sla)

xZ [(-t) 'u„(t)](v'+2)-'/2,
A=O

(61b)

(211) ' ' '(v'+ x')+'"

x~ [t v2(t)](v +x )
A=O

m. (x) -- (~/2)' "x-'(v2+ g}»4

xQ [(-t) 'v„(t)](v'+x') ""
A=O

where t-=v(v'+x') '/' .

(61c)

(Sld)

(61e)

Vo

The polynomial coefficients u„(t), v2(t) are com-
puted recursively'6 from

u...(t) = -',t'(1 —t')u'(t)+ '
f,'(1——5t )u„(t)dt,

v „(t)= u„„(t)+t(t —1)[-,'u„(t)+tu', (t)], (62)

where uo(t)=v, (t)=1. From (31), (59), and (60) it

I„(x)=-Z„(x)e"'*',
K„(x)=-k„(x)e""'"'

I'„(x)=- t„(x)e""',

(Soa)

(60b)

(soc) FIG. 1. Hard-core-plus-square-well potential.
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P.= [k.(ya)] '[ —yb m„(yb)k„((oa)i„((ob)

+ (dbk„(yb}k,((da)z„((db)]

q„=[k„(ya)]'[ybm„(yb)i„((da)k„((oh}

—(dbk„(yb)i„((x)a}m„((x)b )]

(6sa)

(6R )

Inasmuch as f"' enters linearly in the expression
for B«„eachof the f,'" can be handled separately.
The contribution of f," to B«, is just the hard-
sphere part computed in Sec. III~ By inve rse
la apl ace-tr an sfor ming (62b ) a nd using (20}, we
find that f2 '(W) makes a contribution &~, to
which is

follows that

f"'(w) =f"'(w) +f "(w)+f "(w), (68)

where f," ' r( '(W) = in[A„(ya)]+, (64a,}

f2" ' "'(W) =
dW [~.(»)- u,.((da)- Z),.(rb)+ u.(ra),

(64b)
and

fs" ' ~ '(W) = In/„+q„exp[2p,„((da)—2Z(, „((db)]]'

(64c)

x -twhere erf(x) —= 2v ' ~~ f" 8 ' dt
0

erf(0) = 0, erf(~) = 1.
(73)

The use of (72) in (VO) with the sum replaced by
an integr al yi e1ds

uoa2
erf (2v)' ' + O(X). (74)

Addition of the contributions of &2, and &3, as
given by (68) and (V4) to the hard-sphere result
computed in Sec. III yields final ly

The second term in the integrand of (Vl) is ex-
ponential ly smal 1 except as b -a, when it cancels
the first term. For (b —a) «a and ya large, it
is a good approximation to replace the second term
of the parenthesis in (71) by

2

4(v +ya )
exp —2(v +y a )

usa 2 2 2 i y2

a

to obtain

X,(r)=-"' 'axe(- '
) er(((xe)'re '

),
(v2)

~,.= P F, (Z + —,')
l =0

(66) 3 ~+a ~ + —
~

+—— +

where

F (v) = (e~&o 1) )')( & /&2««~g-3 &2 "dg (67)
/(2n5 ) j

The use of the Euler- Mac Laurin sum formul a"
now produces

,
a }(e'"o —1) O(~) (68)

The first term in (68}, which equals jo Fa(v)dv,
yields the c1assical contribution of the square well
to the second virial coefficient.

It follows from (58a), (61), (62), and (65}that,
for large y,

+ [1—(b/a)'] (e' o - 1}+ I
—PV,

2a/2 & a

"er( (2e)' ' — ' e O(X'/a')I . (22)

Clearly this reduces to the hard- sphere result
when Vo -0 or when b -a. The result (75) is valid
to the stated order in (X/a} for (b —a)/a and

(mVoa )/(2|(5 ) fixed, uniformly in (b -a)/a. The

result is not uniformly valid for (m V,a )/(2vh }
large '7

V B FOR A HARD CORE PL'Us SQUARE WELL
POTENTIAL

u,a'
4[v&+ (ya)2] &y&

p„=i + ' ——+ 0

u b'q„=- ' +ol-
4[v2+ (yb)'] )(y'

(89a) A general method for the computation of the ex-
change second virial coefficient at high tempera-
tures has been given by Hill . The relevant results
[Eqs. (5V) -(60) of Ref . 18] are

