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The effect of particle correlations in a classical system of charged particles moving in a
static uniform background is investigated by means of a dielectric theory developed by Singwi
et al. for a completely degenerate electron gas. In this theory, the short-range correlations
arising from the Coulomb interaction is taken into account through a local-field correction
depending on the pair correlation function. In a first approximation (I), the pair correlation
function is chosen to be time independent. The extension of allowing also the pair correlation
function to adjust itself to the external field results in a screening of the Coulomb potential
entering the local field. The effect of this screening has been investigated for the cases of a
static random-phase-approximation (RPA) dielectric function (II) and a static fully self-con-
sistent dielectric function (III). Numerical self-consistent calculations have been carried out
for the cases I-III in order to determine the static structure factor S@). From S thus ob-
tained, the Helmholtz free energy, the correlation energy, the pair correlation functions,
and the isothermal compressibility have been calculated numerically, The plasma dispersion
and the compressibility sum rule have also been investigated. The present method can be re-
garded as a rather natural extension of the RPA. Considerable improvement upon the simple
Debye-Hiickel (or, equivalently, classical RPA) is also found. The results of the present cal-
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culations are also compared with the results of other elaborate methods.

I. INTRODUCTION

The purpose of this work! is to study the equilib-
rium state of a classical system of equally charged
particles imbedded in a static uniform background
of the opposite charge. Such a simplified model
exhibits many of the important characteristics of
more complicated Coulomb systems as plasmas,
electrolytes, etc., and has consequently been sub-
ject to a large number of investigations. Debye
and Huckel? thus developed the first successful
theory, strictly valid for weakly interacting sys-
tems. Specifically, their theory predicts a simple
static pair correlation function

gou)=1-B(Ze)?exp(-kr)/7r , (1)

where k = (4mnZ%?B)1/2 is the inverse Debye-Hickel
radius, » the number density, Ze the charge of the
particles, and, as usual, f=1/kT. Equation (1) is
meaningful only for large distances between the
particles 7 >B(Ze)? At small distances the static
pair correlation function (1) results in absurd neg-
ative probabilities. Nevertheless, in spite of this
difficulty for small 7, the Debye-Hlickel result is
useful since it describes the screening out of par-
ticle correlation at distances such that »~1/k. Al-
so, Eq. (1) may be used to obtain the correct lead-
ing-order result for the Coulombic interaction en-
ergy at high temperatures and low densities, i.e.,
when B(Ze)%k <1.

Since the early work of Debye and Hickel, con-
siderable efforts have been spent on improving the
theory in order to make it applicable to systems of
higher densities and lower temperatures.®~° As a
result of these studies, we have a fairly reliable
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description available for our model system. In
the present work, we will investigate an approach
which was designed originally by Singwi et al. %8
for a completely degenerate electron gas. In the
present context this approach differs from most of
the earlier developments®™® in the sense that it is
a dynamic one.

Treated in the random -phase approximation
(RPA) the degenerate electron gas exhibits, like
the Debye -Huckel approximation (or, equivalently
classical RPA), large negative probabilities at
small interparticle separations. This situation
persists over the whole range of metallic densities:
By making a particular decoupling of the two-par-
ticle distribution function, namely, the product of
two one-particle functions and a pair correlation
function, Singwi ef al. were able to derive in the
linear response approximation an expression for
the density-density response function x(g, w) of the
system. The function x(§, w), where { is the mo-
mentum and w the frequency, turns out to be a func-
tional of the static form factor S(§), which is sim-
ply related to the static pair correlation function
2(F) as

S(ﬁ)=1+nfd?[g(?)—l]eia"’ . (2)

In order to determine S(§) [and g(¥)] the dissipat-
tion-fluctuation theorem®

nS(H):—i'Z‘[a° %: Im X, w)coth37Bfw , (3)

with 8- was then superimposed on the approxi-
mate theory. It is noteworthy that the relation (3)
is exact. With x(q, w) as a functional of S(3), the
fluctuation-dissipation theorem (3) thus provides
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us with a self-consistency requirement on S(g).
The results of the iterative numerical solutions of
Eq. (3) in the case of a degenerate electron gas
are reported in Refs. 7 and 8. The behavior at
metallic densities of the calculated pair correla-
tion function is most pleasing and shows a marked
improvement upon the RPA treatment. The fact
that the calculated g(») may still be negative for
small 7 is less troublesome. In all cases, the
values of g(0) are so small that for practical pur-
poses one can consider them to be zero.-

