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Superluminous waves propagating transverse to the direction of relative streaming (relativistic
or nonrelativistic) of a plasma are investigated in the absence of any external field. It is shown
that these waves do not excite any instability, that they are essentially stable.

I. INTRODUCTION

Plasmas which are otherwise stable exhibit the
well-known two-stream (TS) instability when a rel-
ative streaming velocity is imparted to them.
Biinemann' showed that besides this TS instability
there exists a transverse instability in plasmas
with wave propagation transverse to the direction
of relative streaming. This instability is impor-
tant for wave numbers % satisfying the condi-
tion ck/wi,g 1, where w, is the plasma frequency.
For other wave numbers, the growth rate of this
instability is smaller by a factor of v,/c (v, being
the thermal speed of the electrons) than the one for
the longitudinal TS instability. Momota® presented
the criterion for the existence of these transverse
instabilities in cold as well as warm plasmas and
showed that the thermal effects were stabilizing.
Lee® extended Momota’s work to include a uniform
external magnetic field along the direction of
streaming, but he confined himself to counter-
streaming plasmas. He concluded that these waves
can be excited only if the streaming velocity is
greater than the thermal velocity and that the mag-
netic field acts as a stabilizer towards this insta-
bility.

The superluminous waves (waves with phase
velocities exceeding the velocity of light), which
are excited in a plasma because of thermal fluc-
tuations, do not exhibit any resonance effects;
i.e., there is no Landau damping or growth® %
associated with them. However, if there are two
relativistic plasmas streaming with relativistic
velocities, it would be interesting to examine the
stability of these waves. As the streaming and
thermal velocities are large, in accordance with
the conclusions drawn by Biinemann® and Lee, 8 we
should expect strong transverse instabilities in
such plasmas. In this paper we show that the
superluminous waves propagating transverse to
the direction of relative streaming are essentially
stable, no matter how large the thermal and the
streaming velocities are. Such plasmas are en-
countered in nature, but there are magnetic fields
associated with them which we have not taken into
account in this study. The external magnetic field
could be incorporated into the theory without much
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difficulty, but then an analytical solution is not
possible. (The effect of the field will be reported
in a forthcoming paper.) Section II presents the
analysis of the dispersion relation for transverse
superluminous waves in extreme relativistic
plasmas as well as in nonrelativistic plasmas with
relativistic streaming.

II. DISPERSION RELATION

We consider two hot homogeneous collisionless
plasmas in which the electrons are streaming but
the ions are immobile and provide only the neu-
tralizing background. Using the linearized rela-
tivistic Vlasov equation for the electrons, namely,
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we get the dispersion relation, ° | Rl= 0, where
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In Eq. (1), the subscripts 0 and 1 represent the
unperturbed and the perturbed quantities, respec-
tively, m is the rest mass of the electron, and y
=(1+p%/m??)!/2, The subscript « in Eq. (2)
labels the two streams and f is the equilibrium
distribution function which we take as drifted
Maxwellian, ° namely,
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with  a,=mc?/(T,)
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In Eq. (4), K, is the Bessel function of second kind

with imaginary argument and y, = (1 - U%/c?)~1/2 ,
If we further take the streaming along the z

axis and the wave propagation along the x axis,

then the elements R,,, R,,, R,,, R,, vanish and the
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dispersion relation gives the two modes
R,,=0 and R.,R,,-R,,R,,=0 . (5)

The former is purely transverse and the latter is
a coupled transverse longitudinal mode. From
Eqgs. (2) and (3), we can show that the elements
R,, and R,,, which are responsible for the coupling,
are proportional to x, where
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which vanishes for both stationary and identical
counterstreaming plasmas. Now for superluminous
waves, retaining terms of the order of (c%k2/w?),
we can simplify Eq. (2) to give
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with n=a,U,p/(mc?) .

We shall evaluate these elements for arbitrary
streaming velocities in the two limiting cases,
i.e., the extreme relativistic case (z <1) and the
nonrelativistic case (@ >1).

A a<<1

Equations (7)-(9), in this case, can be integrated
to give
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witha,.=a,(1 ¥U,/c) and E, as the exponential
integral® defined by
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Taking U,= - U,= U, and using the relation
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Eq. (10) for identical plasmas with density (3N)
finally reduces to
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In writing Eq. (17) we have made use of the fact
that the coupling is zero for conterstreams, and
that Egs. (10)-(12) represent three independent
modes. The roots of Eq. (17) are real unless
X1 <0, because the negative root with x, and y,
positive is not a valid root for superluminous
waves. It is, however, interesting to note that
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for a <1, x, is always a positive quantity because
the term within the square brackets of Eq. (18)
can be written as
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and this is always positive. Similarly, we can
show that ¥; >0 for all values of U, and consequent-
ly Egs. (11) and (12) can have only real valid roots.
Hence, superluminous waves in relativistic counter-
streaming plasmas are always stable. We point

ut here that for the validity of the expansion used
in Eq. (7), we must satisfy the condition x, <x%,
which in turn demands that a < Uy/C*.

B. a>>1

In this case, y=(1+p%/2m%?); so Eq. (7) can
be written as
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where A=a,U,p/(mc?). Equation (21) can be
integrated immediately to yield
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Similarly, the other two modes given by Egs. (8)
and (9), in this limit, simplify to give
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Now o being positive for all values of U,, all these
three modes are absolutely stable for superlumi-
nous waves. However, it is interesting to note
that for slow waves, i.e., w<ck, one of the modes
given by Eq. (22) for a cold plasma is always un-
stable. This is in conformity with the conclusions
of Momota? and Lee.® For Uy<<c, o0~1; so two

of the modes become independent of U,, whereas
the linearly polarized transverse mode does de-
pend on the streaming velocity.

III. CONCLUSIONS

The superluminous waves propagating trans-
verse to the direction of streaming in counter-
streaming plasmas are always stable, no matter
what the temperature and the streaming velocities
are; they may be nonrelativistic or relativistic.
In the nonrelativistic limit for nonrelativistic
streaming velocities, only one of the transverse
modes, which is linearly polarized, is affected
by the streamings.
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