By inserting (69) in (64c}, expanding the logarithm,
and inserting the result in (20), we obtain a con-
tribution 43, to 4, which is

NB,„=+ 5 „C„
gp + f OO

where C„=—23) iX f g„(y)e ~" '"' dy

(vs)

~,.=g z, (z+ —,')
L =0

(vo)

pp ~ g 00

z„(r)= o(.(r)so(.(r)lsr (vs)

V "0+'" A.
2 2 d u a'

0

upb—
e( e '( e)r)exa(xa„(aa)—xa, (ae)l) (71)

and f„(y)= —in[2 coshvn„(y)] (V9)

In (V6), the minus (upper) sign is associated with
Bose statistics and the plus sign with Fermi sta-
tistics. The function n„(y)is the nth value of - iv
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for which the solution u, (p) which satisfies the in-
ner boundary condition also satisfies the outer
boundary condition. Thus the n„(y)are the roots
of

A (,. „,)(bay'/m) = O, (80)

where, for the potential of Fig. 1, A, is given by
Eq. (59) [the extension from integral I to arbitrary
complex I is made via the differential equation (9)].

The poles at p=ia.„arisefrom bound states of
the centrifugal potential, which is attractive for p

pure imaginary. For large negative energies,
these bound states occur for ) p) large. In the
crudest approximation, they first occur when the
minimum of the potential equals the energy, i.e. ,

x (b a )[@0(yb)] —(aab 2 —1)[K, 0(yb)] } . (87)

where —,'[$(x, p)] ~ =(x -p~)'~~ —psec '(x/p). (88c)

For (+—1)«1, $(yb, no) =y —2~ sP„,
where y =—2'i (ya)2~3[(b/a) —1]

(soa)

(89b)

When b-a, 0„-1, and ~n-0. The general behav-
ior of O„canbe seen with the aid of the uniform
asymptotic approximations

K; (x)- 2 ~ ve ~ [t(x, p)/(x —p )] ~ Aj, [$(x,p)]
(ssa)

K';~(x)- 2'~'vx 'e '~~'[g(x, p)/(x' —p')] '~'Ai'[g(x, p)],
(88b)

for
—W= [a'(—n„'+-,')/( ma')] —V, ,

which yields n„=ya —uo/2ya . (81)

It now follows from the large-z asymptotic approx-
imations to the Airy functions '

Ai(e)--'v ' 'z ' exp(--,'z' ')

sn„=-uoa/(2y)[1 —e„(ya,yb)] (86)

where e„(ya,rb) =[K',.„o(ya)]-'

Although this approximation yields only the first
term of the large y expansion of n„and the first
correction to a„for the presence of the attractive
well correctly, it does show that the effect of the
attractive well can be treated as a small perturba-
tion on the hard-core result n„(y), which is'

.'(r)=r +P.(r )'"+~P.'(r ) '"
+ (4v

—~~rP.')(ra) '+0(r "'),
where —2~ESP„is the nth root of the Airy function
Ai(-2 P )=0

By Taylor-expanding (59) in powers of

(~ -r) = -uo/(2r)+0(r '),
&. ~q~(@ y'/m) =K„(ya) ~2, ay 'K,'-(ya) ~2, b I„(ya-)

QK„'(yb)] —[1+v /(yb) ][K„(yb)]~}+—,
' uob~K, (ya)

x (I'„(yb)K„'(yb)-[1+y /(yb)']I„(yb)K„(yb)}
(88)

The use of K; 0&»(ya) =Oin theWronskianrelation '
'n'

for I„andK„shows that

I, o(ya) = —[yaK'; 0(ya)] ' (84)

By differentiating K, o&»(ra) = 0 with respect to y
and using (82), it can be shown that

BK„(ya aK',.o(ya)[i-e n'g Sy]- '
v = ie~o

= iK';„0(ya) (85)

Because the attractive well is a small perturbation
on the hard-core result, we set v=in„=i(n„+b,n„)
and expand (80) in powers of bn„The use o. f Eqs.
(82)-(85) shows that, to lowest order,

that 8„is exponentially small for y» 1. Hence 8„
is negligible when the approximation (89a) fails.
The use of (88) and (89) in (87) yields

&.(ra, rb) ~ q.(y),
where

(oo)

y„(z)=- [Ai'(- 2'~'P„)]-'

x([Ai'(z —2 ~ P„)]'+z [Ai(g —2 P„)]'}. (91)