With the promising results of Singwi ef al. in
mind we will now turn our attention to the classical
plasma. In Sec. II, some basic formulas will be
given. Since Refs. 7 and 8 contain a detailed for-
mal framework we feel that these formulas can be
given without a derivation. In Sec. IO, the ther-
modynamic quantities are stated. The plasma
dispersion is derived in Sec. IV, and the compres-
sibility and the compressibility sum rule in Sec. V.
In Sec. VI, the results of numerical calculations
are presented and compared with other calcula-
tions. Section VII, finally, contains a summary.

II. SOME BASIC FORMULAS

If the infinite hierarchy of equations for the
classical distribution functions fy(¥;, Di; T Ds; « .. ;
Tx, Dy l?) in phase space is terminated, as was done
in Refs. 6 and 7 by the decoupling of the two-par-
ticle function as

F(F, 57, D' |t) =£1(F, B|?)
Xfl(F,) ﬁ’ |t)g(F_FI) 1) (4)

a linear response analysis gives the density-den-
sity response function for the interacting system

X(a, w): XO(a, w)/[l - ZP@)X()(&, CO)] . (5)

In' Eq. (5), Xo(d,w) is the density-density response
function for a classical system of noninteracting
particles with a Maxwellian distribution of momen-
ta. For real values of w, the function x,(d, w) can
be separated into its real and imaginary parts as

Xo(@, w) =xo(d, ) +ixg (@ w) , (6)

where!®

Xo(@, w) = -nf1-29F(y)] ,

Xy @ @)= —nBVT yeo? | @
with y=w(Bm_/2)”?/q(m=mass),
and  F(y)ze™ [’ dtet” . ®)

F(y) is sometimes referred to as Dawson’s inte-
gral. The symbol ¥(§) in Eq. (5) stands for

Y@ =2@[1-6@] , (9)

where &(q) is the bare Coulomb interaction
4n(Ze)?/q?, and

q-p

6@=- | LLs@-7 (10)

-1] (211)3 ’
Equation (5) has the same structure as the RPA
result, except that &(d) has been replaced by ¥(d).

In the classical region 7Z— 0 and B~ 0, the self-
consistency condition (3) takes a particularly
simple form. ' By means of the Kramers-Kronig
relation, the integral in Eq. (3) can be expressed
in terms of the static value x(g, 0), so that

S@=[1+nR@]"* . (11)

Equation (11) may also be written (@) = —c(k)/B
where c(k) is the Fourier transform of the direct
correlation function of Ornstein and Zernike. As
pointed out, *!* this fact makes a nice connection
with Nelkin and Ranganathan’s'? treatment of col-
lisionless sound in classical liquids.

In the decoupling (4), the function g is chosen as
the static pair correlation function. Consequently,
g(7) cannot respond to the weak outer field which
is exerted on the system in a linear response anal-
ysis. In Ref. 8, Singwi ef al. have relaxed this
restraint so that the adjustment of the pair corre-
lation function to the external disturbance is taken
into account in an approximate way. The only
changes which result from this extension is that
the function (10) will now contain a dynamic
screening €(d, w) and a dynamic factor S@, w)

(the Fourier transform of the time-ordered density
correlation functions), such that

1 (dpdw’ §-p _ 1
G(.,w)—";l' (2,")4 pz 6(5’0)

l) S(ﬁ-ﬁ, w _w') .
(12)

In the limit of static screening, one obtains®
St - d..
c@=-1f3Eia-p-12n,

where € is the static dielectric function. The value
for €(q) is
pr
€ 1+ 14
@= ”r—z‘(;?q) (14)

Concluding this section, we note that the Debye-
Huckel approximation (or classical RPA) is ob-
tained by putting g(¥ —¥')=1 in Eq. (4) and G(Q)=0
in the expression (9) for ¥(§). From Eq. (11), we
then have the well-known result