The integral in Eq. (77) can now be evaluated by
steepest descent for (X/a) small as in Sec. VA of
Ref. 18; the result is

Cn= m + &ne (92)

(98)

and
, /malt mal ~

2 va't-~~3
+

tl 2

~ 2

+ (vo v4&v5 P~)
268 3

it

ggl 2 -
g -8/3 'j

——,
' uoa'[I —y„(x)] —

~

+0 — | (94)

with x-=2 ~ (va/X) ~~[(b/a) —1] (95)

Numerical values of B,„,„athigh temperatures can
now be calculated by using Eqs. (91)-(95) to eval-
uate the n= 1 term of Eq. (76). The results (91)—
(95) are uniformly va'lid in (b -a)/a to the stated
order in (X/a), but are not uniform in (mVoa )/
(2v@2) for (m V~ )/(2' ) large.
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VI. MOHLING'S METHOD

Because Mohling's method may be of use for
other problems if suitably modified, it seems
worthwhile to trace the difficulties in his original
work. We restrict our analysis to the hard-sphere
case. In brief, there are three errors in Mohling's
work: (a) The integral equations he iterates would,
if solved correctly, yield a quantum correction too
large by a factor of 2. (b) The iteration scheme
he used is not a high-temperature iteration scheme
as claimed; all orders in his iteration contribute
to a given order in (X/a). (c) The evaluation of the
second order (in his iteration scheme) was incor-
rect. The difficulties (a) and (b) compensate in
first order to give the (X/a) term found by Beth
and Uhlenbeck; a correct evaluation of the second
order yields an additional (X/a) term.

The relation between the notation of the present
paper and the notation of Mohling's paper is as
follows:

G(r', r; P)=-&r' e ~"o r)

G,(r', r; p)=&r'le ~soir)

(96a)

(96b)

= f d'F ' [u(F') v'"v(r") —v(r") v'" u(r")]

Put u(r") = (I /m)G (r', r"; W), v(r") = G (r", r; W)

and let the volume considered in Green's theorem
be that exterior to the sphere I

r"
t =a. Then

dS" ~ V"= d'~"6(o'"--a )B/Bo"

and
2

de" g z"-a' —Go r', r",'W „Gyr", r; W
m

2
——G ~ (r", r; w) „(:,(r', r ;w))"

m

h2d' "[G ( ' " W) —V'"G (r" r W)
m

G (
tl

W) V P2 I(G/ r( /
W)

= G, (r', r; w), (98)

where the last equality follows from the fact that
Go satisfies (V) with V(r) = 0 while Ge satisfies (V)

We now proceed to obtain an equation for compar-
ison with Mohling's Eq. (20a). Make the defini-
tions

Ge(F, r; P)=-G(r', r; P) -Go(r', r; P) (9Va)

and G~(r', r; W)—= G(r', r; W) —Go(r', r; W) . (9Vb)

Green's theorem is

f dS" [u(r")V"v(r") —v(r")v"u(r")]

with V(x) = 0 and zero right-hand side. A similar
application of Green's theorem with u(r")
=Co(r', r", W) and v(r") =Co(r", r; W) yields

d'~" 6(~" -a') [C,(F, r";W) „G,(r", r; W)

-G,(r", r; W) „G,(r', r"; W)] = 0 .
g ~1/ (99)

The use of (99) and the fact that G e = —Go for r"=a
(a consequence of G =0 for x"=a) in (98) produces

G~(F, r; W) = fd z"Go(r', r"; W)

x[—(5 /m)6(z" -a')B/By" ]
x[Go(r", r; W)+Ge(F', r; W)] . (100)

Eq. (100) can be inverse-Laplace-transformed
with the aid of the faltung (convolution) theorem
for the Laplace transform; the result is

&" U.(P) &=G,&', .;P) (102)

[the 8(t ) which appears in Mohling's Eq. (20a) was
set equal to 1 before calculation in his work].
The fact that

& IU (p)I '&=& ' U, (p)I &,

taken together with G~(r'; r; p) =G z(r, r'; p)

yields &r IU~(p) Ir)=cs(r r' p) (103)

a result which is also obtainable by using Green's
theorem to derive an equation for comparison with
Mohling's (20b). Eqs. (102) and (103) contradict
Mohling's Eq. (23), which implies that Us+UJ. =Ge.
Since in fact U~+Ul, = 2G &, quantum corrections
computed from Mohling's Eq. (24) with correct
solutions of Mohling's equations for U„and Ul.
would be too large by a factor of 2. The same con-
clusion can be reached by solving Mohling's Eqs.
(20a) and (20b) by Laplace transformation [to get
equations like Eq. (100)] followed by an expansion
of the Laplace transforms of U„and Ui in partial
waves: A comparison with the partial-wave expan-
sion of 6 [given by Eqs. (9) and (21) of Ref. 3] again
yields the results (102) and (103).

Next we investigate the character of iterative
solutions of Mohling's (20a) and (20b). Since (20a)
and Eq, (101) of the present paper are identical,
we examine (101), which has the iterative solution

Ge(r', r; P) = f dt f d x"Go(r', r";P —f)

x [ —(ho/m)B(x" -a ')B/Bx"]

x[G,(r", r; f)+Ge(F', r; t)]. (101)

Comparison of Eq. (101) with Mohling's Eq. (20a)
for U~(P) shows that
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G,(r', r, P) =Z G„(r',r; P),
n=l

(104) 1-t
x lim dss-3/2(1 s t)-3/SF(s t; q), (110)

6-0 0
where the G„arecalculated recursively from

8

G„(r',r; P) = d'r" G()(r', r", P —t)
0

m~+ —a ~~ G 1r r

The leading term in (X/a) at each order of the iter-
ation is preserved by the crude approximation of
replacing the sphere by a plane. In rectangular
coordinates with the plane at z"=a, Eqs. (104)
and (105) are then replaced by

G s(r', r; P):—G s(r', r; P) = Z G'„(r',r; P), (106)
n=1

where
G„'(r',r; P) = f f„dx"f „dy"G()(r', r; P —t)

x[ —(5 /m)&/sz "]G„',(P', r, t),. , (107)

The recursive computation of the G'„[with Gt) =G()
given by (18)] yields

2 -n-3/2y -3/2exp( 1 &y-2 [(xs x) 2

+(y'-y) +(z'+z —2a)']) . (108}

Substitution of (108}into (106) leads to a geometric
series which is readily summed to give

G' = —2-'"] '"e~f--'v~-' [(x' -x)'
+ (y' -y)'+ (z'+ z —2a)']] (109)

1-t
&&5(r" -a') ds d'r'5(r' -a)

0

xGs[r", r'; (S(l —s —r)], Gs(r ', r; ps))
1

2-13t2&-a dtt- y2

0

a result which could also have been obtained by the
method of images. The expression (108) makes it
clear that the expansion parameter for Mohling's
iteration scheme is actually [-,'+O(X/a)] rather than

f(X/a)+O[(X/a) ]}as claimed by Mohling. The it-
eration can be carried out explicitly to all orders
on the exact equations (104) and (105) by Laplace-
transforming and making a partial-wave expansion;
the methods of Ref. 3 can then be used to reach the
same conclusions about the character of the itera-
tion.

Care must be taken when calculating the iterates
G„from Eq. (105) to insure that the limit of
(8/sr")G„,(r", r; t) is obtained correctly as r"
approaches a from the exterior of the sphere. We
illustrate the problem by considering the case n= 2,
for which Eq. (105) yields

2 )2
G2(r, r; p)= —

I dt Jtd'r" G,(r, r '; pt)

where

F(s, t; &) = f dsr'5(r' —a) f dsr" 5(r" a—)(r '/r')

&& (r ' —r )(r "/r" ) ~ (r "+ cr "—r '
)

x exp/--'Swe'[t ' (r —r ")'+(1—s —t)

x (r "+sr "—r')2+s '(r' —r) ]j.
Here r" has been increased by &r "where it ap-
pears in (S/Br" ) G() [r ",r'; P(1 —s —t)] to insure a
correct calculation of the x"—a limit, svA;ich must
be taken after integrating over s as a consequence
of the nonuniform behavior near s = 1 —t. Because
of the rapid fall-off of the exponential in (111)for
A/a «I, the major contribution to the integral
comes from the neighborhood of r "=r ' =a(r/r)
With this in mind, we choose polar coordinates
with the z axis along the r direction for the inte-
gration over r ' and r ". Such a choice, followed
by the substitutions x= 2 sin(e'/2), y = 2sin(e "/2),
y"-y '=

fIt} yields

2r 00 00

F(s, t; )2=-2 av3 dq xdx
] ydy

0 0 Jo

&&(a -r+ —,'rx ) [e + —,'(x +y ) -xy cos(/) —g(x, y, (/))]