Spu(@) =1 -«%/(g®+x?) , (15)

which converted to configurational space gives the
Debye -Huckel pair correlation function (1).
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III. THERMODYNAMIC PROPERTIES

The classical static pair distribution function
enables us to calculate average values from func-
tions which depend on the coordinates and momenta
of the particles of the system. For the Coulomb
interaction energy, one has (see, e.g., Ref. 3)

U=N2m [ &) g(r) - 1]r%dr . (16)

The -1 in[g -1] in Eq. (16) comes from the uni-
form background and N is the total number of

particles. Expression (16) may alternatively be
written
2 ©
T=N (Z—‘;)— ﬁ ar[S(k) -1] . (17)

The average value of the total energy of the system
is
=3NkT+T . (18)

For Coulomb interactions, the total pressure takes
the particularly simple form

PV=NET +3U , (19)

where V is the total volume. The Helmholtz free
energy is, according to Ref. 3,

(F-Fy= [T ar'U/T" (20)

where F is the free energy of a perfect gas. The
quantity I' is the dimensionless Brush-Sahlin-
Teller parameter,’ defined as

T'=(Ze)*/7s , (21)

where 7 is the radius of a sphere containing one
particle.
In the limit of weak coupling (I'<« 1) the Debye-

Hiickel approximation should be reliable. In this
limit, one has

U/NET=-3V3 T3/2 | (22)
and (F -F,)/NErT=-T%/2/V3 , (23)

IV. PLASMA DISPERSION

The plasma dispersion w(q) is determined by
the poles in the response function x(q, w). For
small values of || and finite w, the imaginary
part of the denominator in Eq. (5) may be neglected
to a first approximation. For small arguments,
the function G(d) can further be written

G@)=G""(0)¢% , (24)
where” G"(0)=—3—ﬂlz;l j; dr[S(k)-1] , (25)

in the case of the decoupling (4), and®®

" Sk)-1 [, dlne(r)
¢ (0)“37%.[ ak =25y (1' dInk )’(26)
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in the case when the pair correlation function is
allowed to adjust itself to the outer perturbing
field. With F(y) in Eq. (8) expanded to second
order (see, e.g., p. 112 in Ref. 10), we obtain,
together with Eq. (24), the plasma dispersion

w@)?=w2, + (Emi —wf,G"(O)) a2 . (27)

In Eq. (27), w,;=(41Z%%/m)'/? is the ordinary
plasma frequency. The plasma damping may now
be obtained by evaluating x'/(d, ) in the point ().
To the leading order the damping is found to be
the same as the RPA result.

V. COMPRESSIBILITY SUM RULE

The static dielectric function (14) has in the
limit q - 0 the form

elg)=1+K*q®/[1-k2G""(0)] . (28)

From the compressibility sum rule (see, e.g.,
p. 166 in Ref. 9), one finds

K% /Kr=1-k*G"(0) , (29)

where K%=B/n is the isothermal compressibility
of the noninteracting gas.
The isothermal compressibility can also be cal-

culated as
T

A direct differentiation according to Eq. (30)
therefore gives

dU/NkT> .

dar (31)

K% /Kp=1+% (U/NkT
The consistency of the two expressions (29) and
(30) is investigated in Sec. VI.

VI. NUMERICAL CALCULATIONS

In the numerical calculations, we have distin-
guished between three different cases to be in-
dexed I, II, and III. Case I refers to the decou-
pling in Eq. (4) with a static pair correlation.
Case II involves the dielectric screening in accor-
dance with Eq. (13), but with €(§) approximated
with the classical RPA-expression'®

€rpal@=1+k%/¢% . (32)

In case III, finally, the full self-consistent dielec-
tric screening function (14) is taken into account.
In the three approximations, one then has the dif-
ferent forms of the function G(q) written in a way
that is suitable for the numerical work:

6i@)= - gz Jy app1S(9) 1]
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X ((qz -p? lnlg—tﬁ | +2pq) , (33)
Gul@)= -5tz fy appls(p) -1
(p+q)
X (E(q -p? - k% In| m‘ +2PtI>
(34)

- Py 1
Gid) = -m}; e(p)p
x[(g?+p*)1(p, @) ~Is(p, 9)] - (35)

In Eq. (35), the auxiliary functions I, and I; are
defined as

L(p, @)= Jiy gy dxx"[S(x) -1] . (36)

The self-consistency equation (11) for S(4) has
been solved numerically by means of an iterative
procedure, which has been started for case I and
for T" very small (the weak coupling limit). As
the initial guess for S(J), we have chosen the
Debye-Hiickel form factor (15) for ¢ less than a
certain g.,, and S(d)=1for ¢ >¢na,. The self-
consistent SI(E) obtained in this way has then been
used as the input to Eq. (11) in order to generate
a consecutive S¢(J) corresponding to a slightly in-
creased value of I'. Proceeding in this fashion,

S 1(g) has been determined for a large set of T'
values in the range (0.05, 2.5). It turns out that
the resulting functions S(d) are insensitive to the
initial cutoff at ¢ =¢,,, and " very small. From
case I, we have then continued to case II, using
S4Q) as the input to the iteration scheme, and
from this case to III, using S;{J) as the input. In
the very weak coupling limit, the iteration proce-
dure converges without any serious difficulties.
With increasing couplings, however, strong oscil-
lations appear. To overcome this difficulty, the
“damping device”

SY U =pS@) + (1 -p) ST ) (37)

(p~0.5), has been found convenient.* The itera-

tions have been continued until sufficient conver-
gency has been obtained in the function G(§). As
for the degenerate electron gas, "% convergency
in G(q) reveals a very high accuracy also in S(§).

Incases I, II, and III, the self-consistent func-
tions S(q) are very close to Spu(q) for §—0. This
is because G(q)=~G'*(0) ¢? in the same limit and
hence (q) ~@(q) in Eq. (11). For large J vectors
the self-consistent form factors approach the value
of one much faster than does Spy(g) (see Fig. 1).
The functions G(§) are for the present system
found to display the same general features as for
the degenerate electron gas. In particular, the
difference between the screened and unscreened
versions is the same as that found by Singwi et al.
(see Fig. 11 in Ref. 8b).

The self-consistent form factors have been used
to calculate the static pair correlation function
g(7) according to

g(y)=1+2?1;ﬁ]w dkk[S(k) —1]sin(kr) . (38)

The results are given in the Tables I-II for I'=0.1,
I=3, and I'=1.0. ForI'=1.0, the results are
also displayed in a graphical form (Fig. 2). For
comparison, other approximate pair correlation
functions are included. Among these, thenon-
linear Debye-Hlickel form?

[(ze)?8/r]e™* (39)

is the simplest one. The function (39) is obtained
from the derivation of gpy(7) in Eq. (1) if a linear-
ization is not performed at certain stages. In the
method of hypernetted chains'® (CHNC) an integral
equation for g(») is obtained by a summation pro-
cedure of Mayer-type diagrams. The integral
equation of Percus and Yevick!® (PY), on the other
hand, results from a collective coordinate treat-
ment. The method of Broyles and Sahlin!? (BS)
separates the pair potential into a sum of long-
and short-range part. The g corresponding to the
short-range part is calculated using an equation

g(r)=expq{ -

FIG. 1. Functions S(@) and
G(@) as a function of ¢ in units
of k; (a) is the Debye-Hiickel
static form factor of Eq. (15);
(b) is the self-consistent S(Q)
according to version II; and (c)
is the function G(q), also ac-