2."a' (s + t)
X exp

2 2 1
+

2X 1-s -t st

ax a 2

+ + x xg cos+
s 1-s —t 1-s —t

ax a, —s X' — (t(x, s, (r)
It 1-s —t 1-s —t

where ]C)(x, y, (/)) =- xy[(I --,'x2)'/'

x(1--,'y')"' —1]cos(/)+-,'x2y2 .

in the derivation of (112) from (l.11), a term
—2&(a/&) &(I —s —t) '(x +y —xy cos(/) —]r))

has been dropped from the exponent (because it
does not contribute in the c- 0 limit) and the upper
limits on the x and y integrations have been re-
placed by ~ (because most of the contribution
comes from the neighborhood of x=y= 0). The
integrations over x, y, and (/) in (112) can be per-
formed by making the definition

I(/ls&, C)-=f2"dq f,
"

XdX f,
"

ydy

x exp [-(/lx' 2Bx+y cos(/) +Cy')] . (118)

It is shown in Appendix B that
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Gz(r, r; P) =- Gz" (r, r; P) +G2 '(r, r; P) (116)

where

Gz '(r, r;P)= —2 X ar

J dt t 't (1 —t) ~ [a(r -a)x —t(1 —t)w ']

x exp[--,'mX 't '(1 —t) ' (r-a)']

x {lime 1', ds (I-s-t)-'~'
6 0

xexp[--,'e, 'e'a'(1-s -t) '])

and Gzz~(r r P) = —2 ~ ~zX- P -~a

(117)

I(A, B, c)=-,'~(AC -a') -' .

We discard terms like (t) which are of fourth degree
in x and y because they do not contribute to the
first two orders in (X/a). Then (112) becomes

2 2

)'(s, t; e)=- —(2'') exp I-

+ (r -a) e (r -a)+-,r —+-, (r -a)(s+t) z, 8

st J BA

( 8 8 8x ~- —+ ———( I(A, B, C),
BA BB BC

J

where I and its derivatives are evaluated at

A = —,'e. 'a[(r/s)+a(1-s -t) -'],
I3= ——,'mX 'a'(1 —s —t)

C = —27)X 'a[(r/t)+a(l —s t) ']—
By carrying out the indicated operations in (115)
and inserting the result into (110), one obtains

-ol (k T) Q NQ
K=0

(Al)

where z is the absolute activity and Qz the canon-
ical partition function for N particles. For the
ideal Boltzmann gas

Q))(= (N I) [V(2)TmkT/k ) ]"
so that 0 = —zkTV(2mmkT/k )3 . Since
N = —[z/(kT)]M/Bz, it follows that at high temper-
atures and low densities, where the ideal Boltz-
mann-gas model is a good first approximation,
z= p(2mmkT/k ) . Thus the virial expansion of
the equation of state can be obtairied by inverting
the power series in z for p = —[z/(VkT)]80/Bz to
get z(p) as a power series in p to be substituted
for g in PV = —0, Such a procedure makes no

assumptions about the presence of quantum effects
in Q))(. The algebraic manipulations are carried
out in an elegant and general manner in T.L. Hill's
textbook. The first terms can be obtained as
easily by pedestrian methods; the result we need
lS

—2 ~ (X/a)erfc [2'~ m' X '(r -a)]}.
The leading term for r-a of (119)agrees with the
result of the plane approximation given by Eq.
(108), and contributes to the second virial coeffi-
cient, a term of the same order in (X/a) as the
first quantum correction found by Beth and
Uhlenbeck.

It is the term G2" which was neglected in Moh-
ling's calculation of the second iterate.

APPT'.NDIX A: ALTERNATIVE DERIVATION OF

EQS. (&)-(5)

The grand partition function is

x(r-a)r-'g'dt J'' 'dst "s-"'
0

x (I, - s - t) - '~ ' [t(s + t)][(l -s - t)r + (s + t)a]

xexp[-2' '(s+t)s 't '(r -a)'] (118)

P/(pkT) = 1+ (8/N) p+O(p )

where the second virial coefficient J3 is

& = —Qi'NV(Qz -
a Qi)

(A2)

(AS)

In (118), symmetry between s and t can be ex-
ploited to replace the factor [t(s+ t)] by —,'(s +t) .
If this is done, the contribution Gz ' can be recog-
nized as half of the contribution given by Mohling's
E(l. (SS) [the factor of —,

' arises because Gz(r, r; P)
= —,'(r lU( '(P) ir))]. In (117), the integration over
s can be performed by noting that for & small all
the contribution comes from the neighborhood of
s =(1 —t), a fact which has been used to replace
s by (1 —t) where appropriate in obtaining (117).
The integration over t can be done with the aid of
the faltung theorem for the Laplace transform to
give

The partition functions Q, and Qz can be evalu-
ated by introducing a complete orthonormal set of
single-particle functions y„(r)X,(o) where (p and X

are the spatial and spin parts. The members of a
complete set of two-particle functions then have
the form

[2 ' '+(2 ' —2 ' )5„„6,,][q„(r,)y„(r2)X,(o,)X,(oz)

+ V.(ri) V.(rz)X~(oi)X.(oz)]

where the upper (plus) sign is for bosons and the
lower (minus) sign is for fermions. Using these
functions to evaluate the trace,

G~"'(r, r; p) = —2 X 'ar '{exp[-—,'7)x (2r —2a) ] Qz —2Q&=2(2S+1)' & f d'r& f d'rag.*(r&)q~(rz)
m, n
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&&(exp [ -Hz(r „r~)/(kT)][cp„(r,)y (r~)

+(2S+1) 'y„(r,)p„(r,)] —exp[ —H, (r,)/ar]

p [ Hl(r2)/»]V. (ri)e.(ran, (A4)

where S is the spin of the particles and II„H2are
the one- and two-particle Hamiltonians. We now

change to relative [r= r, —r2] and center-of-mass
[R=—,'(r, +ra)] variables and interchange the sum
over spatial quantum numbers with the integration.
The integration over R and sum over the c.m.
complete set can then be performed by using free-
particle wave functions for the c.m. complete set
to give

q, --,'q', =2'"VX -'(28+1)' f d'~[G(r, r; P)

—Go(r, r;P) +(2S+1) 'Gr, —r;P)], (A5)

where

G(r', r; p) = Q„g*„(r')exp [-pH„,(r)] g„(r)

Go(r', r; P)-=5~„q*„(r')exp[—PH",'(r)]g„(r) . (A6)

Here the g„(r)are some complete set of orthogonal
functions,

H..."'(r) = —(a'/m)v', H...(r) =H„",,'(r)+ V(r),

X = (2vmkT/h~) ' ~, and P = (kT)

It is easily shown by using plane waves for the P„
that Go(F', r; P) is given by Eq. (13), and that

Q, = (2S+1)VX (A7)

where x, y ranges over the entire two-space.
Change view points again and regard x as the first
two components and y as the second two compo-
nents of a four-dimensional vector z. Then

4 4
I= — d z exp —~ ~ A,&g,.g&

1 4

2r i=i J =1
(a2)

where z ranges over the entire Euclidean four-
space. Here Afg A/2 A A3S 444 C A/3 A/4
=A»=A42=8, and all other elements A, ; are zero.
The matrix A,&

can, in principle, be diagonalized
by an orthogonal transformation. With A o diag-
onal, the integration is easily done to obtain

I= ,' w(det —A;~) (B3)

But det A;&, which is invariant under orthogonal
transformation, is just (AC B) . The -result
(114) now follows.

Equations (1)-(3) now follow from using (A5) and
(A7) in (A3) and noting [fz'om (13)] that Go(r, r; p)
= 2 X . Equations (4) and (5) follow from the
definition (A6) and the completeness of the g„.

APPENDIX B: EVALUATION OF I(A, B, C)

In the definition (113) of I (A, B, C) regard x and

y as the magnitudes of two-dimensional vectors
x, y with p the angle between them. Then

I=—fd'x f d'y exp[ —(Ax'+2Bx y+Cy')], (Bl)
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preliminary report was given at the American Physical
Society meeting tBull. Am. Phys. Soc. 13, 646 (1968)].
The work of Sec. VI will appear as part of a Ph. D. thesis
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