1.0 cording to version II.
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TABLE 1. Radial distribution function for I'=0.1.
v/ DH? Nonlinear ? CHNCP PY? BsP MO © I 11 Jail
DH
0.00 - 0.000 0.000 0.000 0.000 oo —-0.011 —-0.027 -0.027
0.05 —0.946 0.143 0.146 0.146 0.135 0.380 0.141 0.142 0.148
0.10 0.053 0.388 0.394 0.393 0.380 0.450 0.388 0.386 0.386
0.15 0.386 0.541 0.550 0.549 0.534 0.570 0.539 0.538 0.538
0.20 0.552 0.639 0.649 0.648 0.633 0.650 0.638 0.636 0.636
0.30 0.717 0.753 0.766 0.765 0.749 0.760 0.753 0.752 0.751
0.40 0.799 0.818 0.831 0.830 0.814 0.815 0.815 0.815 0.816
0.50 0.848 0.859 0.872 0.870 0.856 0.860 0.859 0.858 0.857
1.00 0.942 0.944 0.954 0.953 0.942 0.940 0.943 0.943 0.943
1.50 0.971 0.971 0.979 0.978 0.970 0.965 0.971 0.971 0.971
2.00 0.983 0.983 0.989 0.989 0.983 0.975 0.983 0.983 0.983
2.50 0.990 0.990 0.994 0.994 0.990 0.990 0.990 0.990 0.990
3Equation (1). ®Reference 3.
PReference 18.
TABLE II. Radial distribution function for I'=3.
v/7s DH? Nonlinear ® CHNCP® pY® BSP MC°© I I I
DH
0.00 - 0.000 0.000 0.000 0.000 oo —0.009 —-0.000 —0.003
0.05 —-5.34 0.002 0.000 0.000 0.003 oo —-0.007 —0.001 +0.001
0.10 —-2.02 0.049 0.037 0.035 0.026 oo 0.050 0.040 0.038
0.15 —-0.913 0.147 0.128 0.120 0.104 cee 0.142 0.129 0.129
0.20 —0.365 0.255 0.236 0.223 0.198 cee 0.248 0.231 0.231
0.30 0.177 0.439 0.432 0.410 0.373 oo 0.426 0.411 0.410
0.40 0.441 0.572 0.579 0.553 0.510 oo 0.557 0.544 0.544
0.50 0.596 0.667 0.685 0.658 0.613 oo 0.653 0.643 0.642
1.00 0.877 0.884 0.914 0.896 0.863 oo 0.876 0.874 0.873
1.50 0.950 0.952 0.972 0.964 0.944 oo 0.947 0.947 0.947
2.00 0.977 0.978 0.990 0.986 0.976 oo 0.976 0.976 0.976
2.50 0.989 0.989 0.996 0.994 0.989 e 0.988 0.988 0.988
%Equation (1). °Reference 3.
PReference 18.
TABLE III. Radial distribution function for I'=1.0.
v/7, DH? Nonlinear ? CHNCP PY? BSP MC*® I i} 111
DH
0.00 -0 0.000 0.000 0.000 0.000 0.000 —-0.010 +0.008 —0.008
0.10 -7.41 0.000 0.000 0.000 0.000 0.000 —-0.003 —-0.020 —0.024
0.20 —2.54 0.029 0.034 0.020 0.012 0.010 0.030 —0.044 —-0.039
0.30 —0.982 0.137 0.163 0.100 0.083 0.075 0.111 0.006 0.004
0.40 —0.250 0.286 0.335 0.221 0.193 0.200 0.232 0.128 0.116
0.50 0.159 0.431 0.498 0.351 0.315 0.335 0.355 0.267 0.261
0.60 0.410 0.554 0.632 0.470 0.433 0.450 0.473 0.411 0.404
0.70 0.575 0.653 0.734 0.574 0.538 0.550 0.575 0.538 0.525
0.80 0.687 0.731 0.810 0.661 0.629 0.640 0.658 0.639 0.629
0.90 0.766 0.791 0.864 0.732 0.704 0.715 0.726 0.716 0.714
1.00 0.823 0.838 0.903 0.789 0.767 0.775 0.780 0.777 0.780
1.50 0.950 0.951 0.982 0.940 0.936 0.935 0.932 0.937 0.937
2.00 0.984 0.984 0.996 0.984 0.985 0.970 0.980 0.982 0.983
2.50 0.995 0.995 0.999 0.996 0.994 0.990 0.994 0.995 0.995

2Equation 1.
PReference 18.

°Reference 3.
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FIG. 2. Pair correlation function g(») for I'=1.0 in
different approximations. The symbols are explained
in the text. The PY, BS, and MC results are represented
by one curve only, as the differences between them are
small and not easily pictured in a clear way. In the
shaded area, the numerical accuracy is low for the
present calculation.

such as the PY or CHNC. With the g thus obtained,
the BS method permits the calculation of the g
corresponding to the original pair potential. In
the Monte Carlo (MC) method the detailed motion
of a large but finite number of particles is studied
The results of Brush, Sahlin, and Teller® refer to
systems with 32-500 particles moving in a box

and subject to periodic boundary conditions. Be-
cause of the long-range nature of the Coulomb in-
teraction, the electrostatic field from the particles
outside the box has been included in an average
way. So far, the MC calculations in Ref. 3 repre-
sent the most extensive study of the classical one-
component plasma.

The “improved” pair correlation functions for
I'=0.1 (Table I) all seem to agree reasonably well,
although the MC values are surprisingly high for
short distances. For large distances, all the
functions approach the simple Debye -Hiickel form
(1). For I'=3(Table II) our results I, II, and III
are closest to the nonlinear DH, CHNC, PY results,
which form a rather well-collected group. Un-
fortunately, no MC results are available for this

BERGGREN 1

value of I'.  For I'=1.0 (Table III and Fig. 2), our
results agree mostly with the group consisting of

PY, BS, and MC. The pair correlation functions
calculated by means of the present methods I, II,

and IOI therefore agree with the main group of
“improved” functions in each table. As in the case
of the degenerate electron gas, ™® it turns out that
our pair correlations become increasingly nega-
tive at short distances with increasing coupling

I'. However, the region of small 7 is also the one
which is most sensitive to numerical rounding -off
errors in S(§) for large § vectors. According to
Eq. (38), these errors are amplified by a factor
k% for »=0. Therefore, we should perhaps not
emphasize the actual numbers for g(0), but at the
most the sign and the order of magnitude. It
should be noted that small negative values are also
obtained in the BS method. In Ref. 18, however,
these values are set equal to zero. In all the
cases in Tables I-III, the error in our functions
g(r) seems to be so small that it can be neglected
for practical purposes. In the calculation of the
total energy and pressure, for example, the ef-
fect of a small negative g(7) is negligible because
of a factor 7 in the integrand in Eq. (16). Or,
equivalently, the rounding-off errors in S(q) are
not amplified in Eq. (17), as they are in Eq. (38).
Also in another respect our results are similar to
those for the electron gas, namely, it was found
by Singwi et al. ® that the inclusion of a static
screening in the function G(§) leads to worse pair
correlation functions at small 7. i

For I'~ 2.0, our calculated pair correlation
functions change character in an interesting way.
A weak oscillatory behavior appears for large val-
ues of 7, indicating the onset of a short-range or-
der in the system. Also,in Refs. 3 and 18, oscil-
lations in g(7) appear at the same coupling
strength.

The correlation energy —U/NET corresponding
to the approximations I, II, and III is listed in
Table IV. In the limit of weak coupling, our re-
sults agree, as expected, with the classical RPA
(or Debye -Huckel) result. For larger values of T
the Table IV indicates in general that the present
calculation gives a considerable improvement
upon RPA, which overestimates the correlation
energy. From the various results in Table IV, it
seems, however, hard to evaluate in a strict way
the accuracy of our calculated correlation energy.
Nevertheless, it is pleasing that our results are in
reasonable agreement with the extensive MC cal-
culations.® The reason why the Table IV is termi-
nated at I' = 2. 5 is-that we seem to be entering a
region where the negative behavior of g(») may not
be entirely neglected. In Table V, the Helmholtz
free energy is given for I'<1. Again we note a



_1_ PARTICLE CORRELATIONS IN CLASSICAL ONE-COMPONENT: - - 1789
TABLE IV. —U/NkT as a function of T.
r DH? Nonlinear® CHNC® PY? BS® Abe© mcd I 11 I
DH
0.05 0.009 07 0.009 35 0.008  0.008 0.0094 0.00988  0.0128  0.0084  0.0084 0.0084
0.10 0.0274 0.0252 0.019  0.020 0.0258 0.0257 0.0270  0.0236  0.0236 0.0236
0.20 0.077 4 0.0659 0.0483  0.0509  0.0688 0.0685 oo 0.0625  0.0628 0.0628
0.3 0.1423 0.1127  0.1138  0.1139
0.333  0.1667 0.129 0.0976  0.111 0.144  0.139 cee 0.1316  0.1330  0.1331
0.4 0.2191 0.1694 -0.1716  0.1718
0.5 0.306 2 oo oo cee oo soe oee 0.2267  0.2307  0.2308
0.6 0.4025 0.289 0.296  0.296
0.7 0.507 2 0.355 0.364  0.365
0.8 0.6197 0.419 0.432  0.433
0.9 0.7394 0.488 0.505 0.508
1.0 0.866 0 0.468 0.328  0.539 0.577  0.624 0.579 0.555 0.577  0.580
2.0 2.449 0.925 0.647 1.448 1.321  1.641 1.338 1.280 1.386 1.449
2.5 3.423 1.128 0.784  1.903 1.723 ces 1.724 1.658 1.838 1.883

2Equation (22).
PReference 18.

considerable improvement upon the Debye -Hiickel
result.

The expression for the plasma dispersion at
small { vectors was derived in Sec. IV. It is in-
teresting that the present approach leads to a
smaller curvature in the function w(g) at q —~ 0.

The change to an initially decreasing dispersion,
found by Singwi et al.™ ® is, however, not recover-
ed for the range of I' values investigated here
(I'<2.5). As in Refs. 7 and 8b, it is noted that the
inclusion of screening in G(q) leads to less pro-
nounced effects in the plasma dispersion, i.e.,
GY(0)>G 1, 110).

The compressibility sum rule, discussed in Sec.
V, also reflects the behavior of the response func-
tion x(q, w) at small ¢ values. The results of the
numerical evaluation of relations (29) and (31) are
plotted in Fig. 3. Apparently, the two different
ways of obtaining the isothermal compressibility
are far from being consistent, but the inclusion of
screening in G(q) leads to a fair improvement.

TABLE V. Helmholtz free energy — (F — F)/NkT.

r DH? mcP? 1 I, 111
0.1 0.0183 0.0164 0.0152 0.0152
0.2 0.0516 0.0464 0.0429 0.0431
0.3 0.0948 oo 0.0770 0.0783
0.4 0.146 oo 0.117 0.119
0.5 0.204 0.174 0.161 0.163
0.6 0.268 oo 0.208 0.211
0.7 0.338 oo 0.257 0.262
0.8 0.413 0.337 0.309 0.315
0.9 0.493 s 0.362 0.370
1.0 0.667 0.451 0.417 0.427

3Equation (23).
bReference 3.

®Reference 19.
dReference 3.

The general form of the broken curve denoted III
in Fig. 3 seems to be the same as for the degen-
erate electron gas in the same approximation. 8

By numerical differentiation we have also deter-
mined from Eq. (31) the isothermal compressibili-
ty from the MC calculations.®> The agreement with
our results is satisfactory. According to Fig. 3,
the isothermal compressibility becomes negative
in the vicinity of I'=3. With the present assump-
tions about the uniform background the system
therefore becomes thermodynamically unstable
beyond this value.

Ratio between the free-particle isothermal
compressibility and the compressibility of the interact-
ing system for different values of I'. The full curves
are obtained by differentiation of the pressure [Eq. (31)]
and the broken curves from the compressibility sum

FIG. 3.

rule [Eq. (29)]. The broken RPA curve corresponds to
G’ (0)=0. The filled circles denote MC values, which
are obtained by differentiation of energy values in Ref. 3.
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VII. SUMMARY

In this paper, we have investigated the effect
of particle correlations in a classical one-com-
ponent plasma by means of methods which are due
to Singwi et al.®® A considerable improvement
upon the Debye-Hiickel theory (or, classical RPA)
is found, and the comparison with the results of
other calculations for quantities such as the free
energy, the correlation energy, and the pair cor-
relation functions can be said to be favorable, in
particular within the region I'<1.0. At I'~ 3.0,
the system is found to be thermodynamically un-
stable. As in the case of degenerate electron gas,
the calculated pair correlations are negative at
short distances, but g(7) is so small for these 7»
values that it for most cases can be considered to
be equal to zero.

For the region I' <1. 0 it is found that it is good
approximation to replace the static self-consistent
screening function €(g) in the definition of G(§) by
the corresponding RPA expression in Eq. (32).
The effect of using static screening functions in-

stead of frequency dependent ones has not been in-
vestigated in this work. It seems that, at the ex-
pense of a lot more computer work and computer
time, it would be possible to include also this fre-
quency dependence.

Note added in proof. Very recently,
Ichimaru (unpublished) has derived an expres-
sion for the dielectric response function starting
from the second equation of the BBGKY hierarchy
for the stationary values of the pair correlation
function. His result is similar to ours, but the
screening in the function G(d) in Eq. (10) is brought
about through S(d), not through 1/c(d). We hope
to report on the effect of this type of screening in
a future paper.
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A new formulation of the second-virial-coefficient problem, particularly useful for the
computation of the direct second virial coefficient By, at high temperatures and as good as
the phase-shift formulation at low temperatures, is given. High-temperature asymptotic ex-
pansions of By, for hard-core and hard-core-plus-square-well potentials are calculated. The
exchange second virial coefficient for a hard-core-plus-square-well potential at high tem-

peratures is investigated.

I. INTRODUCTION AND SUMMARY

A variety of approaches to the second-virial-
coefficient problem can be found in the literature,!
The phase-shift formulation developed by Gropper
and by Beth and Uhlenbeck? is very useful at low
temperatures, but difficult to handle at high tem-
peratures because the number of phase shifts
which contribute increases with temperature. The
departure from Boltzmann statistics because of
proper symmetrization of the wave function can
be split off by expressing the second virial coef-
ficient B as a sum B=Bgy; .+ B, Where By, is
computed using Boltzmann statistics. B, is
exponentially small at high temperatures® for
potentials more strongly repulsive than 2 as
7 =0, Byg;, can be calculated at high tempera-
tures from the Wigner-Kirkwood expansion4 in
powers of 7# if the potential does not vary too
rapidly.

The high-temperature calculation of Bg;, when
expansion in 77 fails has been considered by
Mohling, ® by Handelsman and Keller, ® and by
Hill,” The results of Mohling for the hard-core-
plus-square-well potential are incorrect. The
method of Handelsman and Keller and the pre-
vious method of Hill’ are somewhat tedious to
extend, either to higher order or to include an
attractive well in the potential. The present
formulation, based on the Laplace transform as
was the previous method of Hill, is considerably
less laborious to extend at high temperatures
and is as useful as the phase-shift formulation
at low temperatures.

Section II is devoted to the general formulation;
the results are given by Egs. (17)-(20), (27),
(31), and (32). Sections III and IV are devoted to
high-temperature calculations of Bg;, for hard
cores and for a hard-core-plus-square-well po-
tential; the results are given by Egs. (56) and
(75), respectively. Section V calculates By
at high temperatures for a hard-core-plus-
square-well potential; the results are given by
Egs. (76) and (91)-(95), Statements of the do-
main of validity of the results follow the results.
Section VI traces the error in Mohling’s® work.

I. GENERAL FORMULATION
We begin with the formulation of Boyd, Larsen,
and Kilpatrick,® and write the second virial coef-
ficient B in the form
B=Bgir+Beyen s (1)
where
Byy,=2'2N03 [y [273 /800 - G(F, 15 8)], (2)

and B, = F21/2NN3(25+ 1) (%G (F, - F; B). (3)

The minus (upper) sign in B, is associated with
Bose statistics and the plus sign with Fermi sta-
tistics. Here S is the spin, X = (2778/m)* /2 is the
thermal de Broglie wavelength, and 8= (¢T)™.

G is the thermal Green’s function for the relative
motion:

G(?, F; B)E<T"|eXp(—BHrel)|F> ’

where H, =— (B/m)Vi+ V(r)



